Коловратный двигатель: Коловратный двигатель внутреннего сгорания

Содержание

Коловратная машина или роторный двигатель Тверского

В конце 19-го века «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении турбин справедливо лишь в их больших массо-габаритных размерах. Действительно — при мощности больше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у турбин есть другой недостаток. При масштабировании их массо-габаритных параметров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются.

Именно поэтому — в области мощностей менее 1 тыс. кВт (1 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины». А между тем — эти машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают невысокой частотой вращения главного вала на полных оборотах от 800 до 1500 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (трактора, тягача) — не будут требовать редуктора, сцепления и проч., а будут своим валом на прямую соединяется с динамо-машиной, колесами авто и проч.


Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр. и др. Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилизации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизируется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 10 кВт, если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр.
и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей т.е. вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Роторный паровой двигатель — Паровые двигатели

Вот замечательная подборка на тему того что такое роторные паровые двигатели и зачем они не нужны: http://www.aqpl43.ds…s/rotaryeng.htm

 

Идёт эта идея ещё от Уатта (который Ватт). С непременной стабильностью. Проблемы просты и нерешаемы: уплотнения, клапана и прочие перегородки, степень расширения.

С уплотнениями всё просто.Роторный двигатель только в плане выглядит красиво. С дугой проекции видны громадные трущиеся плоскости, которые изнашиваются и уплотнить их невозможно никак. Это вам не масляный насос. И множество лопастей, дверок, заслоноу, и прилегающих тел хитрой формы со скользящей линией контакта тоже не способствуют применению пружинных колец и других хороших штук.

Перегородки и дверки в роторном двигателе должны перемещаться туда-сюда очень быстро (большие обороты — главное заявленное достоинство роторных двигателей), плотно прижиматься к куда надо (потому что уплотнение) и держать большие давления. И это несочетаемо. Прижмёшь неплотно или чуть раньше откроешь — пар уйдёт из впуска в выпуск напрямую. Прижмёшь плотнее или задержишься с открытием — ударит и оторвёт. Сделаешь принудительное вращение и хитрую форму — будут щели, увеличивающиеся от износа.

Степень расширения же полностью перечёркивает весь смысл роторных двигателей. Потому что её чуть менее чем нет. То есть на паре такие двигатели перекачивают пар из котла в выхлоп, а не выдают мощность.

 

Почему работают пневматические роторные двигатели? Потому что сжатый воздух не пар. У него температура комнатная, смазку он не сжигает и не вымывает. Давление его небольшое, а расход не важен, сжать воздух компрессором гораздо проще, чем вскипятить и перегреть массу воды.

Роторный паровой двигатель не совсем вечный, но близок к тому.

 

Кстати, пожарные насосы это чуть ли не единственное реальное применение роторных паровых двигателей. Роторный двигатель питается от примитивного, но мощного, котла и крутит роторный же насос. Весь чуть примятый пар уходит на создание тяги в топке. На эффективность всем плевать, главное что компактно, мощно, и сразу готово к действию.

Изменено пользователем John Jack

Паровой роторный двигатель Тверского — коловратная паровая машина. Паровой двигатель Паровой механизм

Осмотр музейной экспозиции я пропущу и перейду сразу к машинному залу. Кому интересно, тот может найти полную версию поста у меня в жж. Машинный зал находится в этом здании:

29. Зайдя внутрь, у меня сперло дыхание от восторга — внутри зала была самая красивая паровая машина из всех, что мне доводилось видеть.

Это был настоящий храм стимпанка — сакральное место для всех адептов эстетики паровой эры. Я был поражен увиденным и понял, что совершенно не зря заехал в этот городок и посетил этот музей.

30. Помимо огромной паровой машины, являющейся главным музейным объектом, тут также были представлены различные образцы паровых машин поменьше, а на многочисленных инфостендах рассказывалась история паровой техники. На этом снимке вы видите полностью функционирующую паровую машину, мощностью 12 л.с.

31. Рука для масштаба. Машина была создана в 1920 году.

32. Рядом с главным музейным экземпляром экспонируется компрессор 1940 года выпуска.

33. Этот компрессор в прошлом использовался в железнодорожных мастерских вокзала Вердау.

34. Ну а теперь рассмотрим детальней центральный экспонат музейной экспозиции — паровую 600-сильную машину 1899 года выпуска, которой и будет посвящена вторая половина этого поста.

35. Паровая машина является символом индустриальной революции, произошедшей в Европе в конце 18-го — начала 19-го века. Хотя первые образцы паровых машин создавались различными изобретателями еще в начале 18-го века, но все они были непригодны для промышленного использования так как обладали рядом недостатков. Массовое применение паровых машин в индустрии стало возможным лишь после того, как шотландский изобретатель Джеймс Уатт усовершенствовал механизм паровой машины, сделав ее легкой в управлении, безопасной и в пять раз мощней существовавших до этого образцов.

36. Джеймс Уатт запатентовал свое изобретение в 1775 году и уже в 1880-х годах его паровые машины начинают проникать на предприятия, став катализатором индустриальной революции. Произошло это прежде всего потому, что Джеймсу Уатту удалось создать механизм преобразования поступательного движения паровой машины во вращательное. Все существовавшие до этого паровые машины могли производить лишь поступательные движения и использоваться только лишь в качестве насосов. А изобретение Уатта уже могло вращать колесо мельницы или привод фабричных станков.

37. В 1800 году фирма Уатта и его компаньона Болтона произвела 496 паровых машин из которых лишь 164 использовались в качестве насосов. А уже в 1810 году в Англии насчитывалось 5 тысяч паровых машин, и это число в ближайшие 15 лет утроилось. В 1790 году между Филадельфией и Берлингтоном в США стала курсировать первая паровая лодка, перевозившая до тридцати пассажиров, а в 1804 году Ричард Тревинтик построил первый действующий паровой локомотив. Началась эра паровых машин, которая продлилась весь девятнадцатый век, а на железной дороге и первую половину двадцатого.

38. Это была краткая историческая справка, теперь вернемся к главному объекту музейной экспозиции. Паровая машина, которую вы видите на снимках, была произведена фирмой Zwikauer Maschinenfabrik AG в 1899 году и установлена в машинном зале прядильной фабрики «C.F.Schmelzer und Sohn». Паровая машина предназначалась для привода прядильных станков и в этой роли использовалась вплоть до 1941 года.

39. Шикарный шильдик. В то время индустриальная техника делалась с большим вниманием к эстетическому виду и стилю, была важна не только функциональность, но и красота, что отражено в каждой детали этой машины. В начале ХХ века некрасивую технику просто никто бы не купил.

40. Прядильная фабрика «C.F.Schmelzer und Sohn» была основана в 1820 году на месте теперешнего музея. Уже в 1841 году на фабрике была установлена первая паровая машина, мощностью 8 л.с. для привода прядильных машин, которая в 1899 году была заменена новой более мощной и современной.

41. Фабрика просуществовала до 1941 года, затем производство было остановлено в связи с началом войны. Все сорок два года машина использовалась по назначению, в качестве привода прядильных станков, а после окончания войны в 1945 — 1951 годы служила в качестве резервного источника электроэнергии, после чего была окончательно списана с баланса предприятия.

42. Как и многих ее собратьев, машину ждал бы распил, если бы не один фактор. Данная машина являлась первой паровой машиной Германии, которая получала пар по трубам от расположенной в отдалении котельной. Кроме того она обладала системой регулировки осей от фирмы PROELL. Благодаря этим факторам машина получила в 1959 году статус исторического памятника и стала музейной. К сожалению, все фабричные корпуса и корпус котельной были снесены в 1992 году. Этот машинный зал — единственное, что осталось от бывшей прядильной фабрики.

43. Волшебная эстетика паровой эры!

44. Шильдик на корпусе системы регулировки осей от фирмы PROELL. Система регулировала отсечку — количество пара, которое впускается в цилиндр. Больше отсечка — больше экономичность, но меньше мощность.

45. Приборы.

46. По своей конструкции данная машина является паровой машиной многократного расширения (или как их еще называют компаунд-машиной). В машинах этого типа пар последовательно расширяется в нескольких цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр, что позволяет значительно повысить коэфициент полезного действия двигателя. Эта машина имеет три цилиндра: в центре кадра находится цилиндр высокого давления — именно в него подавался свежий пар из котельной, затем после цикла расширения, пар перепускался в цилиндр среднего давления, что расположен справа от цилиндра высокого давления.

47. Совершив работу, пар из цилиндра среднего давления перемещался в цилиндр низкого давления, который вы видите на этом снимке, после чего, совершив последнее расширение, выпускался наружу по отдельной трубе. Таким образом достигалось наиболее полное использование энергии пара.

48. Стационарная мощность этой установки составляла 400-450 л.с., максимальная 600 л.с.

49. Гаечный коюч для ремонта и обслуживания машины впечатляет размерами. Под ним канаты, при помощи которых вращательное движения передавалось с маховика машины на трансмиссию, соединенную с прядильными станками.

50. Безупречная эстетика Belle Époque в каждом винтике.

51. На этом снимке можно детально рассмотреть устройство машины. Расширяющийся в цилиндре пар передавал энергию на поршень, который в свою очередь осуществлял поступательное движение, передавая его на кривошипно-ползунный механизм, в котором оно трансформировалось во вращательное и передавалось на маховик и дальше на трансмиссию.

52. В прошлом с паровой машиной также был соединен генератор электрического тока, который тоже сохранился в прекрасном оригинальном состоянии.

53. В прошлом генератор находился на этом месте.

54. Механизм для передачи крутящего момента с маховика на генератор.

55. Сейчас на месте генератора установлен электродвигатель, при помощи которого несколько дней в году паровую машину приводят в движение на потеху публике. В музее каждый год проводятся «Дни пара» — мероприятие, объединяющее любителей и моделистов паровых машин. В эти дни паровая машина тоже приводится в движение.

56. Оригинальный генератор постоянного тока стоит теперь в сторонке. В прошлом он использовался для выработки электричества для освещения фабрики.

57. Произведен фирмой «Elektrotechnische & Maschinenfabrik Ernst Walther» в Вердау в 1899 году, если верить инфотабличке, но на оригинальном шильдике стоит год 1901.

58. Так как я был единственным посетителем музея в тот день, никто не мешал мне наслаждаться эстетикой этого места один-на-один c машиной. К тому же отсутствие людей способстовало получению хороших фотографий.

59. Теперь пару слов о трансмиссии. Как видно на этом снимке, поверхность маховика обладает 12 канавками для канатов, при помощи которых вращательное движение маховика передавалось дальше на элементы трансмиссии.

60. Трансмиссия, состоящая из колес различного диаметра, соединенных валами, распределяла вращательное движение на несколько этажей фабричного корпуса, на которых распологались прядильные станки, работающие от энергии, переданной при помощи трансмиссии от паровой машины.

61. Маховик с канавками для канатов крупным планом.

62. Тут хорошо видны элементы трансмиссии, при помощи которых крутящий момент передавался на вал, проходящий под землей и передающий вращательное движение в прилегающий к машинному залу корпус фабрики, в котором располагались станки.

63. К сожалению, фабричное здание не сохранилось и за дверью, что вела в соседний корпус, теперь лишь пустота.

64. Отдельно стоит отметить щит управления электрооборудованием, который сам по себе является произведением искусства.

65. Мраморная доска в красивой деревянной рамке с расположенной на ней рядами рычажков и предохранителей, роскошный фонарь, стильные приборы — Belle Époque во всей красе.

66. Два огромных предохранителя, расположенные между фонарем и приборами впечатляют.

67. Предохранители, рычажки, регуляторы — все оборудование эстетически привлекательно. Видно, что при создании этого щита о внешнем виде заботились далеко не в последнюю очередь.

68. Под каждым рычажком и предохранителем расположена «пуговка» с надписью, что этот рычажок включает/выключает.

69. Великолепие техники периода «прекрасной эпохи «.

70. В завершении рассказа вернемся к машине и насладимся восхитительной гармонией и эстетикой ее деталей.

71. Вентили управления отдельными узлами машины.

72. Капельные масленки, предназначенные для смазки движущихся узлов и агрегатов машины.

73. Этот прибор называется пресс-масленка. От движущейся части машины приводятся в движение червяки, перемещающие поршень масленки, а он нагнетает масло к трущимся поверхностям. После того, как поршень дойдет до мертвой точки, его вращением ручки поднимают назад и цикл повторяется.

74. До чего же красиво! Чистый восторг!

75. Цилиндры машины с колонками впускных клапанов.

76. Еще масленки.

77. Эстетика стимпанка в классическом виде.

78. Распределительный вал машины, регулирующий подачу пара в цилиндры.

79.

80.

81. Все это очень очень красиво! Я получил огромный заряд вдохновения и радостных эмоций во время посещения этого машинного зала.

82. Если вас вдруг судьба занесет в регион Цвикау, посетите обязательно этот музей, не пожалеете. Сайт музея и его координаты: 50°43″58″N 12°22″25″E

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку. Паровые страницы истории автомобилестроения были очень яркими и без них трудно представить современный транспорт вообще. Как ни старались скептики от законотворчества, а также нефтяные лоббисты разных стран ограничить развитие автомобиля на пару, им это удавалось лишь на время. Ведь паровой автомобиль подобен Сфинксу. Идея автомобиля на пару (т. е. на двигателе наружного сгорания) актуальна и по сей день.

В представлении большинства людей века смартфонов автомобили на паровой тяге – это нечто архаическое, что вызывает улыбку.

Так в 1865 году в Англии ввели запрет на передвижение скоростных самоходных карет на паровом ходу. Им запрещалось передвигаться быстрее 3 км/ч по городу и не выпускать клубы пара, дабы не пугать лошадей, запряжённых в обычные экипажи. Самым серьёзным и ощутимым ударом по паровым грузовым автомобилям уже в 1933 году нанёс закон о налоге на тяжёлые транспортные средства. И только в 1934 году, когда были снижены пошлины на импорт нефтепродуктов, замаячила на горизонте победа бензиновых и дизельных двигателей над паровыми.

Так изысканно и хладнокровно издеваться над прогрессом могли себе позволить только в Англии. В США, Франции, Италии среда изобретателей-энтузиастов буквально бурлила идеями, а паровой автомобиль приобретал новые очертания и характеристики. Хотя английские изобретали внесли весомый вклад в развитие парового автотранспорта, законы и предубеждения властей не позволяли им полноценно участвовать в схватке с ДВС. Но давайте обо всём по порядку.

Доисторическая справка

История развития парового автомобиля неразрывно связана с историей возникновения и совершенствования паровой машины. Когда в I веке н. э. Герон из Александрии предложил свою идею заставить пар вращать металлический шар, к его идее отнеслись не более, чем к забаве. То ли другие идеи в большей степени волновали изобретателей, но первым, кто поставил паровой котёл на колёса был монах Фердинанд Вербст. В 1672 году. К его «игрушке» тоже отнеслись как к забаве. Но следующие сорок лет не прошли даром для истории парового двигателя.

Проект самодвижущегося экипажа Исаака Ньютона (1680), пожарный аппарат механика Томаса Севери (1698) и атмосферная установка Томаса Ньюкомена (1712) продемонстрировали огромный потенциал использования пара для совершения механической работы. Сначала паровые машины откачивали воду из шахт и поднимали грузы, но к середине 18 века на предприятиях Англии таких паровых установок уже было несколько сотен.

Что же собой представляет паровой двигатель? Как может пар двигать колёса? Принцип паровой машины прост. Вода нагревается в закрытом резервуаре до состояния пара. Пар отводится по трубкам в закрытый цилиндр и выдавливает поршень. Через промежуточный шатун это поступательное движение передаётся на вал маховика.

Эта принципиальная схема работы парового котла на практике имела существенные недостатки.

Первая порция пара клубами вырывалась наружу, а остывший поршень под собственным весом опускался вниз для следующего такта. Эта принципиальная схема работы парового котла на практике имела существенные недостатки. Отсутствие системы регулирования давлением пара нередко приводила к взрыву котла. Для доведения котла до рабочего состояния требовалось немало времени и топлива. Постоянная дозаправка и гигантские размеры паровой установки лишь увеличивали перечень её недостатков.

