ᐉ Блок Mepart » статьи про запчасти, замену запчастей и ремонт автомобилей
Датчик положения распредвала это устройство отслеживающее работу газораспределительного механизма. Благодаря информации, которую он передает в электронную систему управления она имеет возможность рассчитать оптимальный момент для впрыска топлива и срабатывания свечей зажигания.
Принцип работы датчика положения распредвала
Главным компонентом этого устройства является сенсор Холла. Он питается от постоянного напряжения в 5 вольт, основываясь на передаваемых им данных система управления получает информацию о вращении распределительного вала и может управлять его частотой.
ДПРВ используется во всех без исключения современных двигателях, без него управление их работой было бы гораздо сложнее и потребовало бы дополнительных затрат на усложнение конструкции мотора и системы впрыска.
Эффект Холла за счет которого работает устройство был открыт еще в XIX веке одноименным физиком. Суть его проста – при пропускании постоянного тока через помещенную в магнитное поле тонкую платиновую пластину, на ее краях регистрируется разность потенциалов. Она возникает за счет сил магнитной индукции, которые отклоняют часть электронов и перемещают их краям пластинки. Именно они и генерируют сигнал от сенсора, который после оцифровки поступает на обработку системой управления.
Устройство современных сенсоров претерпело ряд существенных изменений. В них используется небольшой постоянный магнит и полупроводник к которому подведены 4 контакта. По ним сигнал поступает на встроенную микросхему, в которой происходит первичная обработка и преобразование аналогового сигнала в цифровой, что делает датчик положения распредвала первым уровнем обработки информации от двигателя.
Затем данные поступают на обычные контакты, которые располагаются на пластиковом корпусе устройства. К ним подключены уже кабели, ведущие напрямую в электронную систему управления. Так как работа вала тесно связана и синхронизирована с коленвалом, для полноценного управления системой впрыска необходима информация и от аналогичного сенсора, установленного на нем (ДПКВ).
Где находится датчик положения распредвала
Местоположение этого сенсора достаточно стандартно. Чаще всего его устанавливают на головке блока цилиндров. В некоторых моделях авто, его монтируют на клапанной крышке. В отдельных моделях это устройство применяется для подачи серии импульсов, что дает возможность системе управления определить начало такта в определенном цилиндре.
Например, датчик положения распредвала назначение которого соответствует вышеуказанным спецификациям, используется во многих моделях компании «Ниссан». В этом случае для первого цилиндра он передает один импульс, для второго – два и т. д.
Признаки неисправности
Чаще всего устройство выходит из строя в результате естественного износа. Хотя сенсор не подвергается механическим нагрузкам, входящий в его состав постоянный магнит может стать причиной налипания микрочастиц металлической стружки. При их накоплении форма импульсов сенсора изменяется, что приводит к нарушениям его работы. Также нередки неполадки связанные с повреждением проводки либо самого устройства.
К признакам выхода из строя либо сбоев в работе устройства относят:
— Увеличение расхода горючего. Связано с рассинхронизацией системы впрыска.
— Снижение динамики разгона машины, при движении могут возникать рывки.
— Заметное снижение мощности мотора, изменение звуков его работы.
— Движок заводится с задержкой в несколько секунд, может глохнуть сразу после пуска.
При этом на панели автомобиля будет гореть сигнал Check Engine, он может свидетельствовать о множестве неполадок, в том числе проблем с работой распределительного вала либо синхронизацией срабатывания клапанов, за что отвечает датчик положения распредвала.
Проверить исправность узла можно самостоятельно, для этого его необходимо «прозвонить» при помощи мультиметра либо протестировать осциллографом. Последний даст более точные данные о функциональности устройства. Но лучше обратится к квалифицированным специалистам-автомеханикам, которые смогут провести полноценную диагностику автомобиля.
Ремонт сенсора не проводится, он не относится к дорогостоящим изделиям, поэтому при обнаружении неполадок выполняется простая замена на новый. Важно подобрать подходящий датчик совместимый с вашей маркой автомобиля.
Так как работа системы впрыска и зажигания должна быть четко синхронизирована, на что влияет датчик положения распредвала, необходимо выполнить диагностику и ремонт при первых признаках неисправности. Иначе есть высокий риск повреждения гораздо более дорогих и ценных частей мотора. В результате ремонт обойдется в круглую сумму и займет много времени.
основа надежной работы инжекторного двигателя
Датчик фазы: основа надежной работы инжекторного двигателяВ современных инжекторных и дизельных двигателях используются системы управления со множеством датчиков, отслеживающих десятки параметров. Среди датчиков особое место занимает датчик фазы, или датчик положения распределительного вала. О функциях, конструкции и работе данного датчика читайте в статье.
Что такое датчик фазы
Датчик фазы (ДФ) или датчик положения распределительного вала (ДПРВ) — датчик системы управления инжекторными бензиновыми и дизельными двигателями, отслеживающий положение газораспределительного механизма. С помощью ДФ определяется начало цикла работы двигателя по его первому цилиндру (при достижении ВМТ) и реализуется система фазированного впрыска. Данный датчик функционально связан с датчиком положения коленчатого вала (ДПКВ) — электронная система управления двигателем использует показания обоих датчиков, и, исходя из этого, формирует импульсы на впрыск топливо и зажигание в каждом цилиндре.
ДФ применяются только на бензиновых двигателях с распределенным фазированным впрыском и на некоторых типах дизельных моторов. И именно благодаря датчику наиболее просто реализуется сам принцип фазированного впрыска, то есть — впрыска топлива и зажигания для каждого цилиндра в зависимости от режима работы двигателя. В карбюраторных моторах в ДФ нет необходимости, так как подача топливно-воздушной смеси в цилиндры осуществляется через общий коллектор, а зажигание управляется с помощью распределителя или датчика положения коленчатого вала.
Также ДФ применяется на двигателях с системой изменения фаз газораспределения. В этом случае используются отдельные датчики для распредвалов, управляющих впускными и выпускными клапанами, а также более сложные системы управления и их алгоритмы работы.
Конструкция датчиков фазы
В настоящее время применение находят ДФ, основанные на эффекте Холла — возникновении разности потенциалов в полупроводниковой пластине, по которой протекает постоянный ток, при ее помещении в магнитное поле. Датчики на эффекте Холла реализуются довольно просто. За основу берется квадратная или прямоугольная пластина из полупроводника, к четырем сторонам которой подключаются контакты — два входных, для подачи постоянного тока, и два выходных, для снятия сигнала. Для удобства эта конструкция изготавливается в виде микросхемы, которая устанавливается в корпус датчика вместе с магнитом и другими деталями.
Существует два конструктивных типа датчиков фазы:
— Щелевые;
— Торцевые (стержневые).
Щелевой датчик
Торцевой датчик
Щелевой датчик фазы имеет П-образную форму, в его разрезе проходит репер (отметчик) распределительного вала. Корпус датчика разделен на две половины, в одной находится постоянный магнит, во второй располагается чувствительный элемент, в обеих частях находятся магнитопроводы специальной формы, обеспечивающие изменение магнитного поля при прохождении репера.
Торцевой датчик имеет цилиндрическую форму, репер распредвала проходит перед его торцом. В данном датчике чувствительный элемент располагается в торце, над ним расположен постоянный магнит и магнитопроводы.
Здесь следует заметить, что датчик положения распределительного вала является интегральным, то есть, он сочетает в себе описанный выше чувствительный элемент, формирующий сигнал, и вторичный преобразователь сигнала, который усиливает сигнал и преобразует его в удобную для обработки электронной системой управления форму. Преобразователь обычно встроен непосредственно в датчик, что значительно облегчает монтаж и настройку всей системы.
Принцип работы датчика фазы
Датчик фазы работает в паре с задающим диском, установленным на распределительном валу. Данный диск имеет репер той или иной конструкции, который во время работы двигателя проходит перед датчиком или в его зазоре. Репер при прохождении перед датчиком замыкает выходящие из него магнитные линии, что приводит к изменению магнитного поля, пересекающего чувствительный элемент. В результате в датчике Холла формируется электрический импульс, который усиливается и изменяется преобразователем, и подается на электронный блок управления двигателем.
Для щелевых и торцевых датчиков используются разные по конструкции задающие диски. В паре с щелевыми датчиками работает диск с воздушным зазором — управляющий импульс формируется при прохождении этого зазора. В паре с торцевым датчиком работает диск с зубцами или короткими реперами — управляющий импульс формируется при прохождении репера.
В инжекторных двигателях задающий диск и датчик фазы устанавливаются таким образом, чтобы импульс формировался при прохождении 1-го цилиндра его верхней мертвой точки. Одновременно система управления получает информацию от ДПКВ, и на основе показаний обоих датчиков она посылает сигналы на впрыск топлива и зажигания в порядке работы цилиндров. ДФ и ДПКВ позволяют оперативно отслеживать изменение частоты вращения коленвала и режима работы двигателя, и обеспечивать своевременный впрыск топлива и работу зажигания.
В дизельных двигателях система работает аналогичным образом, но с одной особенностью — положение поршня отслеживается отдельно для каждого цилиндра. Это достигается модернизацией задающего диска — добавлением основных и вспомогательных реперов различной ширины. Во время работы система управления двигателем по данным реперам определяет, какой из цилиндров достиг ВМТ, и на основе этой информации посылает управляющие импульсы на форсунки.
Работа двигателя жестко завязана на датчике фазы, поэтому неисправность датчика оказывает негативное влияние на функционирование силового агрегата. При поломке или отключении ДФ двигатель принудительно переводится в режим парафазного впрыска топлива с управлением по показаниям датчика коленвала. Без датчика распредвала теряется возможность отслеживать начало цикла работы двигателя, поэтому в данном режиме каждая форсунка принудительно выполняет впрыск половины дозы топлива дважды за один цикл. Это гарантирует, что в каждом цилиндре образуется топливно-воздушная смесь, однако в таком режиме повышается расход топлива и снижается качество работы двигателя, зачастую он работает неустойчиво, с перебоями.
При выходе из строя ДФ на приборной панели загорается индикатор Check Engine, а также выдается соответствующий код ошибки. В этом случае необходимо заменить датчик и выполнить необходимую настройку электронной системы управления двигателем. При нормальном функционировании датчика обеспечивается наиболее эффективная работа двигателя во всех режимах и в любых условиях.
Другие статьи
#Палец штанги реактивной
Палец штанги реактивной: прочная основа шарниров штанг23.06.2021 | Статьи о запасных частях
В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.
#Клапан МАЗ включения привода сцепления
Клапан МАЗ включения привода сцепления16.06.2021 | Статьи о запасных частях
Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.
описание, основные функции, расположение, признаки неисправности
Датчик фаз
Датчик фаз (ДФ) – один из многочисленных датчиков, обеспечивающих работу двигателя. Датчик фаз так же называют ещё «датчик положения распределительного вала (ДПРВ)».
Данный датчик не устанавливается в карбюраторном моторе, да и в первых моделях инжекторов ВАЗа. Датчик присутствует во всех 16-ти клапанных моторах автоваза; На 8-ми клапанных с нормой токсичности евро-3 и с фазированным, последовательно распределённым впрыском топлива; Стоит отметить, что в период с 2004г по 2005г на такие двигатели как 2111, 2112,21114, 21124 с блоками управления двигателем Bosch M7.9.7 и Январь 7.2 началась массовое внедрение Датчиков фаз.
Зачем нужен датчик фаз?
Датчик фаз предназначен для определения цикла работы двигателя и формирования импульсного сигнала. Датчик фаз интегральным датчиком, т.е. включает чувствительный элемент и вторичный преобразователь сигнала в импульс. Чувствительный элемент датчика работает по принципу Холла, реагируя на изменения магнитного поля. Вторичный элемент датчика содержит в себе мостовую схему, операционный усилитель, выходной каскад. Выходной каскад выполнен по типу открытого коллектора.
Работа датчика фаз представляет собой выбор такта для первого цилиндра: распредвал определяет какой клапан открыт, какая фаза газораспределения. В карбюраторных моторах данного датчика нет. Дело в том, что карбюраторный мотор подаёт искру свечи в момент сжатия и в конце пуска отработавших газов, а для такого принципа работы достаточно показаний датчика положения коленчатого вала (ДПКВ). Данный тип работы двигателя носит название «система зажигания».
На инжэкторных двигателях, когда датчик фаз(ДФ) умирает, загорается чек, и двигатель переходит с фазированного впрыска на систему зажигания, то есть опираясь всего лишь на показания ДПКВ.
В чём преимущество фазированного впрыска?
Ситема фазированного впрыска устроена следующим образом: датчик фаз передают импульс на ЭСУД , который управляет подачей топлива и форсунка впрыскивает бензин в цилиндр перед самым открытием впускного клапана. Когда клапан открылся, воздух всасывается в впускной клапан и топливо активно перемешивается с воздухом.
Датчик фаз
Где находится датчик фаз?
Датчик фаз стоит на двигателе со стороны воздушного фильтра, рядом с головкой блока цилиндров. Обратите внимание на рисунок.
Признаки неисправности датчика фаз
Если у вас появились следующие признаки, то скорее всего неисправен датчик фаз (дф).
- Во время запуска двигателя, стартер крутится 3-4 секунды, затем двигатель запускается и загорается чек эйндж. В этом случае, во время запуска, эбу ждёт показания с датчика фаз, недожидается и переходит в режим работы двигателя опираясь на систему зажигания (по ДПКВ).
- Повышенный расход бензина. (Так же читайте: Причины большого расхода топлива на ВАЗ).
- Сбои режима самодиагностики.
- Снижение динамики двигателя. (так же причина может быть в ДМРВ и в низкой компрессии двигателя).
Ошибка датчика фаз
0340 | Ошибка датчика фазы. |
0343 | Высокий уровень сигнала датчика фаз (Датчик положения распределительного вала – высокий сигнал) |
При неисправности датчика загорается чек и выскакивает ошибка P0340 – «Ошибка датчика фазы» или «неисправен датчик положения распредвала». Но как уже говорилось с самого начала, что описание проблемы разное, а суть то одна: (ещё раз повторюсь) датчик фаз и датчик положения распредвала – это один и тот же датчик. Более подробно о возникновении ошибки и способах устранения читайте в статье: Ошибка датчика фаз Чаще всего ремонт обходится просто: нужно заменить датчик на новый (Как заменить датчик фаз?).
Цена на датчик фаз
Примерная стоимость датчика фаз(ДФ) составляет 250-300р.
Зачем нужен датчик положения распредвала?: service_193 — LiveJournal
В отличие от датчика положения коленчатого вала (ДПКВ), он в системе не обязателен. Однако ненужным его не назовешь.
Начнем издалека. Вспомним, как выглядит осциллограмма сигналов ДПКВ:
Пачка импульсов между двумя промежутками — это один полный оборот коленчатого вала. Именно по ним блок управления определяет текущее положение коленвала. Приводом ГРМ (будь то цепь, ремень или шестерня) обеспечивается четкое соответствие положения распредвалов каждому положению коленчатого вала, и блок управления это соответствие знает. Конечно, мы не рассматриваем случаи явной неисправности — растяжения ремня/цепи, или неправильную их установку. Так вот, на исправном двигателе блоку управления этих показаний достаточно, чтобы определить положение коленвала и цилиндров.