Новую машину в 1765 году предложил Джеймс Уатт. Он направил выдавливаемый поршнем пар в дополнительную камеру для конденсации и избавил от необходимости постоянно подливать воду в котёл. Наконец, в 1784 году он разрешил задачу, как перераспределить движение пара таким образом, чтобы он толкал поршень в обоих направлениях. Благодаря созданному им золотнику, паровая машина могла работать без перерывов между тактами. Этот принцип теплового двигателя двойного действия и лёг в основу большинства паровой техники.

Над созданием паровых машин трудились много умных людей. Ведь это простой и дешёвый способ получения энергии практически из ничего.

Небольшой экскурс в историю автомобилей на паровой тяге

Однако, как ни грандиозны были успехи англичан в области , первым, кто поставил паровую машина на колёса, был француз Николя Жозеф Кюньо.

Первый паровой автомобиль Кюньо

Его автомобиль появился на дорогах в 1765 году. Скорость передвижения коляски была рекордной — 9,5 км/ч. В нём изобретатель предусмотрел четыре места для пассажиров, которых можно было прокатить с ветерком на средней скорости 3,5 км/ч. Этого успеха изобретателю показалось недостаточно.

Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Он решился на изобретение тягача для пушек. Так на свет появилась трёхколёсная повозка с массивным котлом впереди. Необходимость остановки для заправки водой и разжигание нового костра через каждый километр пути не были существенным минусом, а лишь уровнем техники того времени.

Следующая модель Кюньо образца 1770 года имела вес около полутора тонн. Новая телега могла транспортировать порядка двух тонн груза со скоростью 7 км/ч.

Маэстро Кюньо больше занимала идея создания парового двигателя высокого давления. Его даже не смущал тот факт, что котёл мог взорваться. Именно Кюньо придумал расположить топку под котлом и возить «костёр» с собой. Кроме того, его «телега» может по праву быть названа первым грузовиком. Отставка покровителя и череда революций не дали возможности мастеру развить модель до полноценной грузовой машины.

Самоучка Оливер Эванс и его амфибия

Идея создания паровых машин имела вселенские масштабы. В североамериканских штатах изобретатель Оливер Эванс создал около пятидесяти паровых установок на базе машины Уатта. Стараясь уменьшить габариты установки Джеймса Уатта, он конструировал паровые машины для мукомольных фабрик. Однако всемирную славу Оливер Эванс приобрёл за свой паровой автомобиль-амфибию. В 1789 году его первый автомобиль в США успешно прошёл сухопутное и водное испытания.

На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Девятиметровый автомобиль-лодка имел вес около 15 тонн. Паровая машина приводила в движение задние колёса и гребной винт. Кстати говоря, Оливер Эванс тоже был сторонником создания парового двигателя высокого давления. На свою амфибию, которую можно назвать прообразом вездеходов, Эванс установил машину с давлением пара в десять атмосфер!

Если бы у изобретателей 18-19 веков были под рукой технологии 21 века, вы представляете, сколько техники они бы придумали!? И какой техники!

XX век и 204 км/ч на паровом автомобиле Стэнли

Да! 18 век дал мощный толчок к развитию парового транспорта. Многочисленные и разнообразные конструкции самоходных паровых повозок стали всё чаще разбавлять гужевой транспорт на дорогах Европы и Америки. К началу XX века автомобили на паровой тяге существенно распространились и стали привычным символом своего времени. Как и фотография.

18 век дал мощный толчок к развитию парового транспорта

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США. Они создавали хорошо продаваемые паромобили. Но этого им было недостаточно для удовлетворения своих амбициозных планов. Ведь они были всего лишь одни из многих таких же автопроизводителей. Так было до тех пор, пока они не сконструировали свою «ракету».

Именно свою фотографическую компанию продали братья Стэнли, когда в 1897 году решили всерьёз заняться производством паровых авто в США.

Конечно, автомобили Стэнли имели славу надёжного автомобиля. Паровой агрегат располагался сзади, а бойлер разогревался при помощи факелов бензина или керосина. Маховик парового двухцилиндрового мотора двойного действия вращение на заднюю ось посредством цепной передачи. Случаев взрывов котла у Стэнли Стимер не было. Но им нужен был фурор.

Конечно, автомобили Стэнли имели славу надёжного автомобиля.

Своей «ракетой» они произвели фурор на весь мир. 205,4 км/ч в 1906 году! Так быстро ещё не ездил никто! Авто с ДВС побил этот рекорд только 5 лет спустя. Фанерная паровая «Ракета» Стэнли определила форму гоночных авто на многие годы вперёд. Но после 1917 года Стенли Стимер всё тяжелее переживал конкуренцию дешёвого Форд Т и ушёл в отставку.

Уникальные паромобили братьев Добл

Этому знаменитому семейству удалось оказывать достойное сопротивление бензиновым моторам аж до начала 30-х годов XX века. Они не собирали машины для рекордов. Братья поистине любили свои паромобили. Иначе, чем ещё объяснить изобретённые ими сотовый радиатор и кнопку зажигания? Их модели не были похожи на малые паровозы.

Братья Абнер и Джон сделали революцию в паровом транспорте.

Братья Абнер и Джон сделали революцию в паровом транспорте. Чтобы сдвинуться с места, его машину не требовалось разогревать 10–20 минут. Кнопка зажигания нагнетала керосин из карбюратора в камеру сгорания. Он попадал туда после розжига запальной свечой. Вода нагревалась за считанные секунды, а через минуту-полторы пар создавал необходимое давление и можно было ехать.

Отработанный пар направлялся в радиатор для конденсации и подготовки к последующим циклам. Поэтому для плавного пробега на 2000 км автомобилям Доблов требовалось всего девяносто литров воды в системе и несколько литров керосина. Такой экономичности не мог предложить никто! Возможно, именно на автосалоне в Детройте в 1917 году Стэнли познакомились с моделью братьев Добл и начали сворачивать своё производство.

Модель Е стала самым роскошным автомобилем второй половины 20-х и самой последней версией паромобиля Доблов. Кожаный салон, полированные элементы из дерева и кости слона радовали состоятельных владельцев внутри автомобиля. В таком салоне можно было наслаждаться пробегом на скорости до 160 км/ч. Всего 25 секунд отделяли момент зажигание от момента старта. Ещё 10 секунд требовалось, чтобы автомобиль массой в 1,2 т разогнался до 120 км/ч!

Все эти скоростные качества были заложены в четырёхцилиндровом моторе. Два поршня выталкивались паром под высоким давлением в 140 атмосфер, а два других отправляли остывший пар низкого давления в сотовый конденсатор-радиатор. Но в первой половине 30-х годов и эти красавцы братьев Добл перестали выпускаться.

Паровые грузовые машины

Однако не стоит забывать, что паровая тяга бурно развивалась и на грузовом транспорте. Это в городах паровые автомобили вызывали аллергию у снобов. А ведь грузы должны доставляться в любую погоду и не только по городу. А междугородние автобусы и военная техника? Там легковыми малолитражками не отделаешься.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты.

Грузовой транспорт имеет одно значительное преимущество перед легковым – это его габариты. Именно они позволяют разместить мощные силовые установки в любом месте автомобиля. Причём она только увеличит грузоподъёмность и проходимость. А как будет выглядеть грузовик – на это не всегда обращали внимание.

Среди паровых грузовых машин хочется выделить английский Сэнтинэл и советский НАМИ. Конечно, были и многие другие, например, Фоден, Фаулер, Йоркшир. Но именно Сэнтинэл и НАМИ оказались самыми живучими и выпускались до конца 50-х годов прошлого века. Они могли работать на любом твёрдом топливе – угле, дровах, торфе. «Всеядность» этих грузовиков на пару ставило их вне влияния цен на нефтепродукты, а также позволяло использовать их в труднодоступных местах.

Трудяга Сэнтинэл с английским акцентом

Эти два грузовика отличаются не только страной производителя. Принципы расположения парогенераторов тоже были разные. Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла. При верхнем расположении парогенератор подавал горячий пар непосредственно в камеру двигателя, который был связан с мостами системой карданных валов. При нижнем расположении парового двигателя, т. е. на шасси, котёл разогревал воду и подавал пар в двигатель по трубкам, что гарантировало потери температуры.

Для Сэнтинэлов характерны верхнее и нижнее расположение паровых машин относительно котла.

Наличие цепной передачи от маховика паровой машины на карданы было типичным для обоих типах. Это позволило конструкторам унифицировать выпуск Сэнтинэлов в зависимости от заказчика. Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя. Для стран с холодными зимами – с верхним, совмещённым типом.

Для жарких стран, таких как Индия, выпускали паровые грузовики с нижним, разделённым расположением котла и двигателя.

На этих грузовиках применяли множество проверенных технологий. Золотники и клапаны распределения пара, двигатели простого и двойного действия, с высоким или низким давлением, с или без КПП. Однако, это не продлили жизнь английским паровым грузовикам. Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы. А так как в их кардинальной модернизации не было заинтересованных особ, то их участь была предрешена.

Хоть они и выпускались до конца 50-х годов XX века и даже состояли на воинской службе до и во время 2-й мировой войны, они всё же были громоздкими и чем-то напоминали паровозы.

Кому что, а нам – НАМИ

Чтобы поднять разрушенную войной экономику советского союза, нужно было найти способ не тратить ресурсы нефти, хотя бы в труднодоступных местах – на севере страны и в Сибири. Советским инженерам была предоставлена возможность изучить конструкцию Сэнтинэла с верхним расположением четырёхцилиндровой паровой машины прямого действия и разработать свой «ответ Чемберлену».

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности.

В 30-х годах российские институты и конструкторские бюро предпринимали неоднократные попытки создания альтернативного грузовика для лесной промышленности. Но каждый раз дело останавливалось на стадии испытаний. Используя собственный опыт и возможность изучения трофейных паромобилей, инженерам удалось убедить руководство страны в необходимости такого грузовика-паровика. Тем более что бензин стоил в 24 раза дороже угля. А со стоимостью дров в тайге вообще можно не упоминать.

Группа конструкторов под руководством Ю. Шебалина максимально упростили парового агрегата в целом. Они совместили четырёхцилиндровый двигатель и котёл в один агрегат и расположили его между кузовом и кабиной. Поставили эту установку на шасси серийного ЯАЗ (МАЗ)-200. Работа пара и его конденсация были совмещены в замкнутом цикле. Подача дровяных чушек из бункера осуществлялась автоматически.

Так появился на свет, вернее на лесном бездорожье, НАМИ-012. Очевидно, принцип бункерной подачи твёрдого топлива и расположение паровой машины на грузовом автомобиле был заимствован из практики газогенераторных установок.

Судьба хозяина лесов – НАМИ-012

Характеристики парового отечественного бортового грузовика и лесовоза НАМИ-012 были такие

  • Грузоподъёмность – 6 тонн
  • Скорость – 45 км/ч
  • Дальность пробега без дозаправки топлива – 80 км, если была возможность обновить запас воды, то 150 км
  • Крутящий момент на малых оборотах – 240 кгм, что превышало почти в 5 раз показатели базового ЯАЗ-200
  • Котёл с естественной циркуляцией создавал давление в 25 атмосфер и доводил пар до температуры 420°С
  • Пополнять запасы воды возможно было непосредственно из водоёма через эжекторы
  • Цельнометаллическая кабина не имела капот и была выдвинута вперёд
  • Скорость регулировалась объёмом пара в двигателе при помощи рычага подачи/отсечки. С его помощью цилиндры наполнялись на 25/40/75%.
  • Одна задняя передача и три педаль управления.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле.

Серьёзными недостатками парового грузовика были расход 400 кг дров на 100 км пути и необходимость в мороз избавляться от воды в котле. Но основным минусом, который присутствовал у первого образца, была плохая проходимость в незагруженном состоянии. Тогда получалось, что передняя ось была перегружена кабиной и паровым агрегатом, по сравнению с задней. С этой задачей справились, установив модернизированную паросильную установку на полноприводный ЯАЗ-214. Теперь и мощность лесовоза НАМИ-018 была доведена до 125 лошадиных сил.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века.

Но, не успев распространиться по стране, парогенераторные грузовики были все утилизированы во второй половине 50-х годов прошлого века. Впрочем, вместе с газогенераторными. Потому что стоимость переделки автомобилей, экономический эффект и удобство эксплуатации были трудоёмки и сомнительны, по сравнению с бензиновыми и дизельными грузовиками. Тем более что к этому времени в Советском Союзе уже налаживалась добыча нефти.

Скоростной и доступный современный паровой автомобиль

Не стоит думать, что идея автомобиля на паровой тяге забыта навсегда. Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе. Мировые запасы нефти не безграничны. Да, и стоимость нефтепродуктов постоянно увеличивается. Конструкторы так старались усовершенствовать ДВС, что их идеи почти достигли своего лимита.

Электромобили, авто на водороде, газогенераторные и паромобили вновь стали актуальными темами. Здравствуй, забытый 19 век!

Сейчас проявляется значительный рост интереса к двигателям, альтернативным ДВС на бензине и дизтопливе.

Британский инженер (опять Англия!) продемонстрировал новые возможности парового двигателя. Он создал свой Inspuration не только для демонстрации актуальности автомобилей паровой тяге. Его детище сделано для рекордов. 274 км/ч – такова скорость, которую разгоняют двенадцать котлов, установленных на 7,6 метровый болиде. Всего 40 литров воды достаточно, чтобы сжиженный газ буквально за миг довёл температуру пара до 400°С. Подумать только, истории понадобилось 103 года, чтобы побить рекорд скорости автомобиля на паровой тяге, установленный «Ракетой»!

В современном парогенераторе можно использовать уголь в виде порошка или другое дешёвое топливо, например, мазут, сжиженный газ. Именно поэтому паровые автомобили всегда были и будут популярны.

Но чтобы настало экологически чистое будущее, опять необходимо преодолевать сопротивление нефтяных лоббистов.

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Статья опубликована 19.05.2014 05:36 Последняя правка произведена 19.05.2014 05:58

О истории развития парового двигателя, достаточно подробно описано в этой статье . Тут же — наиболее известные решения и изобретения времен 1672-1891 года.

Первые наработки.

Начнем с того, что еще в семнадцатом веке пар стали рассматривать как средство для привода, проводили с ним всяческие опыты, и лишь только в 1643 году Эванджелистом Торричелли было открыто силовое действие давления пара. Кристиан Гюйгенс через 47 лет спроектировал первую силовую машину, приводившуюся в действие взрывом пороха в цилиндре. Это был первый прототип двигателя внутреннего сгорания. На аналогичном принципе устроена водозаборная машина аббата Отфея. Вскоре Дени Папен решил заменить силу взрыва на менее мощную силу пара. В 1690 году им была построена первая паровая машина , известная также как паровой котел.

Она состояла из поршня, который с помощью кипящей воды перемещался в цилиндре вверх и за счет последующего охлаждения снова опускался – так создавалось усилие. Весь процесс происходил таким образом: под цилиндром, который выполнял одновременно и функцию кипятильного котла, размещали печь; при нахождении поршня в верхнем положении печь отодвигалась для облегчения охлаждения.

Позже два англичанина, Томас Ньюкомен и Коули – один кузнец, другой стекольщик, – усовершенствовали систему путем разделения кипятильного котла и цилиндра и добавления бака с холодной водой. Эта система функционировала с помощью клапанов или кранов – одного для пара и одного для воды, которые поочередно открывались и закрывались. Затем англичанин Бэйтон перестроил клапанное управление в подлинно тактовое.

Применение паровых машин на практике.

Машина Ньюкомена вскоре стала известна повсюду и, в частности, была усовершенствована, разработанной Джеймсом Уаттом в 1765 году системой двойного действия. Теперь паровая машина оказалась достаточно завершенной для использования в транспортных средствах, хотя из-за своих размеров лучше подходила для стационарных установок. Уатт предложил свои изобретения и в промышленности; он построил также машины для текстильных фабрик.