Другое дело — пуск двигателя. Представим, что двигатель был заглушен в положении, соответствующем второму импульсу после перерыва. Чтобы блок управления смог хотя бы «сориентироваться», где находится коленвал, ему нужно дождаться промежутка. То есть, это уже минимум один оборот коленвала. Далее нам нужно вспомнить, что один оборот коленчатого вала — это всего полоборота вала распределительного, и даже дождавшись промежутка, блок управления не может точно сказать, в каком из цилиндров сейчас будет фаза впуска. То есть, остается шанс впрыснуть смесь не в тот цилиндр, и впрыснутая смесь просто будет выброшена через открытые выпускные клапаны. Поэтому запуск двигателя в такой ситуации может занять не привычные полсекунды, а 2-5-10 секунд — в зависимости от конкретного мотора и прошивки его блока управления.
Поэтому в систему управления был добавлен еще один датчик — датчик положения распредвала (ДПРВ). Его еще могут называть «датчиком фазы». Конструктивно он полностью аналогичен с ДПКВ, а вот конструкция задающего диска на валу несколько отличается. Строго говоря, даже и называть его именно диском нельзя. Например, на двигателе ЗМЗ-406 это задающая пластина:
А на Z18XER эта конструкция посложнее, хотя слово «диск» к ней по-прежнему неприменимо:
Такая конструкция позволяет в результате получить примерно такую осциллограмму:
Картинка взята для примера, и скорее всего не соответствует тем двигателям, о которых шла речь вышеБлагодаря дополнительным сигналам с ДПРВ блок управления сможет быстрее понять, «где он находится» и завести двигатель без лишних «холостых» оборотов коленчатого вала.
Кроме того, в случае растяжения цепи/ремня ГРМ, или при выходе из строя регуляторов фаз, блок управления по расхождению сигналов ДПКВ и ДПРВ может зафиксировать ошибку и зажечь лампу Check Engine, чем и сообщить водителю о поломке.
На некоторых системах, помимо этого, ДПРВ обеспечивает аварийный режим. При отказе ДПКВ система начинает ориентироваться на показания ДПРВ, и «льет» в оба цилиндра, которые могут соответствовать текущей фазе. И впрыск, и подача искры осуществляются очень приблизительно, но все же это позволяет худо-бедно завести двигатель и поехать к месту ремонта своими силами, а не обрывать телефоны эвакуаторов — каждый из которых вот именно сегодня не может.
А вот выход из строя ДПРВ к существенным проблемам не приведет — мотор от этого заводиться не перестанет, и машина посреди дороги не встанет. Что, конечно, не служит поводом оставлять без внимания поломки, связанные с этим датчиком.
Датчик положения распредвала: зачем нужен и как проверить
ДПКВ и ДПРВ: что к чему?
Я не зря вспомнил про датчик положения коленвала: его задача очень близка к той, которую решает датчик положения распредвала. Да и устроены они практически одинаково. Так зачем тогда нужен второй датчик, который наблюдает за тем, как крутится распредвал?
Было дело, когда моторы обходились и без него, полагаясь исключительно на данные датчика положения коленвала (ДПКВ). Всё было хорошо, но расход бензина в этом случае был заметно выше из-за попарно-параллельного режима впрыска топлива. То есть впрыск топлива проходил через две одновременно открытые форсунки. В одном цилиндре при этом топливо начинало работать (сгорать), а в другом расходовалось впустую. В век тотального озеленения моторов и буйства экологов такую растрату бензина терпеть было нельзя, и тогда в дополнение к ДПКВ появился датчик положения распредвала (ДПРВ). Алгоритм впрыска топлива изменился.
Теперь стала открываться только одна нужная форсунка – началась эпоха фазированного впрыска. Задача ДПРВ – дать понять блоку управления, что поршень в конкретном цилиндре подходит к верхней мёртвой точке, и сейчас туда надо брызнуть топливо через открытую форсунку. Остальные форсунки при этом открывать не надо.
Теоретически этот датчик не так важен, как ДПКВ. Основные функции выполняет как раз датчик положения коленвала. Он сам способен определить скорость вращения коленвала и его положение в момент времени – то есть определить фазы. И внезапный выход из строя датчика положения распредвала не так страшен, как отказ ДПКВ. Чаще всего мотор лишь перейдёт в попарно-параллельный режим впрыска топлива, но колом не встанет (о симптомах отказа ДПРВ скажу чуть ниже подробнее). Но точная синхронизация с неработающим датчиком распредвала будет уже невозможной, и его придётся менять. Не зря же ДПРВ часто называют датчиком фаз, хотя это не совсем точно.
Так что он собой представляет и как его проверить?
Брат-близнец
Тут опять нельзя не вспомнить про датчик коленвала: датчики распредвала конструктивно точно такие же. И они тоже могут быть оптическими, магнитными (индуктивными) и датчиками Холла. Последние – наиболее распространённые, о них и пойдёт речь ниже. Вкратце напомню, что такое эффект Холла.
Был такой учёный американский дядя, которого звали Эдвин Холл. Он работал в Гарварде и как-то задался вопросом: а можно ли как-то изменить сопротивление проводника в магнитном поле? После ряда экспериментов он выяснил, что при помещении проводников с постоянным током в магнитные поля появляются разности потенциалов. Это явление назвали эффектом Холла, а возникающую разность потенциалов – холловским напряжением. Эффект Холла применяется очень широко. Например, в электронных компасах смартфонов. Но нас интересуют датчики Холла, которые используют этот эффект. Эти датчики реагируют на приближение металла, изменяя напряжение на сигнальном проводе. В качестве металла, который нужно приблизить к датчику, используется всё тот же задающий диск или отдельный репер на распредвале. В общем, система почти та же, что и у ДПКВ того же типа.
Конструктивно датчик положения распредвала тоже не сильно отличается от датчика коленвала. Основная его деталь – это катушка, на которую после включения зажигания приходит постоянное напряжение от бортовой сети – 12 вольт (на самом деле чуть больше, но для простоты – 12). Третий провод датчика – сигнальный. По нему в ЭБУ возвращается в среднем 90-95% напряжения. В момент прохождения репера около датчика напряжение на сигнальном проводе падает до значения ниже, чем в половину вольта (на разных машинах по-разному, но в среднем – 0,2-0,5 В). Это и есть сигнал на ЭБУ. И он заметно точнее, чем сигнал от датчика положения коленвала, а в моторах с фазовращателями он вообще единственный, который может точно указать фазы. Что будет, если сигнал пропадёт?
Может, он, может, и нет
А будет всё просто: ЭБУ, пользуясь данными датчика положения коленвала, будет знать, когда поршни проходят верхнюю мёртвую точку. Но не будет знать, какой именно поршень к этой точке приближается. Чтобы мотор не заглох, ЭБУ отдаст форсункам команду переключиться с фазированного впрыска на попарно-параллельный. Работать мотор будет, но не в штатном режиме. Интересно, что неопытный водитель даже не всегда поймёт, что с ДПРВ случилась какая-то беда: Check Engine загорается не всегда, а потерю тяги новичок (в данном случае – не средство против шпионов и прочих либералов, а неопытный водитель) частенько просто не замечает. Он может и не заметить повышенный расход бензина.