Первая паровая машина, используемая в качестве средства передвижения, был изобретена французом Николя Жозефом Куньо, инженером и военным стратегпм-любителем. В 1763 или 1765 году он создал автомобиль, который мог перевозить четырех пассажиров при средней скорости 3,5 и максимальной – 9,5 км/час. За первой попыткой последовала вторая – появился автомобиль для транспортировки орудий. Испытывался он, естественно, военными, но из-за невозможности продолжительной эксплуатации (непрерывный цикл работы новой машины не превышал 15 минут) изобретатель не получил поддержки властей и финансистов. Между тем в Англии совершенствовалась паровая машина. После нескольких безуспешных, базировавшихся на машине Уаттa попыток Мура, Вильяма Мердока и Вильяма Саймингтона, появилось рельсовое транспортное средство Ричарда Тревисика, созданное по заказу Уэльской угольной шахты. В мир пришел активный изобретатель: из подземных шахт он поднялся на землю и в 1802 году представил человечеству мощный легковой автомобиль, достигавший скорости 15 км/час на ровной местности и 6 км/час на подъеме.

Превью — увеличение по клику.

Приводимые в движение паром транспортные средства все чаще использовались и в США: Натан Рид в 1790 году удивил жителей Филадельфии своей моделью парового автомобиля . Однако еще больше прославился его соотечественник Оливер Эванс, который спустя четырнадцать лет изобрел автомобиль-амфибию. После наполеоновских войн, во время которых «автомобильные эксперименты» не проводились, вновь началась работа над изобретением и усовершенствованием паровой машины . В 1821 году ее можно было считать совершенной и достаточно надежной. С тех пор каждый шаг вперед в сфере приводимых в движение паром транспортных средств определенно способствовал развитию будущих автомобилей.

В 1825 году сэр Голдсуорт Гарни на участке длиной 171 км от Лондона до Бата организовал первую пассажирскую линию. При этом он использовал запатентованную им карету, имевшую паровой двигатель. Это стало началом эпохи скоростных дорожных экипажей, которые, однако, исчезли в Англии, но получили широкое распространение в Италии и во Франции. Подобные транспортные средства достигли наивысшего развития с появлением в 1873 году «Реверанса» Амедэ Балле весом 4500 кг и «Манселя» – более компактного, весившего чуть более 2500 кг и достигавшего скорости 35 км/час. Оба были предвестниками той техники исполнения, которая стала характерной для первых «настоящих» автомобилей. Несмотря на большую скорость кпд паровой машины был очень маленький. Болле был тем, кто запатентовал первую хорошо действующую систему рулевого управления, он так удачно расположил управляющие и контрольные элементы, что мы и сегодня это видим на приборном щитке.

Превью — увеличение по клику.

Несмотря на грандиозный прогресс в области создания двигателя внутреннего сгорания, сила пара все еще обеспечивала более равномерный и плавный ход машины и, следовательно, имела много сторонников. Как и Болле, который построил и другие легкие автомобили, например Rapide в 1881 году со скоростью движения 60 км/час, Nouvelle в 1873 году, которая имела переднюю ось с независимой подвеской колес, Леон Шевроле в период между 1887 и 1907 годами запустил несколько автомобилей с легким и компактным парогенератором, запатентованным им в 1889 году. Компания De Dion-Bouton, основанная в Париже в 1883 году, первые десять лет своего существования производила автомобили с паровым двигателями и добилась при этом значительного успеха – ее автомобили выиграли гонки Париж-Руан в 1894 году.

Превью — увеличение по клику.

Успехи компании Panhard et Levassor в использовании бензина привели, однако, к тому, что и De Dion перешел на двигатели внутреннего сгорания. Когда братья Болле стали управлять компанией своего отца, они сделали то же самое. Затем и компания Chevrolet перестроила свое производство. Автомобили с паровыми двигателями все быстрее и быстрее исчезали с горизонта, хотя в США они использовались еще до 1930 года. На этом самом моменте и прекратилось производство и изобретение паровых машин

Интерес к водяному пару, как доступному источнику энергии, появился вместе с первыми научными познаниями древних. Приручить эту энергию люди пытались на протяжении трёх тысячелетий. Каковы основные этапы этого пути? Чьи размышления и проекты научили человечество извлекать из него максимальную пользу?

Предпосылки появления паровых двигателей

Потребность в механизмах, способных облегчить трудоёмкие процессы, существовала всегда. Примерно до середины XVIII века для этой цели использовались ветряные мельницы и водяные колеса. Возможность использования энергии ветра напрямую зависит от капризов погоды. А для использования водяных колёс фабрики приходилось строить по берегам рек, что не всегда удобно и целесообразно. Да и эффективность тех и других была чрезвычайно мала. Нужен был принципиально новый двигатель, легко управляемый и лишённый этих недостатков.

История изобретения и совершенствования паровых двигателей

Создание парового двигателя — результат долгих размышлений, удач и крушений надежд множества учёных.

Начало пути

Первые, единичные проекты были лишь интересными диковинками. Например, Архимед сконструировал паровую пушку, Герон Александрийский использовал энергию пара для открывания дверей античных храмов. А заметки о практическом применении энергии пара для приведения в действие иных механизмов исследователи находят в трудах Леонардо да Винчи.

Рассмотрим наиболее значительные проекты по этой тематике.

В XVI веке арабский инженер Таги аль Дин разработал проект примитивной паровой турбины. Однако практического применения она не получила из-за сильного рассеяния струи пара, подаваемой на лопасти колеса турбины.

Перенесемся в средневековую Францию. Физик и талантливый изобретатель Дени Папен после многих неудачных проектов останавливается на следующей конструкции: вертикальный цилиндр заполняли водой, над которой устанавливали поршень.

Цилиндр нагревали, вода закипала и испарялась. Расширяющийся пар приподнимал поршень. Его закрепляли в верхней точке подъёма и ожидали остывания цилиндра и конденсации пара. После конденсации пара в цилиндре образовывался вакуум. Освобожденный от крепления поршень под действием атмосферного давления устремлялся в вакуум. Именно это падение поршня предполагалось использовать как рабочий ход.

Итак, полезный ход поршня был вызван образованием вакуума из-за конденсации пара и внешним (атмосферным) давлением.

Потому паровой двигатель Папена как и большинство последующих проектов получили название пароатмосферных машин.

Эта конструкция обладала весьма существенным недостатком — не была предусмотрена повторяемость цикла. Дени приходит к идее получать пар не в цилиндре, а отдельно в паровом котле.

В историю создания паровых двигателей Дени Папен вошел как изобретатель весьма важной детали — парового котла.

А поскольку пар стали получать вне цилиндра, сам двигатель перешел в разряд двигателей внешнего сгорания. Но из-за отсутствия распределительного механизма, обеспечивающего бесперебойную работу, эти проекты почти не нашли практического применения.

Новый этап в разработке паровых двигателей

Около 50 лет для откачки воды в угольных шахтах использовался паровой насос Томаса Ньюкомена. Он во многом повторял предыдущие конструкции, но содержал весьма важные новинки — трубу для вывода сконденсированного пара и предохранительный клапан для выпуска излишнего пара.

Его существенным минусом было то, что цилиндр приходилось то нагревать перед впрыскиванием пара, то охлаждать перед его конденсацией. Но потребность в таких двигателях была столь высока, что, несмотря на их очевидную неэкономичность, последние экземпляры этих машин прослужили вплоть до 1930 года.

В 1765 году английский механик Джеймс Уатт, занявшись усовершенствованием машины Ньюкомена, отделил конденсатор от парового цилиндра.

Появилась возможность цилиндр держать постоянно нагретым. КПД машины сразу вырос. В последующие годы Уатт значительно усовершенствует свою модель, оснастив её устройством для подачи пара то с одной, то с другой стороны.

Стало возможным использовать эту машину не только как насос, но и для приведения в действие различных станков. Уатт получил патент на свое изобретение — паровой двигатель непрерывного действия. Начинается массовый выпуск этих машин.

К началу XIX века в Англии работало более 320 паровых машин Уатта. Их стали закупать и другие европейские страны. Это способствовало значительному росту промышленного производства во многих отраслях как самой Англии, так соседних государств.

Двадцатью годами ранее Уатта, в России над проектом паровой машины работал алтайский механик Иван Иванович Ползунов.

Заводское начальство предложило ему построить агрегат, который приводил бы в действие воздуходувку плавильной печи.

Построенная им машина была двухцилиндровой и обеспечивала непрерывное действие подсоединённого к ней устройства.

Успешно проработав более полутора месяцев, котёл дал течь. Самого Ползунова к этому времени уже не было в живых. Ремонтировать машину не стали. И замечательное творение русского изобретателя-одиночки было забыто.

В силу отсталости России того времени мир узнал об изобретении И. И. Ползунова с большим опозданием….

Итак, для приведения в действие паровой машины необходимо, чтобы пар, вырабатываемый паровым котлом, расширяясь, давил на поршень или на лопасти турбины. А затем их движение передавалось другим механическим частям.

Применение паровых машин на транспорте

Несмотря на то, что КПД паровых двигателей того времени не превышал 5%, к концу XVIII века их стали активно использовать в сельском хозяйстве и на транспорте:

  • во Франции появляется автомобиль с паровым двигателем;
  • в США начинает курсировать пароход между городами Филадельфия и Берлингтон;
  • в Англии продемонстрирован железнодорожный локомотив на паровой тяге;
  • российский крестьянин из Саратовской губернии запатентовал построенный им гусеничный трактор мощностью 20 л. с.;
  • неоднократно предпринимались попытки построить самолёт с паровым двигателем, но, к сожалению, малая мощность этих агрегатов при большом весе самолёта делала эти попытки неудачными.

Уже к концу XIX столетия паровые двигатели, сыграв свою роль в техническом прогрессе общества, уступают место и электродвигателям.

Паровые устройства в XXI веке

С появлением новых источников энергии в XX и XXI веке снова появляется потребность в использовании энергии пара. Паровые турбины становятся неотъемлемой частью АЭС. Пар, приводящий их в действие, получают за счёт ядерного топлива.

Широко используются эти турбины и на конденсационных тепловых электростанциях.

В ряде стран проводятся эксперименты по получению пара за счёт солнечной энергии.

Не забыты и поршневые паровые двигатели. В горных местностях в качестве локомотива до сих пор используют паровозы.

Эти надёжные труженики и безопаснее, и дешевле. Линии электропередач им не нужны, а топливо — древесина и дешёвые сорта угля всегда под рукой.

Современные технологии позволяют улавливать до 95% выбросов в атмосферу и повысить КПД до 21%, так, что люди решили пока с ними не расставаться и работают над паровыми локомотивами нового поколения.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Коловратный двигатель с кольцевым цилиндром

Изобретение относится к коловратным двигателям внутреннего горения с кольцевым цилиндром, разделенным в продольном направлении на две части, одна из которых (неподвижная) скрепляется со станиной двигателя, а другая (подвижная) насаживается на рабочий вал. В цилиндре помещаются одна или несколько пар свободно движущихся поршней, в каждой паре которых каждый поршень при помощи поперечного подпружиненного стопора поочередно сцепляется с подвижной и неподвижной частями цилиндра, являясь попеременно то рабочим поршнем при сцеплении с подвижной частью, то стенкой рабочей камеры — при сцеплении с неподвижной частью цилиндра.

В предлагаемом двигателе для управления переключением стопоров в месте расположения форсунки устанавливается рычаг с одним подпружиненным плечом, несущий упорки на концах обоих плеч. Упорка подпружиненного плеча отжимается корпусом приблизившегося и не дошедшего до форсунки поршня, вследствие чего поднимающаяся упорка второго плеча рычага, воздействуя на стопор остановившегося за форсункой второго поршня, выводит этот стопор из сцепления с неподвижной частью цилиндра. Под действием происходящего в этот момент взрыве горючей смеси в промежуточной камере между поршнями, освобожденный поршень, сцепившийся в этот же момент с подвижной частью цилиндра, перемещается вместе с последней до следующей форсунки, где происходит его застопоривание.

На чертеже фиг. 1 изображает боковой вид подвижной части цилиндра; фиг. 2 — разрез по FL на фиг. 1; фиг. 3 — боковой вид неподвижной части цилиндра; фиг. 4 — разрез по КМ на фиг. 3; фиг. 5 и 6 — схему движения поршней работающего двигателя; фиг. 7 и 8 — схему положения поршней при выключенном двигателе и холостом ходе; фиг. 9 — разрез части цилиндра в момент взрыва рабочей смеси и фиг. 10 — поперечный разрез поршня.

Кольцевой цилиндр предлагаемого двигателя состоит из двух неравных частей: большей, вращающейся с валом, и меньшей — укрепленной к станине. В цилиндре помещаются две пары свободно движущихся поршней с, с1 и d, dl, имеющих на торцевых стенках углубления (выемки) и снабженных поперечными подпружиненными стопорами к (фиг. 10). На внутренней стороне движущейся части имеются гнезда е для стопоров k поршней при сцеплении и движении последних совместно с движущейся частью цилиндра. В местах установки форсунок неподвижная часть цилиндра снабжается углублениями q, а с внешней стороны располагается рычаг n, несущий на концах упорки u и t, проходящие в углубление q через прорези в стенках цилиндра. Плечо рычага, несущее упорку u, имеющую скошенный конец, отжимается в сторону цилиндра пружиной. При работе двигателя один из поршней, например с и соответственно диаметрально противоположный поршень с1 находятся в сцепленном положении своим стопором k с неподвижной частью цилиндра по проходе форсунки (фиг. 5) и представляет собой неподвижную стенку камеры сжатия. Приближающийся к нему поршень d производит сжатие воздуха и, дойдя до положения, изображенного на фиг. 9, расцепляется с подвижной частью цилиндра, так как его стопор k выходит из гнезда е, отжимаясь в углубление q. В образовавшуюся между поршнями камеру вбрызгивается топливо и воспламеняется. Остановившийся при этом поршень d, нажав своим корпусом на упорку u, отводит рычаг n, вследствие чего упорка t отжимает стопор k, введя его, а следовательно и поршень с, в сцепление с движущейся частью цилиндра. Расширяющиеся газы камеры горения, стенкой которой в этот момент является поршень d, воздействуя на поршень с, перемещают его и движущуюся часть цилиндра (фиг. 6). При последующем приближении поршня с к поршню d последний переходит в положение поршня с на фиг. 5, и процесс повторяется (фиг. 9 и 6). Для возможности получения холостого хода двигателя в углублениях q помещены пластинки s, выдвигаемые при помощи рычажка s1 на уровень внутренней поверхности неподвижной части цилиндра, вследствие чего западание стопоров k в углубления q, а следовательно и остановка поршней с, с1, d и d1 становится невозможной (фиг. 7). Для возможности включения двигателя в работу служит обычно убранная в тело цилиндра (фиг. 9) подпружиненная упорка с рукояткой р, передвижением которой упорка переводится в положение, изображенное на фиг. 8. При поворачивании врашающейся части первый из поршней, например с, задерживается упоркой и остается в положении, изображенном на фиг. 5, после чего начинается вышеописанная работа двигателя, изображенная на фиг. 5, 9 и 6.

Кулачковые насосы, ротационно-поршневые, коловратные, лопастные, когтевые насосы для работы с пищевыми продуктами и фармацевтики

ZB-3A
Производительность87. 0 м3/час
СамовсасывающийНет

Трехкулачковый насос из нержавеющей стали отлично подходит для перекачки высоковязких сред, а также содержащих крупнозернистые частицы. Объемный принцип действия обеспечивает отсутствие пульсации в потоке, а бережная перекачка — отсутствие повреждений перекачиваемых частиц. Механические уплотнения промываются водой. Для применения в пищевой, химической, фармацевтической промышленности, в строительстве (перекачка покрытий, керамики, красок, глазури и пр.).

Кулачковый насос 320-UL
Производительность118.1 м3/час
Давление13.8 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа
Кулачковый насос 220-UL
Производительность68. 1 м3/час
Давление13.8 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа
Кулачковый насос 130-UL
Производительность38.6 м3/час
Давление13.8 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа
Кулачковый насос 060-UL
Производительность27.3 м3/час
Давление20.7 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа
Кулачковый насос 030-UL
Производительность16. 1 м3/час
Давление20.7 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа
Кулачковый насос 018-UL
Производительность7.5 м3/час
Давление13.8 Бар
Температура перекачиваемой жидкости-40-149 °С
СамовсасывающийДа

Работа кулачкового насоса обеспечивается за счет бесконтактного вращения пары кулачков внутри корпуса. Этот вид насоса является одной из разновидностей роторных насосов и работает по принципу объемного вытеснения.

Устройство и принцип работы

Кулачки установлены на валах, сопряженных с внешним синхронизатором (благодаря его наличию при вращении валы не сталкиваются).

Когда при вращении кулачки выходят из зацепления, на стороне всасывания формируется разреженная область, что обеспечивает всасывание продукта через входной патрубок. Перекачиваемая среда за счет вращения роторов постепенно перемещается на сторону нагнетания, откуда при схождениии кулачков и повышении давления и выбрасывается.

Роторные насосы кулачкового типа благодаря своей конструкции могут перекачивать разнородные жидкости, деликатные массы, структура которых должна оставаться неповрежденной (клеи, ягоды), высоковязкие среды и вещества с температурой до 150 градусов.

Технические характеристики

Кулачковые насосы (также известные как коловратные насосы) способны перекачивать жидкости с вязкостью до 100 000 сП, температурой до 150 градусов и размером частиц до 28 мм.

Насосы марки Waukesha серии Universal Lobe работают в температурном диапазоне от -49 до 150 градусов со скоростью от 600 до 1000 об/мин. Существуют различные модифицикации с разными размерами входного и выходного патрубков: от 2.54 до 15.24 см и скоростью перекачки от 7.5 до 118 куб.м/час. Серия Universal Lobe представлена маркировками 018-UL, 030-UL, 060-UL, 130-UL, 220-UL и 320-UL. Роторные насосы этой серии работают при давлении 13.8 или 20.7 бар.

Корпус и крышка таких насосов производятся из нержавеющей стали 316 (316L в качестве опции), а роторы — из незаедающего сплава Waukesha 88.

Сферы применения

Широкое применение кулачковые насосы нашли в фармацевтической промышленности. Их гигиеническая конструкция также делает их крайне привлекательным вариантом для предприятий пищевой промышленности. В целом, сфера применения определяется специфическими особенностями устройства; эти же ротационно-поршневые насосы обладают следующими характеристиками:

  • Они соответствуют наивысшим требованиям санитарии
  • Мягко перекачивают консистентные вещества
  • Хорошо работают с высоковязкими средами
  • Способны перекачивать жидкости с включениями и твердыми частицами
  • Отсутствие пульсации благодаря принципу действия насоса

Все эти преимущества гарантируют эффективное использование роторных кулачковых насосов для следующих применений:

Хлебопечение Жидкое тесто Специи Глазировка
Фруктовые наполнители Жиры и масла Подсластители
Дрожжевые суспензии
Производство напитков Пиво, сусло, дрожжи Безалкогольные напитки Соки
Фруктовые концентраты Фруктовые напитки Высокофруктозные кукурузные сиропы
Консервное производство Детское питание Супы Тушеное мясо
Томатная паста Соусы Фруктовое пюре
Замороженные овощи Пудинги, джемы, желе Салатные соусы, майонезы
Кондитерское производство Сиропы Кремы Шоколад
Косметическое производство Лосьоны и кремы для лица Гели и жидкости для укладки волос Эфирные масла
Спирты и красители Шампуни
Молочное производство Сливки, молоко, масло Сырные массы и сыворотки Прессованный творог и йогурты
Мясная промышленность Фаршевые эмульсии Рубленое мясо Корма для животных
Жиры и сало Мясо механической обвалки
Фармацевтика Оболочка для таблеток Сиропы Экстракты, эмульсии

Преимущества и особенности

Как уже было сказано, роторные кулачковые насосы (которые в различных публикациях могут встречаться как «лопастные насосы» или «когтевые насосы») бережно перекачивают продукты с тонкой структурой, обладают гигиенической конструкцией и продуцируют ровный поток.

Помимо этого, роторно-вращательные насосы серии Universal I также:

  • Имеют быстроразборную конструкцию, которая к тому же предупреждает поломку при попадании в корпус насоса случайных предметов
  • Имеют широкий выбор уплотнений в зависимости от целей перекачки (эластомеры сальников: витон, EPDM, буна, силикон, материал механических уплотнений: нержавеющая сталь, силикат, керамика, оксид хрома и пр.).
  • Обладают самовсасыванием и могут перекачивать продукт в обоих направлениях
  • Компактны, издают мало шума при работе и нуждаются в малой потребляемой мощности.

Наши квалифицированные специалисты помогут вам определиться с выбором насоса для ваших нужд с учетом специфики перекачиваемой среды. Мы предлагаем широкий ассортимент роторно-поршневых и кулачковых насосов Waukesha линеек Universal I, Universal II и Universal Lobe.

Кольцевой роторный паровой двигатель. Паровой роторный двигатель Тверского — коловратная паровая машина

ПАРОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ и ПАРОВОЙ АКСИАЛЬНО- ПОРШНЕВОЙ ДВИГАТЕЛЬ

Паровой роторный двигатель (паровая машина роторного типа) является уникальной силовой машиной, развитие производства которой до настоящего времени не получило должного развития.

С одной стороны- разнообразные конструкции роторных двигателей существовали ещё в последней трети 19-го века и даже неплохо работали, в том числе и для привода динамо-машин с целью выработки электрической энергии и электроснабжения всяких объектов. Но качество и точность изготовления таких паровых двигателей (паровых машин) было весьма примитивным, поэтому они имели малый КПД и невысокую мощность. С тех пор малые паровые машины ушли в прошлое, но вместе с действительно малоэффективными и бесперспективными поршневыми паровыми машинами в прошлое ушли и имеющие хорошую перспективу паровые роторные двигатели.

Главная причина- на уровне технологий конца 19-го века сделать действительно качественный, мощный и долговечный роторный двигатель не представлялось возможным.
Поэтому из всего многообразия паровых двигателей и паровых машин до нашего времени благополучно и активно дожили лишь паровые турбины огромной мощности (от 20 мВт и выше), на которых сегодня осуществляется около 75% выработки электроэнергии в нашей стране. Еще паровые турбины большой мощности дают энергию от атомных реакторов в боевых подводных лодках-ракетоносцах и на больших арктических ледоколах. Но это все огромные машины. Паровые турбины резко теряют всю свою эффективность при уменьшении их размеров.

…. Именно поэтому силовых паровых машин и паровых двигателей мощности ниже 2000 — 1500 кВт (2 — 1,5 мВт), которые бы эффективно работали на паре, получаемом от сжигания дешевого твердого топлива и различных бесплатных горючих отходов, сейчас в мире нет.
Вот в этой –то пустой сегодня области техники (и абсолютно голой, но очень нуждающейся в товарном предложении коммерческой нише), в этой рыночной нише силовых машин небольшой мощности, могут и должны занять своё очень достойное место паровые роторные двигатели. И потребность в них только в нашей стране — на десятки и десятки тысяч… Особенно такие малые и средние по мощности силовые машины для автономное электрогенерации и независимого электроснабжения нуждаются малые и средние предприятия в отдаленных от больших городов и крупных электростанций местностях: — на малых лесопилках, отдаленных приисках, на полевых станах и лесных делянках, и пр. и др.
…..

..
Давайте рассмотрим показатели, из-за которых паровые роторные двигатели оказываются лучше, чем их ближайшие сородичи — паровые машины в образе поршневых паровых двигателей и паровых турбин.
… — 1)

Роторные двигатели являются силовыми машинами объемного расширения – как поршневые двигатели. Т.е. они обладают небольшим потреблением пара на единицу мощности, потому что пар подается в их рабочие полости время от времени, и строго дозированными порциями, а не постоянным обильным потоком, как в паровых турбинах. Именно поэтому паровые роторные двигатели гораздо экономичнее паровых турбин на единицу выдаваемой мощности.
— 2) Роторные паровые двигатели имеют плечо приложения действующих газовых сил (плечо крутящего момента) значительно (в разы) больше, чем поршневые паровые двигатели. Поэтому развиваемая ими мощность гораздо выше, чем у паровых поршневых машин.
— 3) Паровые роторные двигатели имеют гораздо большее рабочий ход, чем поршневые паровые двигатели, т. е. имеют возможность переводить большую часть внутренней энергии пара в полезную работу.
— 4) Паровые роторные двигатели могут эффективно работать на насыщенном (влажном) паре, без затруднений допускать конденсацию значительной части пара с переходом её в воду прямо в рабочих секциях парового роторного двигателя. Это так же повышает КПД работы паросиловой установки с использованием парового роторного двигателя.
— 5 ) Паровые роторные двигатели работают на оборотах в 2-3 тыс. оборотов в минуту, что является оптимальной частотой вращения для выработки электричества, в отличие от слишком тихоходных поршневых двигателей (200-600 оборотов в минуту) традиционных паровых машин паровозного типа, или от слишком быстроходных турбин (10-20 тыс. оборотов в минуту).

При этом технологически паровые роторные двигатели относительно просты в изготовлении, что делает затраты на их изготовление относительно невысокими. В отличие от крайне дорогостоящих в производстве паровых турбин.

ИТАК, КРАТКИЙ ИТОГ ЭТОЙ СТАТЬИ — паровой роторный двигатель является весьма эффективной паровой силовой машиной для преобразования давления пара от тепла сгорающего твердого топлива и горючих отходов в механическую мощность и в электрическую энергию.

Автором настоящего сайта, уже получены более 5 патентов на изобретения по разным аспектам конструкций паровых роторных двигателей. А так же произведено некоторое количество небольших роторных двигателей мощностью от 3 до 7 кВт. Сейчас идет проектирование паровых роторных двигателей мощностью от 100 до 200 кВт.
Но у роторных двигателей есть «родовой недостаток» — сложная система уплотнений, которые для маленьких по размерам двигателей оказываются слишком сложными, миниатюрными и дорогими в изготовлении.

При этом автором сайта ведется разработка паровых аксиально поршневых двигателей с оппозитным — встречным движением поршней. Данная компоновка является наиболее энерго — производительной по мощности вариацией из всех возможных схем применения поршневой системы.
Данные двигатели в малых размерах получаются несколько дешевле и проще роторных моторов и уплотнения в них использхуються самые традиционные и самые простые.

Внизу размещено видео использования маленького аксиально-поршневого оппозитного двигателя с встречным движением поршней.

В настоящее время идет изготовление такого аксиально-поршневого оппозитного двигателя на 30 кВт. Ресурс двигателя ожидается в несколько сотен тысячах моточасов ибо обороты парового двигателя в 3-4 раза ниже оборотов двигателя внутреннего сгорания, в пара трения «поршень- цилиндр» — подвергнута ионно -плазменному азотированию в вакуумной среде и твердость поверхностей трения составляет 62-64 ед по HRC. Подробно о процессе упрочения поверхности методом азотирования смотри .


Вот анимация принципа работы похожего по компоновке такого аксиально- поршневого оппозитного двигателя с встречным движением поршней

Паровая машина за всю свою историю имела много вариаций воплощения в металл. Одним из таких воплощений — был паровой роторный двигатель инженера-механика Н.Н. Тверского. Этот паровой роторный двигатель (паровая машина) активно эксплуатировался в различных областях техники и транспорт. В русской технической традиции 19-го века такой роторный двигатель назывался — коловратная машина. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель расчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века паровые двигатели — «коловратные машины Н.Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении паровых турбин справдливо лишь в их больших массо-габаритных размерах. Действительно — при мощности болше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у паровых турбин есть другой недостаток. При масштабировании их массо-габаритных парамеров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1,5 тыс. кВт (1,5 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины» — роторные паровые двигатели. А между тем — эти паровые машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают средней частотой вращения главного вала на полных оборотах от 1000 до 3000 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (автомобиля- грузовика, трактора, тягача) — не будут требовать редуктора, счепления и проч., а будут своим валом на прямую содиняться с динамо-машиной, колесами парового автомобиля и проч.
Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр и др.
Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилицации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизирыется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 3.5 — 5 кВт (зависит от давления в пара), если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей. Т.е вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Но, кроме средних и относительно крупных паросиловых установок, паросиловые схемы с малыми паровыми роторными двигателями будут востребованы и в малых силовых установках.
Например- одно из моих изобретений- «Походно-туристический электрогенератор на местном твердом топливе».
Ниже представлено видео, где испытывается упрощенный прототип такого устройства.
Но маленький паровой двигатель уже весело и энергично крутит свой электрогенератор и на дровах и прочем подножном топливе выдает электроэнергию.

Основное направление коммерческого и технического применения паровых роторных двигателей (коловратных паровых машин) — это выработка дешевого электричества на дешевом твердом топливе и горючих отходах. Т.е. малая энергетика- распределенная электрогенерация на паровых роторных двигателях. Представьте, как будет отлично вписываться роторный паровой двигатель в схему работы лесопилки- пилорамы, где нибудь на Русском Севере или в Сибири (Дальнем Востоке) где нет центрального электроснабжения, электричество дает задорого дизель-генератор на привозной издалека солярке. Зато сама лесопилка производит в день минимум полтонны щепы- опилок — горбыля, который девать некуда…

Таким древесным отходам — прямая дорога в топку котла, котел дает пар высокого давления, пар приводит в действие роторный паровой двигатель и тот крутит электрогенератор.

Точно так же можно сжигать безграничные по объемам миллионы тонн пожнивных отходов сельского хозяйства и проч. А есть еще дешевый торф, дешевый энергетический уголь и проч. Автор сайта посчитал, что затраты на топливо при выработке электричества через малую паросиловую установку (паровую машину) с паровым роторным двигателем мощностью в 500 кВт будут от 0,8 до 1,

2 рубля за киловатт.

Еще интересный вариант применения парового роторного двигателя — это установка такой паровой машины на паровой автомобиль. Грузовик — тягач паровой автомобиль, с мощным крутящим моментом и применяющий дешевое твердое топливо — очень нужная паровая машина в сельском хозяйстве и в лесной отрасли. При применении современных технологий и материалов, а так же использование в термодинамическом цикле «Органичесокго цикла Ренкина» позволят довести эффективный КПД до 26-28% на дешевом твердом топливе (или недорогом жидком, типа «печного топлива» или отработанного машинного масла). Т.е. грузовик — тягач с паровой машиной

и мощностью роторного парового двигателя около 100 кВт, будет расходовать на 100 км около 25-28 кг энергетического угля (стоимость 5-6 руб за кг) или около 40-45 кг щепы- опилок (цена которых на Севере- забирай даром)…

Есть еще много интересных и перспективных областей применения роторного парового двигателя, но размеры этой странички не позволяют все их подробно рассмотреть. В итоге- паровая машина может занять еще очень заметное место во многих областях современной техники и во многих отраслях народного хозяйства.

ЗАПУСКИ ОПЫТНОЙ МОДЕЛИ ПАРОСИЛОВОГО ЭЛЕКТРОГЕНЕРАТОРА С ПАРОВЫМ ДВИГАТЕЛЕМ

Май -2018г. После длительных экспериментов и опытных образцов сделан малый котел высокого давления. Котел опрессован на 80 атм давления, так что будет держать рабочее давление в 40-60 атм без затруднений. Запущен в работу с опытной моделью парового аксиально-поршневого двигателя моей конструкции. Работает прекрасно- смотри видео. За 12-14 минут от розжига на дровах готов давать пар высокого давления.

Сейчас я начинаю готовиться к штучному производству таких установок- котел высокого давления, паровой двигатель (роторный или аксиально-поршневой), конденсатор. Установки будут работать по замкнутой схеме с оборотом «вода- пар- конденсат».

Спрос на такие генераторы весьма большой, ибо 60% теорритории России не имеют центрального электроснабжения и сидят на дизельгенерации. А цена солярки все время растет и уже достигла 41-42 руб за литр. Да и там где электричество есть- энергокомпании тарифы все поднимают, а за подключение новых мощностей требуют больших денег.

Паровой двигатель Тауэра September 3rd, 2016

Вот что из интересных двигателей мы уже обсуждали с вами: вот , а вот всем известный

Сегодня обсудим еще один необычный вариант. Вместо привычного нам цилиндра в этой паровой машине была сфера. Полая сфера, внутри которой все и происходило.

В сфере вращался и колебался диск, на каждой из сторон которого «перекидывались» туда-сюда четвертинки шара. Как видите, на словах это объяснить достаточно сложно, поэтому анимация:

Красные стрелки — подача свежего пара, синие — выпуск отработанного.