В более тяжёлых ситуациях Check Engine, конечно, загорится. Тут всё понятно – диагностика всё покажет. Кроме того, могут появиться и совсем неприятные симптомы: неровная работа на холостых оборотах, рывки при наборе скорости, «троение», а иногда мотор может и заглохнуть. Пуск тоже может быть затруднён.
Периодически симптомы умершего ДПРВ проявляются только на повышенных оборотах, но это случается довольно редко.
К сожалению, весь этот набор неприятностей не может однозначно говорить об отказе датчика распредвала. С этими же симптомами может умереть, например, катушка зажигания или бензонасос. Или что-то ещё – уж очень эти симптомы размыты. Но ведь как-то найти неисправность датчика надо… Тогда ищем!
«… смотреть могут не только лишь все, не каждый может это делать»
Честно говоря, диагностика этого датчика – штука не очень простая. Но попробуем что-нибудь сделать.
Начнём с самого простого и очевидного приёма – подключения сканера. Ошибки могут быть разными: P0340 (нет сигнала определителя положения распредвала), P0341 (фазы газораспределения не совпадают с тактами ЦПГ), P0342 (низкий уровень сигнала в цепи ДПРВ), P0343 (высокий уровень сигнала от ДПРВ), P0339 (неверный сигнал от ДПРВ). Наиболее частая ошибка – просто отсутствие сигнала, P0340. Но эта рубрика не для тех, кто умеет пользоваться сканером – они и так всё знают. Поэтому мы пойдём своим путём – путём молотка, анализа и дешёвого мультиметра. Всё, как мы любим.
Итак, если нет сканера, самый простой способ проверки ДПРВ – это установка заведомо исправного датчика. Найти его на моторе обычно несложно (он стоит где-то с краю рядом с концом распредвала), снять – тоже. Но вот беда: мало у кого дома в кладовке лежит запасной ДПРВ. Поэтому думаем дальше.
Другой способ чуть сложнее, но тоже вполне рабочий – с замером напряжения на сигнальном проводе. Для этого лучше будет заточить щупы мультиметра до состояния игл, чтобы проткнуть ими изоляцию проводов. Сначала находим постоянные 12 вольт, которые идут после включения зажигания, потом ищем сигнальный провод. Для этого смотрим, где напряжение ниже. Если, например, на датчик идут два провода с напряжением 13,4 В, то на сигнальном будет приблизительно 12 (13,4х0,9). Если этого напряжения нет, можно поздравить себя с победой – датчик не работает, дело сделано. Если напряжение есть, ищем дальше.
Теперь надо проверить, реагирует ли датчик на репер (то есть на кусок железа). Снимаем датчик, но разъём не отключаем, потому что без постоянного питания он работать не будет. Теперь при включенном зажигании пытаемся возбудить этот датчик любым куском железа (гаечным ключом, молотком – любым железным предметом). Если во время того, как вы подносите железку к торцу датчика, напряжение на сигнальном проводе проседает до 0,5 В и меньше, датчик точно рабочий. Если нет, то он не работает. Скорее всего не работает, потому что точнее его нужно проверять осциллографом, которого, конечно же, под рукой нет. Впрочем, отсутствие падения напряжения при приближении железа говорит о неисправности ДПРВ достаточно точно, а кроме того, есть и другие способы проверки датчика с помощью мультиметра. Тут описан самый элементарный.
Что делать и кто виноват?
Способов существенно продлить жизнь датчику распредвала не существует. Он, как любая деталь из железа и пластика, имеет право на естественную смерть. Так что остаются только несущественные способы: стараться содержать моторный отсек в чистоте (грязь не жалеет проводку и разъёмы), а всё, что есть под капотом кроме датчика, – в порядке. Лишние вибрации, перегревы – всё это вредит любому датчику. Кстати, именно поэтому проверку ДПРВ лучше начинать с внешнего осмотра. Если у него лопнул пластиковый корпус или проводка к нему позеленела и рассыпается в руках, есть повод переживать.
Ремонтировать датчик бесполезно, его придётся только менять. И не надо себя успокаивать тем, что мотор как-то работает и без него: мотор в этом случае работает в нештатном режиме, а это не приносит ему пользы.
Напоследок – пара потенциальных причин, по которым даже исправный датчик работать не будет. Первая – это если на его торце на многолетние потёки масла попала какая-нибудь металлическая пыль или стружка. В этом случае сигнал от репера на распредвале будет искажаться или его не будет совсем. Вторая причина – это сам реперный (или задающий) диск. Если он каким-то образом люфтит на распредвале, зазор между ним и датчиком будет гулять. Сигнал в этом случае тоже будет пропадать.
Датчик фаз (датчик положения распределительного вала)
Датчик положения распределительного вала (его еще называют датчиком фаз) – небольшой, но очень важный элемент в двигателе внутреннего сгорания, который отвечает за стабильную работу двигателя. Основная функция датчика фаз – определение углового положения распределительного вала в каждый момент времени. Информация с датчика положения распредвала (ДПРВ) поступает на блок управления двигателем и впоследствии используется контроллером для правильной работы систем впрыска и зажигания.
Как устроен и как работает датчик положения распределительного вала (датчик фаз)
Чаще всего в современных автомобилях устанавливается датчик положения распредвала, работающий на основе эффекта Холла. Основа датчика фаз – постоянный магнит, создающий магнитное поле. Когда репер (металлический зуб, который располагается на задающем диске распредвала или зубчатом колесе распредвала) замыкает магнитный зазор при своем движении, магнитное поле изменяет свое напряжение. Это изменение фиксируется полупроводником, который также находится в датчике фаз. ЭБУ получает сигналы с датчика, считывает положение поршня первого цилиндра в ВМТ, а затем в соответствии с порядком работы цилиндров в двигателе обеспечивает впрыск и зажигание в каждом из них.
Схема устройства датчика фаз (датчика положения распредвала)Кроме того, на некоторых автомобилях устанавливается датчик положения распредвала, в основе которого лежит фотоэлемент. Оптический датчик считывает сигнал после того, как репер перекрывает свет, излучаемый источником.
В зависимости от марки и модели автомобиля датчик фаз может быть установлен в разных местах. Единственное условие, необходимое для работы ДПРВ, – непосредственная близость к распредвалу. Так, например, в большинстве японских автомобилей датчик положения распределительного вала находится в нижней части «лобовины» мотора рядом со шкивами. Кроме того, датчик фаз может быть установлен в верхней части «лобовины» вблизи распредвала.
Где находится датчик положения распредвала на ВАЗФункционально датчик положения распределительного вала связан с датчиком положения коленчатого вала. Если один из датчиков вдруг выходит из строя или по какой-то причине не может передавать сигнал на ЭБУ, контроллер считывает информацию со второго.
Признаки неисправности и диагностика датчика фаз
Признаков поломки датчика положения распредвала может быть много. Чаще всего это нестабильная работа мотора с провалами, проблемы с запуском, внезапное увеличение расхода топлива. Кроме того, нередко при выходе из строя датчика фаз загорается индикатор Check Engine. Если вы столкнулись с одним из этих симптомов, в перечень действий по диагностике следует обязательно включить проверку датчика распредвала (но про остальные датчики и системы забывать тоже не стоит, так как у разных «болезней» двигателя могут быть совершенно одинаковые «симптомы».
Очень часто датчик положения распредвала выходит из строя из-за проблем в электрической цепи. Для начала разъем и провода датчика следует проверить на наличие следов коррозии или грязи (при необходимости – очистить).
Затем следует проверить наличие напряжения в цепи с помощью вольтметра. Для этого нужно проверить наличие напряжения на проводах, которые идут к датчику (зажигание должно быть включено, разъем датчика – отключен). Если напряжения нет, скорее всего, причину стоит искать в плохом контакте разъема или в проводах. Если напряжение есть, следует подключить вольтметр к сигнальному проводу и отрицательному проводу питания датчика: при вращении распредвала напряжение должно меняться. Если напряжение не меняется, значит, датчик «умер» и его придется заменить.
Зачем менять фазы газораспределения — ДРАЙВ
Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.
В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.
В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.
Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.
Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.
Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.
При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.
Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).
Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!
Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.
Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.
А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.
Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.
Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.
Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.
Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).
Аналогичная система от немецкой компании Mahle.
Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.
Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.
Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.
Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.
Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.
Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.
В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?
А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.
Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.
Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.
Датчик фазы кулачка | efignition
Датчик ХОЛЛ обычно используется как датчик распредвала. Но датчик VR тоже отлично работает (Ford Zetec, Duratec, Toyota Supra).
Последовательный впрыск
Если мы хотим производить впрыск или зажигание полностью последовательно, нам нужен датчик распределительного вала. Датчик распределительного вала сообщает ЭБУ ход соответствующего цилиндра (ход впуска или ход).
Преимущество полностью последовательного впрыска заключается в том, что двигатель работает немного тише, быстрее набирает обороты, имеет меньше выбросов и более экономичен.Закачиваем бензин точно в то время, когда это необходимо. Это нормально перед открытием впускного клапана. Затем бензин успевает испариться и перемешаться, но турбулентности от других цилиндров в коллекторе больше нет.
Последовательное зажигание (Coil On Plug)
Преимущество полностью последовательного зажигания состоит в том, что катушки зажигания включаются только при необходимости. Это экономит тепло. Если двигатель используется на очень высоких оборотах, это может быть важно для бобина.Технически зажигание DIS или «отработанная искра» работает одинаково хорошо. Проблема с нагревом возникает только на скоростях выше 10 000.
Odd-Fire
Для двигателей Odd-fire V6 (двигатели PRV от Peugeot 504/604, Volvo 260, Renault и Alpine, DeLorean, Maserati C114) фаза ДОЛЖНА быть известна. Независимо от того, используете ли вы дистрибьютор, Dual dizzy или Coil per Plug. Из-за угла наклона блока на 120 градусов шатунной шейки со смещением 120 градусов зажигание разделено на неравные интервалы в 90–150 градусов.Если нам не известен правильный ход двигателя, зажигание не произойдет вовремя, и эти двигатели могут быть серьезно повреждены. EFIgnition поддерживает нечетное зажигание.
Спусковое колесо
Спусковое колесо на распределительном валу содержит только 1 зуб. Датчик увидит это непосредственно перед прохождением недостающего зуба (зубьев) спускового колеса коленчатого вала. В этот момент включается 1-й цилиндр.
Если на спусковом колесе больше 1 зуба, можно использовать «опрос».Теперь ЭБУ проверяет, высокий или низкий уровень сигнала во время отсутствия зуба (ов) коленчатого вала. Остальные зубы игнорируются.
Признаки неисправности или неисправности датчика положения распределительного вала
Датчик положения распределительного вала собирает информацию о частоте вращения распределительного вала автомобиля и отправляет ее в модуль управления двигателем (ЕСМ). Контроллер ЭСУД использует эти данные для определения момента зажигания, а также времени впрыска топлива, необходимого двигателю.Без этой информации двигатель не сможет нормально работать.
Со временем датчик положения распределительного вала может выйти из строя или изнашиваться из-за несчастных случаев или обычного износа. Есть несколько предупреждающих знаков, на которые следует обратить внимание, прежде чем ваш датчик положения распределительного вала полностью выйдет из строя и остановит двигатель, что сделает замену необходимой.
1. Автомобиль не ездит так, как раньше
Если ваш автомобиль грубо работает на холостом ходу, часто глохнет, у него падает мощность двигателя, часто спотыкается, сокращается расход топлива или происходит медленное ускорение, это все признаки того, что ваш датчик положения распределительного вала может выйти из строя.Если у вас есть какие-либо из этих симптомов, это может означать, что датчик положения распределительного вала необходимо как можно скорее заменить профессиональным механиком. Его необходимо выполнить до того, как двигатель заглохнет и не заглохнет во время движения или не запустится вообще. Конечно, это симптомы и множества других проблем.
2. Загорается индикатор проверки двигателя.
Индикатор проверки двигателя загорится, когда датчик положения распределительного вала начнет выходить из строя. Поскольку этот свет может загореться по разным причинам, лучше всего поручить профессиональному осмотру автомобиля.Механик просканирует ECM и увидит, какие коды ошибок отображаются, чтобы быстро диагностировать проблему. Если вы проигнорируете индикатор проверки двигателя, это может привести к серьезным проблемам с двигателем, например, к отказу двигателя.
3. Автомобиль не заводится
Если игнорировать другие проблемы, в конечном итоге автомобиль не заведется. Когда датчик положения распределительного вала ослабевает, сигнал, который он передает на ECM автомобиля, также ослабевает. В конце концов, сигнал ослабнет настолько, что сигнал отключится, и двигатель тоже.Это может произойти, когда автомобиль припаркован, или во время вождения. Последнее может быть опасной ситуацией.
Как только вы заметите, что ваш автомобиль не едет, как раньше, горит индикатор проверки двигателя или автомобиль не заводится должным образом, возможно, потребуется заменить датчик. Эту проблему не следует игнорировать, потому что со временем двигатель полностью перестанет работать.
Ищете новый датчик положения распредвала?
Посмотрите десятки отличных вариантов прямо здесь
купить сейчас Autoblog может получать долю от покупок, сделанных по ссылкам на этой странице.Цены и доступность могут быть изменены.Отказ датчика фазы и устранение неисправностей
Поведение при отказе датчика фазы
Датчик фазы — это датчик, который определяет положение клапана, а затем предоставляет его в ЭБУ. Датчик фазы используется для обнаружения фазы. Если фаза неточная, будет подан сигнал тревоги, и на приборе загорится индикатор неисправности двигателя. будет на.
Это датчик, который определяет фазу газораспределения двигателя. Это реализовано путем определения положения распределительного вала и угла поворота. Датчик фазы имеет катушка обнаружения внутри зонда, которая может обнаруживать близлежащий металл. Когда нет металл поблизости, LC-контур, включая зонд, находится в резонансном состоянии, и выходное напряжение U — максимальное. Когда к зонду приближается металлический предмет, катушка обнаружения наводит вихревые токи на поверхности металлического объекта, тем самым изменяя индуктивность катушки, параллельная цепь LC расстраивается, и выходное напряжение уменьшается.Чем меньше расстояние обнаружения, тем меньше выходное напряжение. Таким образом можно обнаружить изменения фазы.
Устранение неисправностей фазовых датчиков
1. [Неисправность]
В последнее время в моей машине иногда загорается индикатор неисправности двигателя. на. После проверки декодером на СТО показывает, что неисправен датчик фазы и неисправность устранена (с помощью декодера).Однако, После этого дважды загорелся индикатор неисправности двигателя. Подозреваю, что это датчик фазы снова. Я нажал рукой на датчик фаз и загорелся индикатор неисправности. вне. Считается, что контакт плохой! Вы хотите спросить у службы станции заменить датчик или сделать дальнейшее обслуживание? Это явление В чем большой потенциал проблемы?