Валы размещались под углом 135 градусов друг к другу. Пар через отверстие в четвертинке поступал под прижатую к диску плоскость, расширялся (производя полезную работу) и после поворота четвертинки выходил через то же отверстие. Четверти, таким образом, выполняли функции клапанов подачи/удаления пара. Болтающийся диск делал то, что в обычной паровой машине делает поршень. А кривошипно-шатунного механизма не было вовсе, потому не надо было преобразовывать возвратно-поступательное движение во вращательное.

Главный узел:

Пока по одну сторону четвертинки происходил рабочий ход (расширение пара), по другую ее сторону производился холостой ход (выпуск отработанного пара). По ту сторону диска происходило то же самое со сдвигом по фазе на 90 градусов. Из-за взаимного положения четвертинок диску придавалось вращение и колебания.

По сути, это была карданная передача с внутренним источником энергии. Зеленый диск-крестовина карданной передачи совершает такие же вращательно-колебательные движения:

Вращение передавалось на два вала, выходящие из мотора. Снимать энергию можно было с обоих, но на практике, судя по рисункам, для привода использовали один.

Как отмечал французский журнал «La Nature» 1884-го года, сферический двигатель допускал повышенные по сравнению с поршневыми собратьями скорости вращения и, следовательно, хорошо подходил в качестве привода электрогенератора.
Двигатель обладал низкими уровнями шума и вибрации и был очень компактен. Мотор с внутренним диаметром шара 10 см и частотой вращения 500 об/мин при давлении пара 3 атм выдавал 1 лошадиную силу, при 8,5 атм — 2,5 л.с. Самая же большая модель диаметром 63 см обладала мощностью в 624 «лошадки».

Но. Сферический мотор был сложен в изготовлении, для тогдашнего технологического уровня и требовал больших расходов пара, из за невозможности сделать детали с требуемым уровнем допусков. Он выпускался и некоторое время реально эксплуатировался в качестве привода генераторов в британском флоте и на железных дорогах Great Eastern Railway (устанавливался на паровой котел и служил для электроосвещения вагонов). Однако из-за указанных недостатков не прижился.

P.S. Необходимо заметить, что изобретатель сферического коня двигателя Бошам Тауэр (Beauchamp Tower) не пропал для инженерии.

Судя по всему, он был первым, кто наблюдал «масляный клин» в подшипниках скольжения и измерял давления в нем. Т.е. современное машиностроение пользуется исследованиями мистера Тауэра до сих пор.

источники

Вместо привычного нам цилиндра в этой паровой машине была сфера. Полая сфера, внутри которой все и происходило.

В сфере вращался и колебался диск, на каждой из сторон которого «перекидывались» туда-сюда четвертинки шара. Как видите, на словах это объяснить невозможно, поэтому гифка:

Красные стрелки — подача свежего пара, синие — выпуск отработанного.

Валы размещались под углом 135 градусов друг к другу. Пар через отверстие в четвертинке поступал под прижатую к диску плоскость, расширялся (производя полезную работу) и после поворота четвертинки выходил через то же отверстие. Четверти, таким образом, выполняли функции клапанов подачи/удаления пара. Болтающийся диск делал то, что в обычной паровой машине делает поршень. А кривошипно-шатунного механизма не было вовсе, потому не надо было преобразовывать возвратно-поступательное движение во вращательное.

Главный узел:

Пока по одну сторону четвертинки происходил рабочий ход (расширение пара), по другую ее сторону производился холостой ход (выпуск отработанного пара). По ту сторону диска происходило то же самое со сдвигом по фазе на 90 градусов. Из-за взаимного положения четвертинок диску придавалось вращение и колебания.

По сути, это была карданная передача с внутренним источником энергии. Зеленый диск-крестовина карданной передачи совершает такие же вращательно-колебательные движения:

Вращение передавалось на два вала, выходящие из мотора. Снимать энергию можно было с обоих, но на практике, судя по рисункам, для привода использовали один.

Как отмечал французский журнал «La Nature» 1884-го года, сферический двигатель допускал повышенные по сравнению с поршневыми собратьями скорости вращения и, следовательно, хорошо подходил в качестве привода электрогенератора.

Двигатель обладал низкими уровнями шума и вибрации и был очень компактен. Мотор с внутренним диаметром шара 10 см и частотой вращения 500 об/мин при давлении пара 3 атм выдавал 1 лошадиную силу, при 8,5 атм — 2,5 л.с. Самая же большая модель диаметром 63 см обладала мощностью в 624 «лошадки».

Но. Сферический мотор был сложен в изготовлении, требовал больших расходов пара. Он выпускался и некоторое время реально эксплуатировался в качестве привода генераторов в британском флоте и на железных дорогах Great Eastern Railway (устанавливался на паровой котел и служил для электроосвещения вагонов). Однако из-за указанных недостатков не прижился.

P.S. Необходимо заметить, что изобретатель сферического коня двигателя Бошам Тауэр (Beauchamp Tower) не пропал для инженерии.

Судя по всему, он был первым, кто наблюдал «масляный клин» в подшипниках скольжения и измерял давления в нем. Т.е. современное машиностроение пользуется исследованиями мистера Тауэра до сих пор.

Я живу только на угле и воде и все еще обладаю достаточной энергией, чтобы разогнаться до 100 миль в час! Это именно то, что может сделать паровоз. Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части мировых железных дорог, паровые технологии живут в сердцах людей, и локомотивы, подобные этому, до сих пор служат туристическими достопримечательностями на многих исторических железных дорогах.

Первое современные паровые машины были изобретены в Англии в начале 18 века и ознаменовали начало Промышленной Революции.

Сегодня мы вновь возвращаемся к энергии пара. Из-за особенностей конструкции в процессе сгорания топлива паровой двигатель дает меньше загрязнений, чем двигатель внутреннего сгорания. В данной публикации на видео посмотрите, как он работает.

Конструкция и механизм действия паровой машины

Что питало старинный паровой двигатель?

Требуется энергия, чтобы делать абсолютно все, о чем вы только можете подумать: кататься на скейтборде, летать на самолете, ходить в магазины или водить машину по улице. Большая часть энергии, которую мы используем для транспортировки сегодня, поступает из нефти, но это было не всегда так. До начала 20-го века уголь был любимым топливом в мире, и он приводил в движение все: от поездов и кораблей до злополучных паровых самолетов, изобретенных американским ученым Сэмюэлем П. Лэнгли, ранним конкурентом братьев Райт. Что такого особенного в угле? Внутри Земли его много, поэтому он был относительно недорогим и широко доступным.

Уголь является органическим химическим веществом, что означает, что он основан на элементе углерода. Уголь образуется в течение миллионов лет, когда останки мертвых растений закапывают под камнями, сжимают под давлением и варят под действием внутреннего тепла Земли. Вот почему это называется ископаемое топливо. Комки угля – это действительно комки энергии. Углерод внутри них связан с атомами водорода и кислорода соединениями, называемыми химическими связями. Когда мы сжигаем уголь на огне, связи распадаются, и энергия выделяется в форме тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистое ископаемое топливо, такое как бензин, дизельное топливо и керосин – и это одна из причин, по которой паровые двигатели должны сжигать так много.

Паровой роторный двигатель Тверского — коловратная паровая машина.

Паровые двигатели — от первой паровой машины до наших дней Паровая машина и паровой двигатель

Паровая машина за всю свою историю имела много вариаций воплощения в металл. Одним из таких воплощений — был паровой роторный двигатель инженера-механика Н.Н. Тверского. Этот паровой роторный двигатель (паровая машина) активно эксплуатировался в различных областях техники и транспорт. В русской технической традиции 19-го века такой роторный двигатель назывался — коловратная машина. Двигатель отличался долговечностью, эффективностью и высоким крутящим моментом. Но с появлением паровых турбин был забыт. Ниже представлены архивные материалы, поднятые автором этого сайта. Материалы весьма обширны, поэтому пока здесь представлена только часть их.

Пробная прокрутка сжатым воздухом (3,5 атм) парового роторного двигателя.
Модель расчитана на 10 кВт мощности при 1500 об/мин на давлении пара в 28-30 атм.

В конце 19-го века паровые двигатели — «коловратные машины Н. Тверского» были забыты потому, что поршневые паровые машины оказались проще и технологичнее в производстве (для производств того времени), а паровые турбины давали большую мощность.
Но замечание в отношении паровых турбин справдливо лишь в их больших массо-габаритных размерах. Действительно — при мощности болше 1,5-2 тыс. кВТ паровые многоцилиндровые турбины выигрывают по всем параметрам у паровых роторных двигателей, даже при дороговизне турбин. И в в начале 20-го века, когда судовые силовые установки и силовые агрегаты электростанций начинали иметь мощность во многие десятки тысяч киловатт, то только турбины и могли обеспечить такие возможности.

НО — у паровых турбин есть другой недостаток. При масштабировании их массо-габаритных парамеров в сторону уменьшения, ТТХ паровых турбин резко ухудшаются. Значительно снижается удельная мощность, падает КПД, при том что дороговизна изготовления и высокие обороты главного вала (потребность в редукторе) — остаются. Именно поэтому — в области мощностей менее 1,5 тыс. кВт (1,5 мВт) эффективную по всем параметрам паровую турбину найти практически невозможно, даже за большие деньги…

Именно поэтому в этой диапазоне мощностей появился целый «букет» экзотических и мало известных конструкций. Но чаще всего- так же дорогостоящих и малоэффективных… Винтовые турбины, турбины Тесла, осевые турбины и проч.
Но- почему-то все забыли про паровые «коловратные машины» — роторные паровые двигатели. А между тем — эти паровые машины многократно дешевле, чем любые лопаточные и винтовые механизмы (это я говорю со знанием дела- как человек изготовивший на свои деньги уже более десятка таких машин). При этом паровые «коловратные машины Н.Тверского» — имеют мощный крутящий момент с самых малых оборотов, обладают средней частотой вращения главного вала на полных оборотах от 1000 до 3000 об/мин. Т.е. такие машины хоть для электрогенератора, хоть для парового авто (автомобиля- грузовика, трактора, тягача) — не будут требовать редуктора, счепления и проч., а будут своим валом на прямую содиняться с динамо-машиной, колесами парового автомобиля и проч.
Итак- в виде парового роторного двигателя — системы «коловратной машины Н.Тверского» мы имеем универсальную паровую машину, которая прекрасно будет вырабатывать электричество питаясь от котла на твердом топливе в отдалённом лесхозе или таежном поселке, на полевом стане или вырабатывать электричество в котельной сельского поселения или «крутиться» на отходах технологического тепла (горячем воздухе) на кирпичном или цементном заводе, на литейном производстве и пр и др.
Все подобные источники тепла как раз и имеют мощность менее 1 мВт, поэтому и общепринятые турбины тут малопригодны. А других машин для утилицации тепла путем перевода в работу давления полученного пара- общая техническая практика пока не знает. Вот и не утилизирыется это тепло никак — оно просто теряется глупо и безвозвратно.
Я уже создал «паровую коловратную машину» для привода электрогенератора в 3.5 — 5 кВт (зависит от давления в пара), если все будет как планирую- то скоро будет машина и в 25 и в 40 кВт. Как раз — то что надо, чтобы обеспечивать дешевым электричеством от котла на твердом топливе или на отходах технологического тепла сельскую усадьбу, небольшое фермерское хозяйство, полевой стан и пр. и др.
В принципе — роторные двигатели хорошо масштабируются в сторону увеличения, поэтому — насаживая на один вал множество роторных секций легко многократно увеличивать мощность таких машин, просто увеличивая количество стандартных роторных модулей. Т.е вполне можно создавать паровые роторные машины мощностью 80-160-240-320 и более кВт…

Но, кроме средних и относительно крупных паросиловых установок, паросиловые схемы с малыми паровыми роторными двигателями будут востребованы и в малых силовых установках.
Например- одно из моих изобретений- «Походно-туристический электрогенератор на местном твердом топливе».
Ниже представлено видео, где испытывается упрощенный прототип такого устройства.
Но маленький паровой двигатель уже весело и энергично крутит свой электрогенератор и на дровах и прочем подножном топливе выдает электроэнергию.

Основное направление коммерческого и технического применения паровых роторных двигателей (коловратных паровых машин) — это выработка дешевого электричества на дешевом твердом топливе и горючих отходах. Т.е. малая энергетика- распределенная электрогенерация на паровых роторных двигателях. Представьте, как будет отлично вписываться роторный паровой двигатель в схему работы лесопилки- пилорамы, где нибудь на Русском Севере или в Сибири (Дальнем Востоке) где нет центрального электроснабжения, электричество дает задорого дизель-генератор на привозной издалека солярке. Зато сама лесопилка производит в день минимум полтонны щепы- опилок — горбыля, который девать некуда…

Таким древесным отходам — прямая дорога в топку котла, котел дает пар высокого давления, пар приводит в действие роторный паровой двигатель и тот крутит электрогенератор.

Точно так же можно сжигать безграничные по объемам миллионы тонн пожнивных отходов сельского хозяйства и проч. А есть еще дешевый торф, дешевый энергетический уголь и проч. Автор сайта посчитал, что затраты на топливо при выработке электричества через малую паросиловую установку (паровую машину) с паровым роторным двигателем мощностью в 500 кВт будут от 0,8 до 1,

2 рубля за киловатт.

Еще интересный вариант применения парового роторного двигателя — это установка такой паровой машины на паровой автомобиль. Грузовик — тягач паровой автомобиль, с мощным крутящим моментом и применяющий дешевое твердое топливо — очень нужная паровая машина в сельском хозяйстве и в лесной отрасли. При применении современных технологий и материалов, а так же использование в термодинамическом цикле «Органичесокго цикла Ренкина» позволят довести эффективный КПД до 26-28% на дешевом твердом топливе (или недорогом жидком, типа «печного топлива» или отработанного машинного масла). Т.е. грузовик — тягач с паровой машиной

и мощностью роторного парового двигателя около 100 кВт, будет расходовать на 100 км около 25-28 кг энергетического угля (стоимость 5-6 руб за кг) или около 40-45 кг щепы- опилок (цена которых на Севере- забирай даром)…

Есть еще много интересных и перспективных областей применения роторного парового двигателя, но размеры этой странички не позволяют все их подробно рассмотреть. В итоге- паровая машина может занять еще очень заметное место во многих областях современной техники и во многих отраслях народного хозяйства.

ЗАПУСКИ ОПЫТНОЙ МОДЕЛИ ПАРОСИЛОВОГО ЭЛЕКТРОГЕНЕРАТОРА С ПАРОВЫМ ДВИГАТЕЛЕМ

Май -2018г. После длительных экспериментов и опытных образцов сделан малый котел высокого давления. Котел опрессован на 80 атм давления, так что будет держать рабочее давление в 40-60 атм без затруднений. Запущен в работу с опытной моделью парового аксиально-поршневого двигателя моей конструкции. Работает прекрасно- смотри видео. За 12-14 минут от розжига на дровах готов давать пар высокого давления.

Сейчас я начинаю готовиться к штучному производству таких установок- котел высокого давления, паровой двигатель (роторный или аксиально-поршневой), конденсатор. Установки будут работать по замкнутой схеме с оборотом «вода- пар- конденсат».

Спрос на такие генераторы весьма большой, ибо 60% теорритории России не имеют центрального электроснабжения и сидят на дизельгенерации. А цена солярки все время растет и уже достигла 41-42 руб за литр. Да и там где электричество есть- энергокомпании тарифы все поднимают, а за подключение новых мощностей требуют больших денег.

Принцип действия парового двигателя

Содeржание

Аннотация

1. Теоретическая часть

1.1 Временная цепочка

1.2 Паровой двигатель

1.2.1 Паровой котёл

1.2.2 Паровые турбины

1.3 Паровые машины

1.3.1 Первые пароходы

1.3.2 Зарождение двухколесного транспорта

1.4 Применение паровых двигателей

1.4.1 Преимущество паровых машин

1.4.2 Коэффициент полезного действия

2. Практическая часть

2.1 Построение механизма

2.2 Способы улучшения машины и ее КПД

2.3 Анкетирование

Заключение

Список используемой литературы

Приложение

паровой двигатель полезное действие

Данная научная работа состоит из 32листов.Она включает в себя теоретическую часть, практическую часть, приложение и заключение. В теоретической части вы узнаете о принципе работы паровых двигателей и механизмов, об их истории и о роли их применения в жизни. Практической части подробно рассказано о процессе конструирования и испытаниях парового механизма в домашних условиях. Данная научная работа может служить наглядным примером работы и использованияэнергиипара.