[Решение]
Датчик фазы — это датчик, который определяет фазу газораспределение двигателя, которое обычно достигается путем обнаружения распредвала положение и угол поворота.Из предоставленной вами ситуации вполне вероятно, что разъем плохо подключен. Можете сходить на СТО для проверки первый. Если код неисправности хранится в датчике фазы, необходимо проверить датчик фазы и родственные линии. Вероятность повреждения этого датчика составляет очень низкий, и неисправность все еще на линии. Обратите внимание при проверке связь. Хотя с поверхностным подключением вилка, внутренние клеммы могут быть ослаблены.Также необходимо проверить, есть ли другие связанные разъемы в линии не закреплены. Самый простой способ — вручную встряхните рукой предполагаемую неисправную соединительную линию, чтобы воспроизвести неисправность.
2. [Явление отказа]
Автомобиль утверждает, что в последнее время иногда загорается индикатор неисправности двигателя. в ее машине. После проверки декодером на СТО фаза датчик неисправен, и неисправность устранена (с помощью декодера).Тем не менее дважды загорелся индикатор неисправности двигателя. В сложившихся обстоятельствах она подозревала что это снова датчик фазы, поэтому она нажала на датчик фазы рукой, и индикатор неисправности погас.
[Анализ неисправностей]
Датчик фазы — это датчик, который определяет фазу газа в двигателе. распределение, и обычно реализуется путем определения положения распределительного вала и угол поворота. В зависимости от ситуации владельца вполне вероятно, что разъем плохо подключен.Рекомендуется сходить на СТО. для тестирования в первую очередь. Если код неисправности хранится в датчике фазы, вам необходимо проверьте датчик фазы и соответствующие линии.
Из-за малой вероятности повреждения самого датчика неисправность все же сохраняется. на линии. При проверке связи обратите внимание на то, что хотя с поверхностным подключением вилки проблем нет, внутренние клеммы могут быть ослаблены. Расшатанности не было.Самый простой способ — вручную встряхните предполагаемую неисправную соединительную линию, чтобы воспроизвести вина. Кроме того, эта ситуация также может быть вызвана программным сбоем электронная система управления.
Как работает фазовый автофокус
Когда дело доходит до технологии DSLR, кажется, есть некоторая путаница в том, как именно работает фазовый автофокус.Хотя для большинства людей это может быть не очень интересной темой, если вам интересно, как и почему у камеры может быть проблема с автофокусом, эта статья прольет свет на то, что происходит внутри камеры с точки зрения автофокуса, когда делается снимок. . Существует огромное количество отрицательных отзывов о проблемах с автофокусировкой на таких точных инструментах, как Canon 5D Mark III, Nikon D800, Pentax K-5 и других цифровых зеркальных фотоаппаратах, и похоже, что большинство фотографов, похоже, не понимают, что основная проблема не обязательно с определенной моделью или типом камеры, а скорее с определенным способом фокусировки этих камер.Если вы поищете в Интернете, вы найдете тысячи отчетов об автофокусировке по всем видам зеркальных фотокамер, возраст которых насчитывает более 10 лет. Следовательно, проблемы с передним и задним фокусом, которые мы видим в современных камерах, не являются чем-то новым — они существуют с тех пор, как была создана первая зеркальная фотокамера с датчиком фазового обнаружения.
Как работают камеры DSLR
Чтобы разобраться в этой проблеме более подробно, важно сначала узнать, как работает камера DSLR. На типичных иллюстрациях DSLR показано только одно зеркальное зеркало, расположенное под углом 45 градусов.Чего они не показывают, так это того, что за зеркалом есть вторичное зеркало, которое отражает часть света в датчик фазового детектирования. Взгляните на упрощенную иллюстрацию ниже, которую я сделал из образца изображения Nikon D800:
Вот описание каждого числа, показанного на иллюстрации выше:
- Луч света
- Главное / Зеркало
- Вторичное Зеркало, также известное как «дополнительное зеркало»
- Затвор камеры и датчик изображения
- Эксцентриковый штифт (1.5 мм шестигранник) для регулировки главного зеркала
- Эксцентриковый штифт (шестигранник 1,5 мм) для регулировки вторичного зеркала
- Датчик определения фазы (датчик автофокусировки)
- Пентапризма
- Видоискатель
Давайте посмотрим, что происходит внутри камеры когда сделан снимок. Лучи света попадают в объектив (1) и попадают в камеру. Частично прозрачное главное зеркало (2) расположено под углом 45 градусов, поэтому оно отражает большую часть света вертикально в пентапризму (8).Пентапризма волшебным образом преобразует вертикальный свет обратно в горизонтальный и переворачивает его, так что вы видите именно то, что получаете, когда смотрите в видоискатель (9). Небольшая часть света проходит через главное зеркало и отражается вторичным зеркалом (3), которое также наклонено под углом (54 градуса на многих современных камерах Nikon, как показано выше). Затем свет достигает датчика фазового обнаружения / автофокусировки (7), который перенаправляет его на группу датчиков (два датчика на точку автофокусировки). Затем камера анализирует и сравнивает изображения с этих датчиков (аналогично тому, как оценивается фокусировка на дальномере), и, если они не выглядят одинаково, дает команду объективу произвести правильную настройку (подробнее см. Ниже).
Хотя описанный выше процесс выглядит более или менее простым, у этого подхода есть одна серьезная проблема. Датчик фазового определения — это датчик, который дает команду объективу выполнить правильную настройку, в то время как изображение захватывается совершенно другим устройством — датчиком на задней панели камеры. Почему это проблема? Помните, что когда вы делаете снимок, оба зеркала заднего вида поднимаются, затвор открывается, и свет от объектива попадает прямо на датчик камеры (4).Для правильной работы фазового автофокуса расстояние между креплением объектива и датчиком камеры, а также расстояние между креплением объектива и датчиком фазового определения должно быть идентичным . Если есть даже небольшое отклонение, автофокус будет некорректным. Вдобавок ко всему, если угол вторичного зеркала не совсем такой, каким должен быть, это также приведет к проблемам с автофокусировкой.
Как работает датчик фазового детектирования
Как я уже сказал выше, система фазового детектирования работает так же, как и дальномерные камеры.Свет, который отражается от вторичного зеркала, принимается двумя или более небольшими датчиками изображения (в зависимости от того, сколько точек фокусировки имеет система автофокусировки) с микролинзами над ними. Для каждой точки фокусировки, которую вы видите в видоискателе, есть два крошечных датчика разности фаз — по одному для каждой стороны объектива, как показано на иллюстрации вверху страницы (7) (на рисунке это поведение преувеличено, т.к. показаны два отдельных световых луча, достигающих двух отдельных датчиков.
На самом деле, на современном устройстве обнаружения фаз гораздо больше датчиков, чем два, и эти датчики расположены очень близко друг к другу).Когда свет достигает этих двух датчиков, если объект находится в фокусе, световые лучи с крайних сторон линзы сходятся прямо в центре каждого датчика (как на датчике изображения). На обоих датчиках будут одинаковые изображения, указывающие на то, что объект действительно в идеальном фокусе. Если объект находится не в фокусе, свет больше не будет сходиться и попадет в разные стороны датчика, как показано ниже (изображение любезно предоставлено Википедией):
На рисунках 1–4 представлены условия, при которых объектив сфокусирован (1 ) слишком близко, (2) правильно, (3) слишком далеко и (4) слишком далеко.Из графиков видно, что разность фаз между двумя профилями может использоваться, чтобы определить не только в каком направлении, но и на сколько нужно изменить фокус для достижения оптимальной фокусировки. Обратите внимание, что на самом деле вместо сенсора движется объектив.
Поскольку система фазового детектирования знает, находится ли объект в фокусе спереди или сзади, она может отправлять точные инструкции на объектив камеры о том, в какую сторону и на сколько повернуть фокус. Вот что происходит, когда камера фокусируется на объекте (операция автофокусировки с замкнутым контуром):
- Свет, проходящий через крайние стороны объектива, оценивается двумя датчиками изображения
- В зависимости от того, как свет достигает изображения датчиков, система автофокусировки может определить, находится ли объект в фокусе спереди или сзади, а также по тому, насколько
- Затем система автофокусировки дает команду объективу отрегулировать фокус
- Вышеупомянутое повторяется столько раз, сколько необходимо, до тех пор, пока не будет достигнута идеальная фокусировка.Если фокусировка не может быть достигнута, объектив сбрасывается и начинает повторно фокусироваться, что приводит к «поиску» фокусировки.
- После достижения идеальной фокусировки система автофокусировки отправляет подтверждение того, что объект находится в фокусе (зеленая точка внутри видоискателя, звуковой сигнал и т. д.)
Все это происходит за доли времени, поэтому система определения фазы работает намного быстрее, чем система определения контраста (которая полагается на изменение фокуса вперед и назад до тех пор, пока фокус не будет достигнут, с большим количеством изображений). анализ данных происходит на уровне датчика изображения).
Система фазового детектирования / автофокуса — очень сложная система, в которой практически каждый раз улучшается, когда обновляется линейка камер более высокого класса. С годами количество точек автофокусировки увеличивалось, а также количество более надежных точек автофокусировки перекрестного типа. Например, Canon 1D X и Canon 5D Mark III имеют колоссальную 61 точку фокусировки, 41 из которых перекрестного типа. Взгляните на эту сложную матрицу датчиков автофокусировки на камере:
Увеличено не только количество точек автофокусировки, но и их надежность.Большинство современных профессиональных фотоаппаратов сегодня поставляются с чрезвычайно быстрыми и легко настраиваемыми системами автофокусировки, которые могут непрерывно отслеживать объекты и фокусироваться.
Проблемы с автофокусом DSLR
Как вы можете видеть выше, система автофокусировки с определением фазы очень сложна и требует высокой точности для получения точных результатов. Что наиболее важно, система фазового обнаружения / автофокусировки должна быть правильно установлена и выровнена в процессе производства. Если есть даже небольшое отклонение, которое случается довольно часто при производстве, автофокус отключится.Это основная причина, по которой фазовое обнаружение было источником проблем в значительной степени с тех пор, как появилась первая зеркальная фотокамера с датчиком фазового обнаружения. Понимая эти возможные отклонения, все производители цифровых зеркальных фотоаппаратов разработали систему высокоточной калибровки, которая учитывает это и позволяет проводить индивидуальную калибровку камеры в процессе проверки и обеспечения качества (QA).
Если обнаружена проблема выравнивания датчика с определением фазы, система выполняет автоматическое компьютеризированное тестирование, которое проходит через каждую точку фокусировки и вручную настраивает ее в камере.Отклоненные точки повторно калибруются и настраиваются, затем значения компенсации записываются в прошивку камеры. Думайте об этом как о процессе, аналогичном процессу точной настройки AF / Micro Adjust, который происходит на уровне определения фазы, за исключением того, что он выполняется для каждой точки фокусировки AF отдельно.
Фазовые датчики и реле последовательности фаз от DARE Electronics, Inc.
Главная> Продукция> Фазовые датчикиЗащитите авиационное оборудование и другие устройства от повреждений из-за обрыва фазы или ее неправильного направления с помощью фазовых датчиков и мониторов DARE.Предназначенные для контроля последовательности фаз трехфазного питания, датчики фаз DARE защитит электрооборудование, чувствительное к неправильному чередованию фаз (чередованию), обрыву или чередованию фаз.
Если чередование фаз правильное, на выходе датчика фазы DARE будет подано напряжение. Когда датчик фазы обнаруживает несинхронизацию по фазе, выход обесточивается. Контакты фазового датчика можно использовать для отключения нагрузку, включение цепи аварийной сигнализации или и то, и другое.
Кроме того, датчики фазы могут использоваться вместе с силовым контактором, который будет выполнять фактическое переключение нагрузки, и могут быть разработаны для контроля повышенного и / или пониженного напряжения и условий повышенной и / или пониженной частоты.
Фазовые датчики и мониторыDARE легко настраиваются и доступны в большом количестве стандартных и нестандартных корпусов.
Типичные электрические характеристики включают:
- От 90 до 150 В переменного тока между нейтралью
- от 156 до 260 В переменного тока между линиями
- от 40 до 480 Гц
- Переходные процессы напряжения согласно MIL-STD-704
Релейные выходы от SPST до 4PDT доступны с номиналами от сухой цепи до резистивной 25 ампер.
Монтажные конфигурации, отделка и разъемы могут быть адаптированы к вашим требованиям, и при желании доступны индикаторные лампы.
Проконсультируйтесь с нашим техническое описание фазового датчика или инженер по продажам для получения дополнительной информации.
Простое испытание датчика положения распределительного вала
Это образец для 2- и 3-проводного датчика. Когда датчик положения коленчатого вала — распределительного вала выходит из строя, ваш автомобиль не заводится.Вы можете быть склонны брать свой автомобиль и иметь лучшие предложения по ремонту автомобилей Шантильи, но если вам нравится ремонтировать автомобили, вы можете починить это дома.Для систем зажигания без распределителя (DIS) требуется датчик положения коленчатого вала (CKP), а иногда также датчик положения распределительного вала (CMP).
Датчики кривошипа и кулачка (CKP) (CMP), необходимые для системы зажигания без распределителяКоленчатый вал — Датчики положения распределительного вала по существу служат для той же цели, что и датчик зажигания и спусковое колесо в электронном распределителе.
Следовательно, когда один из этих датчиков выходит из строя, ваш двигатель запускается, но не запускается.Единственное отличие состоит в том, что основной сигнал синхронизации считывается с коленчатого вала или балансира, а не с вала распределителя.
Автомобиль (или грузовик) не заводится по множеству различных причин, например:
- A BAD Топливный насос
- BAD Катушка зажигания
- A BAD Модуль управления зажиганием
- BAD Кабели свечей зажигания и т. Д.
Неисправный датчик положения коленчатого вала — распределительный вал может вызвать ряд сбивающих с толку проблем.Все, в зависимости от типа неисправности и типа автомобиля:
- Трансмиссия блокируется на одной передаче, пока вы ее не выключите и не перезапустите
- Автомобиль дергается и теряет мощность
- Потеря мощности двигателя; например без разгона выше 35 кмч
- Гараж
- Нерегулярное ускорение
- Пропуски зажигания
- Жесткий запуск
- Пульсирующий
- Нет искры: нет запуска вообще
- Нет импульса топливной форсунки
Есть и другие вещи, которые могут сделать проверку коленчатого вала — датчик положения распределительного вала устрашающей.Во-первых, каждая марка и модель используют разные типы датчиков положения. Поэтому недостаточно сказать, что ваш автомобиль или грузовик не заводится. Итак, что вам нужно знать, так это некоторые из измеримых / проверяемых эффектов / симптомов неудач. И какое влияние ПЛОХОЙ датчик положения коленчатого вала — распределительного вала оказывает на систему зажигания.
Коленчатый вал — простая проверка датчика положения распределительного валаНе только это, но и эти датчики называются по-разному, например:
- Датчик эффекта Холла
- Датчик CKP
- Датчик CMP
- Катушка звукоснимателя
- Генератор магнитных импульсов
- Переменный реле
Может показаться, что каждый тестируется по-своему.
Все они отличаются друг от друга физически и имеют столько имен. Что ж, хорошая новость заключается в том, что их обычно можно разделить на две основные категории:
Я хочу подчеркнуть, что ключ к успешному тестированию и диагностике — это правильная информация. Вы должны знать, двух- или трехпроводные они!Это образец коленчатого вала — датчик распределительного вала для 2-х и 3-х проводных соединений
Теперь, если вам интересно, что я имею в виду под двумя и тремя типами проводов … Я имею в виду количество проводов в их разъеме (конечно, всегда есть исключение из каждого правила).
Коленчатый вал — Устранение неисправностей датчика положения распределительного валаЕсли ваш автомобильный компьютер уже активировал свет двигателя, вы можете получить код (DTC) с помощью считывателя кодов. Если у вас нет считывателя кодов, большинство магазинов автозапчастей найдут коды (DTC) бесплатно.
После подтверждения кода неисправности, связанного с датчиком положения коленчатого вала и распределительного вала, стоит выполнить несколько простых тестов. Код неисправности, указывающий на возможную неисправность датчика положения коленчатого вала — распределительного вала, не обязательно означает, что датчик неисправен.Возможно, вы имеете дело с неисправностью провода, разъема или связанного с ним компонента, которую вы можете исправить самостоятельно.
Однако для подтверждения хорошей или плохой работы датчика положения коленчатого вала может потребоваться прицел. Например, отсутствие сигнала датчика может быть трудно проверить без специального оборудования.Тем не менее, вы можете сделать несколько простых проверок в вашем гараже с помощью цифрового мультиметра (DMM).
Сначала проверьте состояние электрического разъема и проводов датчика.Отсоедините разъем и проверьте, нет ли ржавчины или загрязнений, таких как масло, которые мешают хорошему электрическому контакту. Затем проверьте, нет ли повреждений проводов: обрывов проводов, ослабленных проводов и следов ожогов от близлежащих горячих поверхностей. Если вы заметили какое-либо повреждение проводов, их необходимо немедленно заменить. Чтобы в следующий раз обеспечить более длительный срок службы проводов, возможно, вы захотите приобрести электрический ввод высокого давления, который сможет выдерживать различные среды.
Также убедитесь, что провода датчика не касаются проводов свечей зажигания или катушек зажигания.В результате возникают помехи сигналу датчика.
После этих проверок используйте цифровой мультиметр, который может измерять напряжение переменного тока (AC) или постоянного тока (DC). В зависимости от вашего конкретного типа коленчатого вала — датчика положения распределительного вала. Вам также потребуются правильные электрические параметры для вашего конкретного типа датчика. Вы можете найти эту информацию в руководстве по ремонту вашего автомобиля.
Инструменты для прокалывания заднего зондаС некоторыми датчиками вы можете проверить провода через электрический разъем датчика.Если это невозможно, попробуйте отсоединить разъем датчика. В таком случае прикрепите жилу медного провода к каждой клемме разъема. Затем снова вставьте разъем так, чтобы две жилы выходили через корпус разъема. Другое решение — проткнуть каждую проволоку булавкой. Но будьте осторожны, чтобы не замкнуть провода во время испытаний. Если вы используете этот последний метод, закройте изолентой отверстия для штифтов на проводах. Следовательно, предотвращение проникновения коррозии в провода.
Как проверить двухпроводной датчик:- Если у вас двухпроводный датчик магнитного типа, установите мультиметр на «Вольт переменного тока».
- Попросите помощника включить ключ зажигания, не запуская двигатель.
- Проверьте наличие тока в цепи. Коснитесь одним из щупов заземления, а другим щупом — каждого провода датчика. Если ни один из проводов не имеет тока, значит, неисправна цепь датчика.
- Попросите помощника провернуть или запустить двигатель.
- Прикоснитесь одним из щупов измерителя к одному из проводов датчика, а другим — к другому проводу. Проверьте дисплей глюкометра и сравните свои показания с указанными в руководстве. В большинстве случаев вы увидите колебания сигнала между 0,3 и 1 вольт.
- Если сигнала нет, значит датчик неисправен.
- Во-первых, определите провода питания, заземления и сигнальные провода, используя руководство по ремонту вашего автомобиля.Затем проверьте цепь датчика, установив мультиметр на «Вольт постоянного тока».
- Попросите помощника включить ключ зажигания, , но не заводить двигатель.
- Коснитесь черным щупом на измерителе заземления, а другим щупом — проводом питания. Сравните свое чтение со спецификацией в вашем руководстве.
- Попросите помощника провернуть или запустить двигатель.
- Коснитесь сигнального провода красным щупом измерителя и провода заземления черным щупом. Сравните свои показания со спецификацией в руководстве по ремонту вашего автомобиля.Если сигнал напряжения ниже спецификации, скорее всего датчик неисправен. Если сигнал не выходит из датчика, скорее всего датчик неисправен.
- Снимите датчик и осмотрите его на предмет физических повреждений или загрязнения.
Если вы не можете найти ничего плохого в датчике положения коленчатого вала — распределительного вала или его цепи; возможно, у вас может быть периодический сбой или отказ связанного компонента. Например, у вас может быть ослабленный или чрезмерно растянутый ремень ГРМ или натяжитель ремня ГРМ.
Ослабленный ремень ГРМ ВыводИзношенный ремень может препятствовать синхронизации датчика положения коленчатого вала и распределительного вала, в результате чего датчик подает неверный сигнал.
Поделитесь новостями портала DannysEngine
Как они работают — Denso
Датчик положения коленчатого вала
Датчик положения коленчатого вала прикреплен к блоку двигателя напротив ротора газораспределения на коленчатом валу двигателя.
Датчик обнаруживает сигналы, используемые ЭБУ двигателя для расчета положения коленчатого вала и частоты вращения двигателя.
Есть 2 типа датчиков положения коленчатого вала. Тип MPU объясняется здесь как ссылка.
34 зубца расположены через каждые 10 ° угла поворота (CA), плюс два отсутствующих зуба для определения верхней мертвой точки (ВМТ) установлены вокруг внешнего диаметра ротора привода ГРМ. Следовательно, на каждый оборот коленчатого вала датчик выводит 34 волны переменного тока.Эти волны переменного тока преобразуются в прямоугольные формы с помощью схемы формирования формы сигнала внутри ЭБУ двигателя и используются для расчета положения коленчатого вала, ВМТ и частоты вращения двигателя.
Датчик положения распределительного вала
Датчик положения распределительного вала определяет вращение распределительного вала и установлен рядом с головкой блока цилиндров, так что датчик находится напротив ротора газораспределения, прикрепленного к распределительному валу двигателя.
ЭБУ двигателя определяет угол распредвала и выполняет распознавание цилиндров на основе сигналов, обнаруженных датчиком положения распределительного вала.
Существует 2 типа датчиков положения распределительного вала. Тип MRE объясняется здесь в качестве справки.
Из-за вращения ротора синхронизации направление магнитного поля (магнитного вектора), излучаемого из магнита датчика, изменяется в соответствии с положением зубца обнаружения в течение времени, когда зубец обнаружения, прикрепленный к ротору синхронизации, приближается, а затем перемещается от положения распределительного вала датчик. В результате изменяется и значение сопротивления MRE. Напряжение от ЭБУ двигателя подается на датчик положения распределительного вала, и изменение значения сопротивления MRE выводится как изменение напряжения.Формы сигналов на выходных сигналах двух MRE дифференциально усиливаются и формируются в прямоугольную форму сигнала с помощью схемы усиления / формирования формы сигнала внутри датчика. Затем выходные сигналы MRE отправляются в ЭБУ двигателя.
.