Введение

Мир покорных любым капризам природы, где машины приводятся в действие мускульной силой или силой водяных колёс и ветряных мельниц — таким был мир техники до создания парового двигателя.Еще в древние времена человек обратил внимание на то, что струя водяного пара, вырываясь из сосуда, поставленного на огонь, способна сместить препятствие (например, лист бумаги), оказавшееся на ее пути.Это заставило человека задуматься над тем, как можно использовать в качестве рабочего тела пар. В результате этого после множества опытов появился паровой двигатель.И представьте себе заводы с дымящимися трубами, паровые машины и турбины, паровозы и пароходы — весь сложный и могучий мир паротехники созданный человекомПаровая машина была практически единственным универсальным двигателем и сыграла огромную роль в развитии человечества. Изобретение паровой машины послужило толчком для дальнейшего развития средств передвижения. В течение ста лет она была единственным промышленным двигателем, универсальность которого позволяла использовать ее на предприятиях, железных дорогах и на флоте.Изобретение парового двигателя является огромным рывком, стоявшим на рубеже двух эпох. И через столетия, ещё острее ощущается вся значимость этого изобретения.

Гипотеза:

Возможно, ли построить своими руками простейший механизм, работавший на пару.

Цель работы: сконструировать механизм способный двигаться на пару.

Задача исследования:

1. Изучить научную литературу.

2. Сконструировать и построить простейший механизм, работавший на пару.

3. Рассмотреть возможности увеличения КПД в дальнейшем.

Данная научная работа будет служить пособием на уроках физики для старших классов и для тех, кого интересует данная тема.

Паровой двигатель — тепловой поршневой двигатель, в котором потенциальная энергия водяного пара, поступающего из парового котла, преобразуется в механическую работу возвратно-поступательного движения поршня или вращательного движения вала.

Пар является одним из распространенных теплоносителей в тепловых системах с нагреваемым жидким или газообразным рабочим телом наряду с водой и термомаслами. Водяной пар имеет ряд преимуществ, среди которых простота и и гибкость использования, низкая токсичность, возможность подведения к технологическому процессу значительного количества энергии. Он может использоваться в разнообразных системах, подразумевающих непосредственный контакт теплоносителя с различными элементами оборудования, эффективно способствуя снижению затрат на энергоресурсы, сокращению выбросов, быстрой окупаемости.

Закон сохранения энергии- фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы.

3000 лет до н. э. — в Древнем Риме появились первые дороги.

2000 лет до н. э. — колесо приобрело более привычный для нас вид. У него появились ступица, обод и соединяющие их спицы.

1700 г. до н. э. — появились первые дороги, мощенные деревянными брусками.

312 г. до н. э. — в Древнем Риме построены первые дороги с каменным покрытием. Толщина каменной кладки достигала одного метра.

1405 г. — появились первые рессорные конные экипажи.

1510 г. — конный экипаж приобрел кузов со стенами и крышей. Пассажиры получили возможность защититься от непогоды во время поездки.

1526 г. — немецкий ученый и художник Альбрехт Дюрер разработал интересный проект «безлошадной повозки», приводимой в действие мышечной силой людей. Люди, идущие сбоку экипажа, вращали специальные рукоятки. Это вращение с помощью червячного механизма передавалось колесам экипажа. К сожалению, повозка не была изготовлена.

1600 г. — Симон Стевин построил яхту на колесах, двигающуюся под действием силы ветра. Она стала первой конструкцией безлошадной повозки.

1610 г. — кареты претерпели два существенных усовершенствования. Во-первых, ненадежные и слишком мягкие ремни, укачивающие пассажиров во время поездки, были заменены стальными рессорами. Во-вторых, была усовершенствована конная упряжь. Теперь лошадь тянула карету не шеей, а грудью.

1649 г. — прошли первые испытания по использованию в качестве движущей силы пружины, предварительно закрученной человеком. Карету с приводом от пружины построил Йоханн Хауч в Нюрнберге. Однако историки эти сведения ставят под сомнение, поскольку существует версия, что вместо большой пружины внутри кареты сидел человек, который и приводил механизм в движение.

1680 г. — в крупных городах появились первые образцы конного общественного транспорта.

1690 г. — Стефан Фарффлер из Нюрнберга создал трехколесную повозку, передвигающуюся с помощью двух ручек, вращаемых руками. Благодаря этому приводу конструктор повозки мог перемещаться с места на место без помощи ног.

1698 г. — англичанин Томас Севери построил первый паровой котел.

1741 г. — русский механик-самоучка Леонтий Лукьянович Шамшуренков послал в Нижегородскую губернскую канцелярию «доношенье» с описанием «самобеглой коляски».

1769 г. — французский изобретатель Кюньо построил первый в мире паровой автомобиль.

1784 г. — Джеймс Уатт создал первую паровую машину.

1791 г. — Иван Кулибин сконструировал трехколесную самоходную коляску, вмещавшую двух пассажиров. Привод осуществлялся с помощью педального механизма.

1794 г. — паровую машину Кюньо сдали в «хранилище машин, инструментов, моделей, рисунков и описаний по всем видам искусств и ремесел» в качестве очередной механической диковинки.

1800 г. — существует мнение, что именно в этом году в России был построен первый в мире велосипед. Его автором был крепостной Ефим Артамонов.

1808 г. — на улицах Парижа появился первый французский велосипед. Он был изготовлен из дерева и состоял из перекладины, соединяющей два колеса. В отличие от современного велосипеда, у него не было руля и педалей.

1810 г. — в Америке и странах Европы начала зарождаться каретная промышленность. В крупных городах появились целые улицы и даже кварталы, заселенные мастерами-каретниками.

1816 г. — немецкий изобретатель Карл Фридрих Драйз построил машину, напоминающую современный велосипед. Едва появившись на улицах города, она получила название «беговой машины», так как ее хозяин, отталкиваясь ногами, фактически бежал по земле.

1834 г. — в Париже проводились испытания парусного экипажа, сконструированного М. Хакуетом. Этот экипаж имел мачту высотой 12 м.

1868 г. — считается, что в этот год французом Эрне Мишо был создан прообраз современного мотоцикла.

1871 г. — французский изобретатель Луи Перро разработал паровую машину для велосипеда.

1874г. — в России построен паровой колесный тягач. В качестве прототипа был использован английский автомобиль «Эвелин Портер».

1875г. — в Париже прошла демонстрация первой паровой машины Амадея Бдлли.

1884 г. — американец Луис Копленд построил мотоцикл, на котором паровой мотор был установлен над передним колесом. Такая конструкция могла разогнаться до 18 км/ч.

1901г. — в России построен легковой паромобиль московского велосипедного завода «Дукс».

1902г. — Леон Серполле на одном из своих паровых автомобилей установил мировой рекорд скорости — 120 км/ч.

Годом позже он установил еще один рекорд — 144 км/ч.

1905 г. — американец Ф. Мариотт на паровом автомобиле превысил скорость 200 км

1.2 Паровой двигатель

Двигатель, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни, расположенные в цилиндрах. Таким образом создается возвратно-поступательное движение. Подсоединенный механизм обычно преобразует его во вращательное движение. В паровозах (локомотивах) используются Поршневые двигатели. В качестве двигателей используют также паровые турбины, которые дают непосредственно вращательное движение, вращая ряд колес с лопатками. Паровые турбины приводят в действие генераторы электростанций и винты кораблей. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора. Самый первый в истории паровой двигателей представлял собой род насоса, при помощи которого откачивали воду, заливающую шахты. Его изобрел в 1689 г. Томас Сэйвери. В этой машине, совсем простой по конструкции, пар конденсировался, превращаясь в небольшое количество воды, и за счет этого создавался частичный вакуум, благодаря чему отсасывалась вода из шахтного ствола. В 1712 г. Томас Ньюкомен изобрел поршневой насос, приводимый в действие паром. В 1760-е гг. Джеймс Ватт улучшил конструкцию Ньюкомена и создал намного более эффективные паровые двигатели. Вскоре их стали использовать на фабриках для приведения в действие станков. В 1884 г. английский инженер Чарльз Пар-соне (1854-1931) изобрел первую применимую на практике паровую турбину. Его конструкции были настолько эффективны, что ими вскоре стали заменять паровые двигатели возвратно-поступательного действия на электростанциях. Наиболее удивительным достижением в области паровых двигателей было создание полностью замкнутого, работающего парового двигателя микроскопических размеров. Японские ученые создали его, используя методы, служащие для изготовления интегральных схем. Небольшой ток, проходящий по электронагревательному элементу, превращает каплю воды в пар, который движет поршень. Теперь ученым предстоит открыть, в каких областях это устройство может найти практическое применение.

Осмотр музейной экспозиции я пропущу и перейду сразу к машинному залу. Кому интересно, тот может найти полную версию поста у меня в жж. Машинный зал находится в этом здании:

29. Зайдя внутрь, у меня сперло дыхание от восторга — внутри зала была самая красивая паровая машина из всех, что мне доводилось видеть. Это был настоящий храм стимпанка — сакральное место для всех адептов эстетики паровой эры. Я был поражен увиденным и понял, что совершенно не зря заехал в этот городок и посетил этот музей.

30. Помимо огромной паровой машины, являющейся главным музейным объектом, тут также были представлены различные образцы паровых машин поменьше, а на многочисленных инфостендах рассказывалась история паровой техники. На этом снимке вы видите полностью функционирующую паровую машину, мощностью 12 л.с.

31. Рука для масштаба. Машина была создана в 1920 году.

32. Рядом с главным музейным экземпляром экспонируется компрессор 1940 года выпуска.

33. Этот компрессор в прошлом использовался в железнодорожных мастерских вокзала Вердау.

34. Ну а теперь рассмотрим детальней центральный экспонат музейной экспозиции — паровую 600-сильную машину 1899 года выпуска, которой и будет посвящена вторая половина этого поста.

35. Паровая машина является символом индустриальной революции, произошедшей в Европе в конце 18-го — начала 19-го века. Хотя первые образцы паровых машин создавались различными изобретателями еще в начале 18-го века, но все они были непригодны для промышленного использования так как обладали рядом недостатков. Массовое применение паровых машин в индустрии стало возможным лишь после того, как шотландский изобретатель Джеймс Уатт усовершенствовал механизм паровой машины, сделав ее легкой в управлении, безопасной и в пять раз мощней существовавших до этого образцов.

36. Джеймс Уатт запатентовал свое изобретение в 1775 году и уже в 1880-х годах его паровые машины начинают проникать на предприятия, став катализатором индустриальной революции. Произошло это прежде всего потому, что Джеймсу Уатту удалось создать механизм преобразования поступательного движения паровой машины во вращательное. Все существовавшие до этого паровые машины могли производить лишь поступательные движения и использоваться только лишь в качестве насосов. А изобретение Уатта уже могло вращать колесо мельницы или привод фабричных станков.

37. В 1800 году фирма Уатта и его компаньона Болтона произвела 496 паровых машин из которых лишь 164 использовались в качестве насосов. А уже в 1810 году в Англии насчитывалось 5 тысяч паровых машин, и это число в ближайшие 15 лет утроилось. В 1790 году между Филадельфией и Берлингтоном в США стала курсировать первая паровая лодка, перевозившая до тридцати пассажиров, а в 1804 году Ричард Тревинтик построил первый действующий паровой локомотив. Началась эра паровых машин, которая продлилась весь девятнадцатый век, а на железной дороге и первую половину двадцатого.

38. Это была краткая историческая справка, теперь вернемся к главному объекту музейной экспозиции. Паровая машина, которую вы видите на снимках, была произведена фирмой Zwikauer Maschinenfabrik AG в 1899 году и установлена в машинном зале прядильной фабрики «C.F.Schmelzer und Sohn». Паровая машина предназначалась для привода прядильных станков и в этой роли использовалась вплоть до 1941 года.

39. Шикарный шильдик. В то время индустриальная техника делалась с большим вниманием к эстетическому виду и стилю, была важна не только функциональность, но и красота, что отражено в каждой детали этой машины. В начале ХХ века некрасивую технику просто никто бы не купил.

40. Прядильная фабрика «C.F.Schmelzer und Sohn» была основана в 1820 году на месте теперешнего музея. Уже в 1841 году на фабрике была установлена первая паровая машина, мощностью 8 л.с. для привода прядильных машин, которая в 1899 году была заменена новой более мощной и современной.

41. Фабрика просуществовала до 1941 года, затем производство было остановлено в связи с началом войны. Все сорок два года машина использовалась по назначению, в качестве привода прядильных станков, а после окончания войны в 1945 — 1951 годы служила в качестве резервного источника электроэнергии, после чего была окончательно списана с баланса предприятия.

42. Как и многих ее собратьев, машину ждал бы распил, если бы не один фактор. Данная машина являлась первой паровой машиной Германии, которая получала пар по трубам от расположенной в отдалении котельной. Кроме того она обладала системой регулировки осей от фирмы PROELL. Благодаря этим факторам машина получила в 1959 году статус исторического памятника и стала музейной. К сожалению, все фабричные корпуса и корпус котельной были снесены в 1992 году. Этот машинный зал — единственное, что осталось от бывшей прядильной фабрики.

43. Волшебная эстетика паровой эры!

44. Шильдик на корпусе системы регулировки осей от фирмы PROELL. Система регулировала отсечку — количество пара, которое впускается в цилиндр. Больше отсечка — больше экономичность, но меньше мощность.

45. Приборы.

46. По своей конструкции данная машина является паровой машиной многократного расширения (или как их еще называют компаунд-машиной). В машинах этого типа пар последовательно расширяется в нескольких цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр, что позволяет значительно повысить коэфициент полезного действия двигателя. Эта машина имеет три цилиндра: в центре кадра находится цилиндр высокого давления — именно в него подавался свежий пар из котельной, затем после цикла расширения, пар перепускался в цилиндр среднего давления, что расположен справа от цилиндра высокого давления.

47. Совершив работу, пар из цилиндра среднего давления перемещался в цилиндр низкого давления, который вы видите на этом снимке, после чего, совершив последнее расширение, выпускался наружу по отдельной трубе. Таким образом достигалось наиболее полное использование энергии пара.

48. Стационарная мощность этой установки составляла 400-450 л.с., максимальная 600 л.с.

49. Гаечный коюч для ремонта и обслуживания машины впечатляет размерами. Под ним канаты, при помощи которых вращательное движения передавалось с маховика машины на трансмиссию, соединенную с прядильными станками.

50. Безупречная эстетика Belle Époque в каждом винтике.

51. На этом снимке можно детально рассмотреть устройство машины. Расширяющийся в цилиндре пар передавал энергию на поршень, который в свою очередь осуществлял поступательное движение, передавая его на кривошипно-ползунный механизм, в котором оно трансформировалось во вращательное и передавалось на маховик и дальше на трансмиссию.

52. В прошлом с паровой машиной также был соединен генератор электрического тока, который тоже сохранился в прекрасном оригинальном состоянии.

53. В прошлом генератор находился на этом месте.

54. Механизм для передачи крутящего момента с маховика на генератор.

55. Сейчас на месте генератора установлен электродвигатель, при помощи которого несколько дней в году паровую машину приводят в движение на потеху публике. В музее каждый год проводятся «Дни пара» — мероприятие, объединяющее любителей и моделистов паровых машин. В эти дни паровая машина тоже приводится в движение.

56. Оригинальный генератор постоянного тока стоит теперь в сторонке. В прошлом он использовался для выработки электричества для освещения фабрики.

57. Произведен фирмой «Elektrotechnische & Maschinenfabrik Ernst Walther» в Вердау в 1899 году, если верить инфотабличке, но на оригинальном шильдике стоит год 1901.

58. Так как я был единственным посетителем музея в тот день, никто не мешал мне наслаждаться эстетикой этого места один-на-один c машиной. К тому же отсутствие людей способстовало получению хороших фотографий.

59. Теперь пару слов о трансмиссии. Как видно на этом снимке, поверхность маховика обладает 12 канавками для канатов, при помощи которых вращательное движение маховика передавалось дальше на элементы трансмиссии.

60. Трансмиссия, состоящая из колес различного диаметра, соединенных валами, распределяла вращательное движение на несколько этажей фабричного корпуса, на которых распологались прядильные станки, работающие от энергии, переданной при помощи трансмиссии от паровой машины.

61. Маховик с канавками для канатов крупным планом.

62. Тут хорошо видны элементы трансмиссии, при помощи которых крутящий момент передавался на вал, проходящий под землей и передающий вращательное движение в прилегающий к машинному залу корпус фабрики, в котором располагались станки.

63. К сожалению, фабричное здание не сохранилось и за дверью, что вела в соседний корпус, теперь лишь пустота.

64. Отдельно стоит отметить щит управления электрооборудованием, который сам по себе является произведением искусства.

65. Мраморная доска в красивой деревянной рамке с расположенной на ней рядами рычажков и предохранителей, роскошный фонарь, стильные приборы — Belle Époque во всей красе.

66. Два огромных предохранителя, расположенные между фонарем и приборами впечатляют.

67. Предохранители, рычажки, регуляторы — все оборудование эстетически привлекательно. Видно, что при создании этого щита о внешнем виде заботились далеко не в последнюю очередь.

68. Под каждым рычажком и предохранителем расположена «пуговка» с надписью, что этот рычажок включает/выключает.

69. Великолепие техники периода «прекрасной эпохи «.

70. В завершении рассказа вернемся к машине и насладимся восхитительной гармонией и эстетикой ее деталей.

71. Вентили управления отдельными узлами машины.

72. Капельные масленки, предназначенные для смазки движущихся узлов и агрегатов машины.

73. Этот прибор называется пресс-масленка. От движущейся части машины приводятся в движение червяки, перемещающие поршень масленки, а он нагнетает масло к трущимся поверхностям. После того, как поршень дойдет до мертвой точки, его вращением ручки поднимают назад и цикл повторяется.

74. До чего же красиво! Чистый восторг!

75. Цилиндры машины с колонками впускных клапанов.

76. Еще масленки.

77. Эстетика стимпанка в классическом виде.

78. Распределительный вал машины, регулирующий подачу пара в цилиндры.

79.

80.

81. Все это очень очень красиво! Я получил огромный заряд вдохновения и радостных эмоций во время посещения этого машинного зала.

82. Если вас вдруг судьба занесет в регион Цвикау, посетите обязательно этот музей, не пожалеете. Сайт музея и его координаты: 50°43″58″N 12°22″25″E

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Паровой машиной называется тепловой двигатель, в котором по­тенциальная энергия расширяющегося пара преобразуется в меха­ническую энергию, отдаваемую потребителю.

С принципом действия машины ознакомимся, воспользовавшись упрощенной схемой фиг. 1.

Внутри цилиндра 2 находится поршень 10, который может пере­мещаться вперед и назад под давлением пара; в цилиндре имеются четыре канала, которые могут открываться и закрываться. Два верх­них пароподводящих канала 1 и 3 соединены трубопроводом с паро­вым котлом, и через них в цилиндр может поступать свежий пар. Через два нижних капала 9 и 11 пар, уже совершивший работу, выпускается из цилиндра.

На схеме показан момент, когда каналы 1 и 9 открыты, каналы 3 и 11 закрыты. Поэтому свежий пар из котла по каналу 1 поступает в левую полость цилиндра и своим давлением перемещает поршень вправо; в это время отработавший пар по каналу 9 из правой полости цилиндра удаляется. При крайнем правом положении поршня каналы 1 и 9 закрыты, а 3 для впуска свежего пара и 11 для выпуска отработавшего пара открыты, вследствие чего поршень переместится влево. При крайнем левом положении поршня открываются каналы 1 и 9 и закрываются каналы 3 и 11 и процесс повторяется. Таким образом, создается прямолинейное возвратно-поступательное движе­ние поршня.

Для преобразования этого движения во вращательное приме­няется так называемый кривошипно-шатунный механизм. Он состоит из поршневого штока- 4, соединенного одним концом с поршнем, а другим шарнирно, посредством ползуна (крейцкопфа) 5, скользящего между направляющими параллелями, с шатуном 6, который передает движение, на коренной вал 7 через его колено или кривошип 8.

Величина вращающего момента на коренном валу не является постоянной. В самом деле, силу Р , направленную вдоль штока (фиг. 2), можно разложить на две составляющие: К , направленную вдоль шатуна, и N , перпендикулярную к плоскости направляющих параллелей. Сила N не оказывает никакого влияния на движение, а только прижимает ползун к направляющим параллелям. Сила К передается вдоль шатуна и действует на кривошип. Здесь ее опять можно разложить на две составляющие: силу Z , направленную по радиусу кривошипа и прижимающую вал к подшипникам, и силу Т , перпендикулярную к кривошипу и вызывающую вращение вала. Величина силы Т определится из рассмотрения треугольника AKZ. Так как угол ZAK = ? + ?, то

Т = К sin (? + ?).

Но из треугольника ОКР сила

K= P/ cos ?

поэтому

T= Psin ( ? + ?) / cos ? ,

При работе машины за один оборот вала углы ? и ? и сила Р непрерывно меняются, а поэтому величина крутящей (тангенциаль­ной) силы Т также переменна. Чтобы создать равномерное вращение коренного вала в течение одного оборота, на него насаживают тяжелое колесо-маховик, за счет инерции которого поддерживается постоян­ная угловая скорость вращения вала. В те моменты, когда сила Т возрастает, она не может сразу же увеличить скорость вращения вала, пока не ускорится движение маховика, чего не происходит мгновенно, так как маховик обладает большой массой. В те моменты, когда работа, производимая крутящей силой Т , становится меньше работы сил сопротивления, создаваемых потребителем, маховик опять-таки в силу своей инерции не может сразу уменьшить свою ско­рость и, отдавая полученную при своем разгоне энергию, помогает поршню преодолевать нагрузку.

При крайних положениях поршня углы? + ? = 0, поэтому sin (? + ?) =0 и, следовательно, Т = 0. Так как вращающее уси­лие в этих положениях отсутствует, то, если машина была бы без маховика, сна должна была бы остановиться. Эти крайние положения поршня называются мертвыми положениями или мертвыми точками. Через них кривошип переходит также за счет инерции маховика.

При мертвых положениях поршень не доводится до соприкоснове­ния с крышками цилиндра, между поршнем и крышкой остается так называемое вредное пространство. В объем вредного прост­ранства включается также объем паровых каналов от органов парорас­пределения до цилиндра.

Ходом поршня S называется путь, проходимый поршнем при перемещении из одного крайнего положения в другое. Если расстояние от центра коренного вала до центра пальца кривошипа — радиус кривошипа — обозначить через R, то S = 2R.

Рабочим объемом цилиндра V h называется объем, описываемый поршнем.

Обычно паровые машины бывают двойного (двухстороннего) действия (см. фиг. 1). Иногда применяются машины односторон­него действия, в которых пар оказывает давление на поршень только со стороны крышки; другая сторона цилиндра в таких маши­нах остается открытой.

В зависимости от давления, с которым пар покидает цилиндр, машины разделяются на выхлопны е, если пар выходит в атмо­сферу, конденсационные, если пар выходит в конденсатор (холодильник, где поддерживается пониженное давление), и тепло фикационные, у которых отработавший в машине пар исполь­зуется для каких-либо целей (отопление, сушка и пр.)

Роторный двигатель

— обзор

9.3.5 Двигатель с явным постоянным магнитом (двигатель PM / Rel)

В разделе 9.3.4 мы увидели, что для двигателя с возбужденным ротором и выступающим ротором только действующий реактивный момент вызывает ненагруженный ротор должен остановиться с прямой осью ротора, выровненной со статором mmf, то есть в том же положении, как если бы вращающий момент возбуждения действовал отдельно. Это связано с тем, что ось с низким сопротивлением совпадает с прямой осью возбуждения. «Жесткость» характеристики крутящий момент-угол увеличивается за счет наличия реактивного крутящего момента, и в зависимости от относительных величин двух компонентов пиковый крутящий момент также может быть увеличен, как показано на рис.9.11, так что комбинация является привлекательным предложением.

Идея замены схемы возбуждения ротора более простыми постоянными магнитами при продолжении использования реактивного момента в принципе ясна, но на практике не так проста, как можно было бы ожидать. Чтобы магнитный поток проходил вдоль прямой оси ротора (то есть вдоль явного полюса), должен быть вставлен зазор для размещения магнита, и чем сильнее магнит, тем длиннее зазор. Это значительно увеличивает сопротивление прямой оси, что противоположно тому, что мы хотим, чтобы максимизировать крутящий момент сопротивления.

Тем не менее, мы уже говорили о том, что многие отрасли промышленности стремятся уменьшить свою зависимость от редкоземельных магнитов из-за опасений по поводу глобальной безопасности поставок. Эта неопределенность, вместе со стимулом предоставлять недорогие двигатели для растущего массового рынка (особенно в гибридных электромобилях), привела к возобновлению интереса к двигателям, которые сочетают в себе PM и реактивный крутящий момент. По сравнению с двигателем, работающим исключительно с постоянными магнитами, цель состоит в том, чтобы достичь сопоставимых характеристик с меньшим количеством магнитного материала: отношение крутящего момента PM к крутящему моменту реактивного сопротивления значительно варьируется (обычно от 4: 1 до 1: 1) в зависимости от детальной конструкции двигателя и применение, но в очень упрощенных терминах и, говоря очевидным, чем меньше магнитный материал, тем выше доля реактивного момента.

Типичный шестиполюсный ротор показан на рис. 9.12: это, по сути, ротор реактивного электродвигателя с магнитным потоком и скрытыми постоянными магнитами, находящимися в магнитопроводах. Например, если посмотреть на самый верхний полюс N на рис. 9.12, два его магнита эффективно соединены последовательно, а их прямая (магнитная) ось расположена вертикально. Помимо воздушного зазора, основная магнитная цепь, внешняя по отношению к каждой паре магнитов, имеет низкое магнитное сопротивление через «железо» сердечника, поэтому в этом отношении мало компромиссов по сравнению с конструкцией, состоящей только из PM.Однако по конструктивным причинам на внешних концах магнитопроводов должен быть перемычка из материала магнитного сердечника, и это неизбежно создает привлекательное короткое замыкание для некоторой части магнитного потока, который, таким образом, отклоняется от его полезного пути через статор. Эта область остается насыщенной и непродуктивной с точки зрения крутящего момента.

Рис. 9.12. Шестиполюсный двигатель PM / Rel.

Что касается аспекта сопротивления, прямая ось (низкая индуктивность) показана пунктирными линиями, а упомянутый выше мост снова представляет собой нежелательный путь короткого замыкания для магнитного потока, создаваемого статором, но по сути это точно так же, как это было бы в реактивном двигателе с магнитным потоком.Если бы реактивный момент действовал сам по себе, ненагруженный ротор остановился бы вместе с m.m.f статора. выровнен с пунктирной линией цепи, но если PM действует в одиночку, ненагруженный ротор остановится с полюсом N, выровненным с m.m.f статора. Таким образом, в отличие от двигателя с явным возбуждением ротора, где положения равновесия совпадают, теперь у нас есть два различных положения с нулевым крутящим моментом, разделенных на 90 ° (эл.).

Очевидно, существует потенциальная путаница в отношении того, какая ось является прямой. На первый взгляд, у нас есть два конкурирующих претендента с противоречивыми утверждениями: лагерь сопротивления утверждал бы, что это была пунктирная линия на рис.9.12, хотя поклонники PM утверждали, что это была ось, проходящая через центр полюсов магнита. На практике обычно предпочтительнее второе, т.е. прямая ось определяется так же, как и для чисто PM машины.

Мы можем получить общее представление о форме общей характеристики крутящий момент-угол, наложив отдельные кривые сопротивления и PM, как показано на рис. 9.13, но мы должны принять, что это только приближение, поскольку оно игнорирует эффекты насыщения в магнитных цепях.

Рис. 9.13. Комбинированное сопротивление и крутящие моменты PM.

Корпус возбужденного ротора показан на рис. 9.13 для сравнения с двигателем PM / Rel, и, как мы уже видели в разделе 9.3.4, результирующая кривая крутящего момента-угла для возбужденного ротора более жесткая по сравнению с устойчивым нулевым значением. положение крутящего момента, а области движения и торможения расположены симметрично, с равными максимальными углами крутящего момента для движения и торможения γ m и γ b соответственно.

Наша цель — подчеркнуть фундаментальные различия между характеристиками крутящего момента двигателя с возбужденным ротором и двигателя с постоянным / постоянным током, поэтому мы произвольно выбрали компоненты сопротивления и крутящего момента, чтобы они имели одинаковую амплитуду.(На практике двигатель с возбужденным ротором будет иметь гораздо меньший реактивный крутящий момент, тогда как соотношение компонентов крутящего момента для двигателя с постоянным / постоянным током может быть выше или ниже.)

Сдвиг на 90 ° между кривыми сопротивления и PM приводит к различным результатам. стабильные рабочие зоны для корпуса ПМ, а также новые положения покоя с нулевым моментом. Пиковый двигательный и тормозной моменты остаются такими же, как и для случая возбужденного ротора, но они больше не симметричны относительно одного положения равновесия покоя. Максимальный угол крутящего момента двигателя обозначен как γ m , а максимальный тормозной момент обозначен как γ b .Следовательно, когда приводу требуется изменение крутящего момента с максимального крутящего момента двигателя на максимальный тормозной момент, система управления (см. Раздел 9.6) изменит положение вектора тока статора относительно ротора на угол κ, показанный на нижней диаграмме.

По-прежнему ведется большая работа и проявляется интерес к этой новой технологии, и пройдет некоторое время, прежде чем наконец появятся оптимизированные решения для различных областей применения.

Двигатель с обмоткой ротора: Что это такое?

Двигатель с фазным ротором — это разновидность трехфазного асинхронного двигателя, предназначенная для обеспечения высокого пускового момента для нагрузок с высокой инерцией при очень низком токе.

Двигатели с фазным ротором также называют двигателями с фазным ротором.


Статор двигателя с фазным ротором такой же, как у обычного асинхронного двигателя, но ротор имеет трехфазную обмотку, причем каждый из выводов обмотки подключен к отдельным контактным кольцам. Напротив, традиционный асинхронный двигатель (он же «двигатель с короткозамкнутым ротором») имеет обмотки, которые постоянно закорочены концевым кольцом.

Контактные кольца двигателя с фазным ротором содержат щетки, которые образуют внешнюю вторичную цепь, в которую может быть добавлено полное сопротивление (сопротивление).Во время пуска это сопротивление включается последовательно с обмотками ротора. Это добавленное сопротивление заставляет ток ротора идти по фазе с током статора, что увеличивает развиваемый крутящий момент. Но добавленное сопротивление также уменьшает ток во вторичной цепи, поэтому очень высокий пусковой момент может быть получен с низким пусковым током .

Ротор двигателя с фазным ротором имеет трехфазные обмотки, которые соединены с контактными кольцами.
Изображение предоставлено: TMEIC

Традиционным асинхронным двигателям с короткозамкнутым ротором при запуске может потребоваться от 400 до более 1000 процентов тока полной нагрузки.


Если полное сопротивление вводится во вторичную цепь при работающем двигателе, ток ротора уменьшается, а скорость двигателя уменьшается. Но по мере уменьшения скорости двигателя в обмотках ротора индуцируется большее напряжение, и вырабатывается больше тока для создания необходимого крутящего момента при этой пониженной скорости.

Постепенно уменьшая сопротивление , позволяет двигателю набрать нормальную рабочую скорость, обеспечивая плавное ускорение нагрузки. Поддерживая некоторое сопротивление во вторичной цепи, можно до определенного предела контролировать скорость. Но этот метод регулирования скорости теряет свою эффективность по мере увеличения скорости — примерно до 50 процентов номинальной скорости при полной нагрузке. Когда сопротивление во вторичной цепи полностью закорочено, двигатель электрически ведет себя как традиционный двигатель с короткозамкнутым ротором.

Контактные кольца образуют вторичный внешний контур. Добавление сопротивления в эту цепь изменяет кривую крутящего момента двигателя.

Недостатками двигателей с фазным ротором являются сложность и необходимость технического обслуживания контактных колец и щеток по сравнению с традиционными двигателями с короткозамкнутым ротором. Однако двигатели с фазным ротором полезны в приложениях с высокими инерционными нагрузками, таких как большие вентиляторы, насосы и мельницы, поскольку конструкция с фазным ротором позволяет постепенно увеличивать нагрузку за счет управления скоростью и крутящим моментом.И они могут развивать очень высокий пусковой крутящий момент в состоянии покоя с низким пусковым током. Хотя в настоящее время преобладают традиционные асинхронные двигатели с приводами с регулируемой скоростью, двигатели с фазным ротором также могут использоваться для приложений с регулируемой скоростью, если не требуется очень точное управление скоростью.

Изображение предоставлено: TECO-Westinghouse Motors, Inc.

Как работает ротор асинхронного электродвигателя?

Индукция протекания тока через стержни ротора асинхронного электродвигателя возникает, когда ток подается на статор.Этот приложенный ток через обмотки статора запускает вращение магнитного поля статора с линейной частотой.

Стержни неподвижного ротора затем подвергаются максимальному относительному движению магнитного поля статора к стержням. В этот момент вдоль стержней генерируется максимальный ток. Когда северный полюс статора вращается мимо стержня ротора, ток индуцируется вдоль стержня ротора. В то же время южный полюс статора вращается, проходя через стержень на 180 °, и индуцирует ток вдоль стержня в противоположном направлении.Этот круговой поток тока вдоль стержней ротора через закорачивающие кольца и вокруг пластин заставляет ротор становиться электромагнитом.

Именно в этой начальной начальной точке (заблокированный ротор) электромагнитная сила ротора наиболее высока. Электромагнитный ротор начнет разгоняться до синхронной скорости или скорости, с которой вращается магнитное поле статора. По мере увеличения скорости ротора относительное движение между стержнями ротора и вращающимся магнитным полем уменьшается.Это приводит к уменьшению тока и крутящего момента. Когда относительное движение (вращающая сила) между стержнями ротора и магнитным полем статора приближается к нулю, ток вдоль ротора прекращается. Магнетизм ротора прекратится, и ротор замедлится до тех пор, пока крутящий момент, создаваемый двигателем, не станет равным крутящему моменту ведомого оборудования. (Нагрузка)

Если нагрузка двигателя увеличивается, скорость двигателя уменьшается. Уменьшите нагрузку, и двигатель увеличит скорость. Асинхронный двигатель никогда не достигнет синхронной скорости из-за потерь на трение и сопротивление воздуха.Разница между синхронной скоростью и скоростью асинхронного ротора называется частотой скольжения.

Тодд А. Хэтфилд, вице-президент по проектированию и ремонту

HECO — Все системы идут

269-381-7200

[email protected]

Об авторе:

Тодд Хэтфилд является совладельцем HECO и вице-президентом по проектированию и ремонту.Он имеет более чем 35-летний опыт работы в области ремонта и проектирования генераторов и электродвигателей. Тодд имеет степень бакалавра в области электротехники и специализируется в следующих областях: модернизация и проектирование электрических и механических двигателей, анализ первопричин отказов и качественное восстановление электродвигателей.

Асинхронный двигатель с фазным ротором Экономия

Асинхронные двигатели с большим фазным ротором (WRIM) уже несколько десятилетий используются в некоторых отраслях промышленности. В цементной и горнодобывающей промышленности мощные WRIM используются на больших мельницах, где они имеют преимущество в виде контролируемых пусковых характеристик и регулируемой скорости.Эти двигатели также используются в больших насосах в водопроводной и канализационной промышленности.

WRIM имеет трехфазный статор с обмоткой, который обычно подключается непосредственно к системе питания. Ротор имеет трехфазную обмотку с тремя выводами, подключенными к отдельным контактным кольцам, которые обычно подключаются к жидкостному реостату или группе резисторов. Реостат используется для запуска и может быть отключен, когда двигатель наберет нужную скорость. Изменяя сопротивление ротора с помощью реостата, можно изменять скорость двигателя.В прошлом мощность, рассеиваемая реостатом, терялась в виде тепла; однако, используя привод с регулируемой скоростью вместо реостата, мощность скольжения может быть восстановлена ​​и возвращена в сеть, таким образом, экономя энергию. Кроме того, используя привод для увеличения мощности, снимаемой с ротора, можно снизить скорость двигателя. В качестве бонуса, подавая мощность на ротор через привод, двигатель может работать выше синхронной скорости. Скорость, конечно, должна быть в пределах проектных ограничений двигателя.

В системе восстановления мощности скольжения используется современный низковольтный привод с широтно-импульсной модуляцией.Эта новая реализация основана на стандартной линейке низковольтных приводов асинхронных двигателей TMEIC, используемых в обрабатывающих отраслях, таких как обработка металлов и производство бумаги. Оборудование очень надежное и знакомое и подходит для новых или существующих двигателей. Мощность скольжения представляет собой низкое напряжение и составляет лишь небольшую часть от общей мощности двигателя, поэтому требуемый привод имеет малую мощность и более низкую стоимость, чем полноразмерный привод среднего напряжения.

Расчеты для WRIM мощностью 5000 л.с., работающего на 90% полной скорости, показывают, что рекуперированная энергия составляет 360 кВт на сумму более 200 000 долларов в год.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя могут быть разработаны, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла.Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е.е., одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как ток в фазе b и фазе a имеет положительное значение на половину. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. Картина токов ротора для текущего момента t 1 рисунка показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, передаваемый от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Коммутатор | Цельнороторная техника

Лучший выбор — цельнороторная техника

Возраст коробок передач постепенно угасает, и появляется новый стандарт. Впервые передовая технология с твердым ротором, доступная в настоящее время только для нескольких крупных заказчиков, теперь предлагается в виде стандартных пакетов. Теперь преимущества непревзойденной стоимости и компактного размера легко доступны для более широкого спектра высокоскоростных приложений.

Устанавливая новый стандарт

Асинхронный двигатель со сплошным ротором — это уникальный тип асинхронного двигателя с не слоистой конструкцией ротора.Жесткая конструкция обеспечивает непревзойденную стабильность и баланс, обеспечивая исключительную надежность вращающейся системы для всех типов высокоскоростных приложений. В своей простейшей форме цельный ротор представляет собой стержень из ферромагнитной стали, подвергнутый механической обработке. Для повышения производительности могут быть применены усовершенствования, такие как разрезание, добавление концевого кольца с высокой проводимостью или даже включение обоймы ротора.

Продуманная цельная конструкция ротора обеспечивает превосходную механическую прочность, позволяющую избежать неуравновешенных вибраций.Кроме того, он выдерживает высокие центробежные силы и агрессивные химические вещества, что делает его исключительно надежным и долговечным.

Опираясь на более чем двадцатилетний опыт, эта же технология теперь доступна в виде стандартизированных высокоскоростных электродвигателей в паре с приводами мощностью от 300 до 1500 кВт и скоростью до 20 000 об / мин.

Чтобы узнать больше о преимуществах этой передовой технологии, загрузите наш технический документ:

Загрузить технический документ: Технология цельного ротора (EN) Загрузить технический документ: Технология цельного ротора (DE) Загрузить технический документ: Технология цельного ротора (IT)

Устранить коробку передач

Прочный высокоскоростной двигатель устраняет необходимость в коробке передач, позволяя приложению достичь более высоких скоростей и доступности.

Меньше компонентов, меньше необходимости в обслуживании

Механические проблемы, связанные с коробками передач, больше не являются проблемой. Меньшее количество компонентов также снижает потребность в дополнительных деталях и обслуживании.

Превосходная надежность, непревзойденная эффективность, компактность на 50%

Прочная конструкция ротора обеспечивает высокую механическую прочность и стабильность, что позволяет достичь более высокого КПД двигателя. Конструкция также более компактна и легче по весу, занимая до 50% меньше места по сравнению с традиционной конструкцией.

Свяжитесь с нами для получения дополнительной информации

Восстановление и запуск ротора

Для большинства пользователей двигателей роторы двигателей с короткозамкнутым ротором являются простейшими и наиболее надежными вращающимися электрическими элементами. Однако, как и любое машинное оборудование с движущимися частями, роторы могут выйти из строя. Однако роторы подлежат ремонту, и у вас есть несколько вариантов. Для большого двигателя ремонтная мастерская часто является вашим лучшим ресурсом, чтобы определить, вышел ли из строя ротор, как он вышел из строя, и для его ремонта.

Неисправность ротора

Любое изменение условий эксплуатации может снизить производительность, надежность и эффективность современных высокоэффективных двигателей и привести к отказу ротора. Роторы обычно выходят из строя по двум причинам:
• Чрезмерное количество пусков. В некоторых больших роторах с короткозамкнутым ротором срок службы ротора обратно пропорционален количеству пусков.
• Более продолжительное время пуска, чем рассчитано на двигатель. Эта ситуация обычно возникает при запуске больших инерционных нагрузок.
• Большинство, но не все, отказы ротора вызваны поломкой стержней ротора, как правило: • Внутри пазовой части ротора.
• Где концевое кольцо (также известное как закорачивающее кольцо) соединяется с стержнем
. • Где стержень входит в сердечник.

Эти разрывы вызваны сочетанием механических и электрических нагрузок, включая вибрационные, маятниковые, термические и центробежные.

Например, одна комбинация этих напряжений может начинаться с термического.Ускорение нагрузки, особенно с большой инерцией, увеличивает температуру ротора. Повторные запуски еще больше увеличивают температуру, образуя пирамиду на вершине нормальной рабочей температуры.

Это тепло расширяет концевые кольца и напрягает выступающие части стержня так же, как консольная балка. Чем короче удлинение стержней и колец, тем больше растягивающие и сжимающие напряжения в нижнем и верхнем краях стержня — той области, где обычно происходят разрывы. Длинные удлинения уменьшают эти напряжения сжатия и растяжения, но увеличивают напряжения, которые могут привести к трещинам и поломкам стержней ротора.

Производители могут контролировать влияние некоторых из этих напряжений при проектировании двигателя. Например, изменение определенных параметров конструкции может контролировать влияние центробежных напряжений. Существуют материалы, достаточно прочные, чтобы противостоять силам пробоя. Однако дизайнеры должны сбалансировать усталостную прочность и долговечность материала с его электропроводностью. Высокопрочные материалы обычно обладают высоким удельным сопротивлением, что делает их плохим выбором для конструкции ротора.

Форму стержня также можно использовать для контроля воздействия некоторых из этих напряжений.Изменение формы стержня может распределить нагрузки и продлить срок службы ротора. Наиболее распространенными формами стержней являются прямоугольные, трапециевидные, перевернутые буквы «Т» и их комбинации. При изменении формы стержня инженеры должны поддерживать разумные пропорции между прорезью и зубом.

В поисках неисправности

Не существует надежного метода определения наличия сломанных стержней ротора в двигателе в сборе . При возникновении сильной вибрации или других проблем с двигателем, скорее всего, вам понадобится ремонтная мастерская, чтобы провести полную проверку компонентов двигателя, чтобы определить проблему, особенно если двигатель большой.Ремонтная мастерская не только может диагностировать проблему, у многих есть оборудование для обширного ремонта, в том числе для изготовления новых ламинатов.

Ремонтной мастерской потребуется следующая информация при выходе из строя двигателя с короткозамкнутым ротором:
• Продолжительность службы и вид службы.
• Общее количество запусков и интервал между запусками.
• Кривая скорости крутящего момента нагрузки.
• Инерция нагрузки.
• Ожидаемое обслуживание в будущем.
• Паспорт статора.
• Данные паспортной таблички.

Ремонтный персонал снимет ротор с двигателя и либо визуально осмотрит стержни, либо с помощью красителя обнаружит трещины или разрывы на концах. Проверка окраски включает покрытие стержней ротора флуоресцентным красителем, который подчеркивает любые трещины или изломы.

Трещины в пазу стержня часто трудно обнаружить. В некоторых случаях, особенно если в анамнезе была дуга, обесцвечивание сердечника может быть основным признаком поломки стержня.

Способы ремонта

Найдя сломанные решетки, вы можете выбрать один из нескольких методов ремонта. Выбранный метод зависит от будущего использования двигателя.

1. Если на концах стержня есть разрыв, его можно отремонтировать с помощью пайки. Пайка представляет собой недорогое временное решение, когда вам нужно продолжить работу, пока вы рассматриваете другие варианты. Этот метод подходит для нескольких треснувших стержней, но другие стержни могут устать и сломаться через короткое время.

2. Замените обычные медные шины на бескислородную или серебросодержащую медь. Этот материал придает большую пластичность и может увеличить срок службы стержня. Однако при изменении материала стержней новые стержни не будут иметь тех же размеров, что и старые стержни. Таким образом, использование пружинной конструкции будет удерживать стержни плотно в прорези, позволяя при этом свободное продольное перемещение для теплового расширения.

В этом методе замена торцевого кольца на материал, такой же или похожий на материал новых стержней, не является обязательной.Однако, если концевое кольцо не менять, могут быть различия в проводимости между двумя материалами. Эти различия могут потребовать дальнейшего изменения размера стержня, а также новых пластин, что является третьим вариантом.

3. Замените медные стержни на стержни из сплава, установите новые пластинки и сделайте новым стержням Т-образную форму в виде перевернутой буквы. Такие стержни выдерживают центробежные силы лучше, чем трапециевидная форма из-за плоской плоскости Т-образного сечения. T удерживает штангу на месте, а также помогает распределять центробежную силу.Трапециевидная форма может перемещаться вверх и вниз в прорезях.

В электрическом отношении эта конструкция дает те же характеристики, что и трапециевидная или полутрапецеидальная штанга, обеспечивая прочную конструкцию зубьев и свободное продольное перемещение штанги.

Первого метода ремонта, вероятно, будет достаточно, если срок службы двигателя подходит к концу. Если двигатель входит в пиковый период, когда количество запусков увеличится или ожидается еще много лет эксплуатации, то второй или третий метод может быть более экономичным.Непрерывная пайка прутков по мере их разрушения в сочетании с продолжительностью простоя двигателя может сделать второй или третий способ более экономичным вариантом.

После ремонта ротора и сборки двигателя внимательно проверьте центровку ротора. Изменение воздушного зазора в роторах с короткозамкнутым ротором влияет на КПД двигателя. Слишком маленький воздушный зазор увеличивает сопротивление ротора. Слишком большой воздушный зазор потребует снижения номинальных характеристик устройства.

Бинт Ниндра — технический менеджер компании National Electric Coil, Колумбус, Огайо.

Когда стержни ротора не проблема

Иногда сломанные стержни ротора являются причиной проблем, вызванных отказами других компонентов. Например, ротор двухполюсного двигателя, испытывающий сильную вибрацию, может указывать на более неуловимые проблемы.

В этом примере инженеры ремонтной мастерской сняли ротор с двигателя, чтобы проверить его. Сломанных стержней не было видно, поэтому ротор балансировался в открытой установке на полной скорости.Похоже, это решило проблему вибрации. Однако под нагрузкой вибрация вернулась, указывая на то, что проблема не была чисто механической.

Для проверки ротора инженеры использовали другие методы контроля, в том числе ультразвуковое. Эти методы дали показания, указывающие на то, что проблема заключалась в сломанных полосах. Инженеры снова сняли ротор и проверили его на наличие трещин. Однако они подтвердили, что все стержни были целы и все соединения с концевыми кольцами в хорошем состоянии. Это оставило ламинированный сердечник как возможную причину неисправности.

Инженеры проверили состояние ламелей и вала и обнаружили зазор между ними. Этот зазор может быть причиной вибрации. Инженеры не смогли определить, было ли это производственным дефектом или результатом условий эксплуатации, хотя они обнаружили признаки фреттинг-коррозии на поверхности вала.

После этой проверки инженеры пришли к выводу, что проблема связана с температурой двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *