Что такое роторный мотор: особенности, преимущества и недостатки моторов

Содержание

особенности, преимущества и недостатки моторов

Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем — RX-8.

История создания роторного двигателя

Роторный двигатель (РПД)Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем — это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

ВАЗ с роторным двигателем (ГАИ)

РПД на Западе

На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.

Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.

Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик — компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.

Особенности роторного мотора

В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси — статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.

принцип работы роторного двигателя

принцип работы роторного мотора

У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента — поршневого мотора.

Камеры образуются между гранями ротора и стенками капсулы, их форма — переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители — радиальные и торцевые пластины.

Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.

У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.

Достоинства и недостатки роторных двигателей

Преимущества

  • Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент — процентов на 35-40.

  • Два двигателя одинаковой мощности — роторный и поршневый — будут сильно отличаться габаритами.

    Поршневый в два раза больше.

  • Роторный мотор не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.

  • Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.

  • Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.

Недостатки

  • Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.

  • Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.

  • Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.

  • Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода — причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый — приносит меньше вреда экологии.

  • Непомерные аппетиты двигателя на бензин уже упоминались, а масло он «жрет» до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.

  • Высокая стоимость — из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.


Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.

Рассказываем как устроен и работает роторный двигатель

« Что такое балансировка колес Диагностика неисправностей и замена шаровых опор »

Возврат к списку статей

Принцип работы роторного двигателя, плюсы и минусы системы |

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

Содержание статьи:

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

rotornyj_dvigatelКапсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Роторный двигатель в разрезеРоторный двигатель в разрезе Ротор роторного двигателяРотор роторного двигателя Камера роторного двигателяКамера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал роторного двигателяВыходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Устройство автомобиля. Как работает роторный двигатель

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя. Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Далее мы расскажем о строении роторного двигателя, но, прежде всего, рассмотрим некоторые автомобили с таким типом двигателя.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт — с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки) Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта) Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта — по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Что такое роторный двигатель и как он работает

Безраздельное властвование в автомобилестроении поршневых ДВС, характеризующихся наличием механизма обратно-поступательного движения поршня, отнюдь не связано с техническим совершенством их устройства. Более того, такие силовые агрегаты обладают большим количеством конструкционных недостатков, которые в принципе непреодолимы. И никакие ухищрения, основанные на достижениях технического прогресса последних десятилетий, не способны искоренить эти недостатки.

Что собой представляют роторные двигатели

Но поскольку техническую мысль невозможно ни замедлить, ни тем более остановить, ведущие инженеры и целые конструкторские бюро на протяжении последних ста лет усиленно работали над поиском достойной альтернативы ПДВС.

Следует отметить, что в этом направлении уже достигнуты немалые успехи, даже если не принимать во внимание силовые агрегаты с реактивной тягой. В частности, в сфере двигателей, у которых момент движения передается на вал вращения, классический поршневой мотор уже достаточно давно в разных областях применения начал сдавать свои позиции.

Так, в среде стационарных установок вне конкуренции находится электромотор, в авиастроении предпочтение отдают газотурбинным силовым агрегатам, паровые турбины эффективно используется в судостроении и в энергетических силовых установках типа электростанций.

Отметим, что все указанные разновидности моторов относятся к категории роторных машин, поскольку у всех их основной рабочий орган — вращательный, без наличия возвратно-поступательных компонентов. Если рассматривать такую конструкцию с точки зрения термодинамики и классической механики, то она оказывается наиболее эффективной, передающий момент движения с минимальными потерями.

Что такое роторная силовая установка

Роторный двигатель внутреннего сгорания представляет собой разновидность тепловых моторов, у которых в общем элементом является ротор. Принципиальное отличие от поршневых ДВС заключается в том, что такие агрегаты не нуждаются в конструктивных элементах, занимающихся преобразованием возвратно-поступательного движения во вращение основного вала.

Теоретически такой агрегат должен обладать более высоким КПД. Но на практике реализация таких схем оказалось технически достаточно сложной, несмотря на отсутствие такой промежуточной системы, как коленвал. Выяснилось, что роторный мотор обладает некоторыми недостатками, которые настолько существенны, что из-за них этот тип двигателей конкретно в автомобилестроении так и не получил массового распространения. Почему так произошло, мы расскажем чуть позже.

Роторно-поршневые двигатели

Если обратиться к истории, то 1 роторный двигатель был продемонстрирован инженерами Ванкелем и Фройде в 1957 году. Именно тогда немецкие изобретатели сумели воплотить в жизнь свои задумки. Презентация нового типа автомобильных двигателей оказалась настолько успешной, что многие автопроизводители мирового масштаба серьёзно заинтересовались этой разработкой. Достаточно назвать такие бренды, как Citroen, General Motors, Mercedes-Benz. Но после многолетних исследовательских и испытательных работ все они признали бесперспективность роторных силовых агрегатов. Но не японский автоконцерн Mazda. Инженеры этой компании всё же сумели вывести в серию роторные двигатели, которые выпускались автоконцерном достаточно долго.

Следует отметить, что даже АвтоВАЗ на протяжении ряда лет оснащал ограниченные серии своих моделей роторными двигателями. Правда, такие машины не поступали в розничную сеть — ими комплектовались автопарки силовых органов (МВД и КГБ).

Поскольку роторный силовой агрегат относится к категории ДВС, принцип его работы, как и поршневого аналога, заключается в преобразовании тепловой энергии сгорания горючего в энергию вращения. Разумеется, такое преобразование осуществляется принципиально иным, более простым способом. Дело в том, что в роторном моторе основной рабочий орган — это ротор, который жестко связан с приводным валом. В классическом двигателе внутреннего сгорания движущей силой является поршень, двигающийся поступательно вверх-вниз. Для преобразования такого движения во вращательное требуется использование достаточно сложного механизма — кривошипно-шатунного, составной частью которого является коленчатый вал.

Именно в этом и заключается разница между роторным двигателем и обычным поршневым ДВС.

Классификация роторных двигателей

Было бы наивным предполагать, что усилия армии инженеров были сосредоточены исключительно на конструирование альтернативы поршневому мотору. Ещё в шестидесятых годах прошлого столетия были продемонстрированы разработки роторных силовых агрегатов с концептуально разными схемами реализации.

Роторный мотор мощностью 70 лошадей

На сегодня можно перечислить следующие виды роторных моторов:

  • двигатели с разнонаправленным движением рабочих элементов. Их отличительной особенностью является не вращательное, а возвратно-поступательное движение (качание по эллипсоидной дуге вокруг продольно оси). В таких моторах процесс сгорания ТВС, сопровождающийся фазами сжатия/расширения отработанных газов, реализуется в полостях между жёстко укреплёнными лопатками статора, что и определяет замысловатую траекторию движения ротора, отличающуюся от вращения вокруг оси. Таким образом, конструктивно это действительно роторный агрегат, но по принципу передачи движения он является промежуточным решением между поршневым и вращательным способами передачи момента движения на приводной вал. Более того, некоторые склонны причислять такие моторы к поршневым ДВС, ведь у них существует и своеобразный аналог кривошипного механизма, преобразующий колебания ротора во вращательное движение. Такое усложнение конструкции оказалось не слишком оправданным, так что РДВС данного типа не получили сколь-нибудь заметного распространения. К тому же у этой конструкции имеется очень серьёзный недостаток – относительно высокая вероятность столкновений лопастей, что во время работы двигателя грозит очень серьёзными неприятностями;
  • роторные моторы с однонаправленным движением рабочих элементов. У этой разновидности силовых агрегатов имеется два ротора, заключённых в единый корпус. Они вращаются со сдвигом по временной фазе, как бы догоняя во время работы мотора друг друга. Такой тип вращения ротора принято называть пульсирующе-вращательным. Здесь рабочие такты сгорания ТВС происходят в кавернах, образующихся между лопастями смежных роторов на фазах их максимального сближения/удаления. Схема рабочая, но характеризующаяся существенным недостатком: оба головных вала вращаются рывками, равномерное движение отсутствует. Для выравнивания импульсного момента требуется использовать очень сложные устройства и механизмы, позволяющие преобразовывать знакопеременные нагрузки с целью выравнивания скоростей обеих валов. Отметим, что, как и в предыдущей разновидности роторных агрегатов, здесь также не исключены ударные столкновения параллельных лопастей в фазе их сближения;
  • роторные моторы с уплотнительными заслонками. Эта разновидность двигателей оказалась более удачной и широко применяется и в настоящее время, преимущественно в пневматических силовых агрегатах. Но в этом случае в качестве движущей силы выступает уже не горючее, а сжатый воздух. Здесь лопасти ротора выступают в качестве заслонок, а сам вал также движется не прямолинейно, совершая качающиеся либо возвратно-поступательные движения. Как правило, лопасти в таких моторах закреплены на шарнирах, что позволяет им в нужный момент отклоняться. К сожалению, создать такой же эффективный мотор для ДВС так и не удалось, поскольку здесь для реализации задуманного необходимо обеспечить гораздо боле герметичную схему, чем при использовании пневматики. Оказалось, что в условиях больших значений рабочего давления и температур хорошо получается что-либо одно: или обеспечение надлежащей герметичности, либо обеспечение требуемой подвижности роторных лопастей. Добиться приемлемых показателей одновременно не получается. К тому же имеются объективные сложности, касающиеся обеспечения непрерывного движения лопастей. Это можно сделать, используя отдельный специализированный привод, или с помощью комбинации действия пружин и центробежной силы вращения. Оба варианта реализовать чрезвычайно сложно, поэтому в автомобилестроении данная разновидность роторных моторов так и не смогла оказать достойную конкуренцию классическим ДВС;
  • двигатели роторного типа с подвижными уплотнительными заслонками. Схожесть с моторами предыдущего типа очевидна. Разница заключается в том, что здесь лопатки, являющиеся также заслонками, не являются частью ротора – они прикреплены к внутренней стенке корпуса, в нужный момент выдвигаясь внутрь. У ротора также имеются лопасти, но довольно экзотической формы. Именно на них и приходится основная часть нагрузки в виде давления отработанных газов. Задача роторных лопаток – отсекать в определённые моменты лопасти-заслонки от камеры сгорания. Технически всё это реализовать тоже очень непросто, и перечень недостатков такой конструкции схож с предыдущим;
  • моторы с простым вращательным движением роторного вала. В силу простоты конструкции такие агрегаты можно назвать самыми совершенными и очень перспективными. Здесь просто отсутствуют механизмы, совершающие любые виды движения, кроме вращательного. Неудивительно, что достижение скоростей вращения порядка десятков тысяч об/мин для них – не проблема. Отметим, что первые подобные двигатели были сконструированы ещё в конце XIX, продемонстрировав более высокие эксплуатационные характеристики, чем тогдашние поршневые двигатели. Отметим, что в то время основной движущей силой был пар, а не бензин. Но со временем поршневые силовые установки перевели на углеводородное топливо, а вот с роторными аналогами случилась загвоздка;
  • роторные силовые агрегаты с планетарным механизмом вращения. Это – так называемые двигатели Ванкеля, немецкого инженера-конструктора, впервые предложившего такой мотор. Именно они и легли в основу всех попыток создать конкурентоспособный ДВС на роторной тяге. В дальнейшем мы будем вести речь именно об этой разновидности роторных силовых агрегатов.

Итак, пришла пора ознакомиться с устройством и принципом работы роторно-поршневых двигателей.

Конструкция роторного двигателя

Поскольку РПД и классический поршневой мотор являются двигателями внутреннего сгорания, было бы логичным предположить, что и система впрыска ТВС, а также система зажигания у них схожи. Так оно и есть, но строение самих силовых агрегатов кардинально разное.

Устройство роторного двигателя включает следующие основные конструктивные элементы:

  • собственно ротор;
  • статор, в роли которого выступает корпус мотора;
  • приводной (выходной) вал.

Здесь используется классическая компоновка: вращающийся ротор находится внутри статора. Геометрия ротора предполагает наличие трёх выпуклостей, которые, по существу, являются аналогами поршня. Углубление в этих выпуклостях способствует повышению скорости вращения за счёт формирования завихрений отработанных газов. Каждая выпуклость комплектуется двумя кольцами, внутри которых формируются полости, представляющие собой камеры сгорания.

Одной из самых важных элементов ротора считается расположенное примерно посередине вала зубчатое колесо. Оно входит в зацепление с шестерней, располагаемой напротив на корпусе мотора. Эта зубчатая пара и является той компонентой, которая формирует направление и, разумеется, траекторию движения самого ротора.

Корпус РДВС выполнен в виде овала, что резко контрастирует с внешностью традиционного поршневого двигателя. Сделано это для того, чтобы все вершины ротора (напомним, их всего три) постоянно контактировали со стенками статора. Посредством такой экзотической геометрии достигается формирование в любой момент времени трёх камер сгорания, полностью герметичных и целиком изолированных от влияния соседний полостей. Впускная система также необычна: вместо клапанного механизма используются специальные порты впуска/выпуска, первый из которых непосредственно ведёт к дросселю, второй – к выхлопной системе, тоже напрямую, без каких-либо промежуточных конструктивных элементов.

Выходной вал ротора абсолютно не похож на коленвал поршневого ДВС. Да, на нём присутствуют эксцентрики в виде выступов специальной формы, расположенных на валу с определённым смещением относительно осевой линии. Но они служат для сопряжения с роторами (их у двигателя бывает несколько). Каждый отдельный ротор, вращаясь, воздействует на свой кулачковый эксцентрик, усиливая крутящий момент выходного вала.

Вот так необычно устроен роторный двигатель. Следует упомянуть ещё об одной его конструктивной особенности: он собирается в заводских условиях послойно. Наиболее распространены двухроторные силовые агрегаты, у которых имеется пять таких слоёв. В качестве крепёжных элементов используются болтовые соединения, располагаемые по кругу каждой секции.

Система охлаждения роторных силовых агрегатов устроена таким образом, что ОЖ доставляется во все активные элементы конструкции. Подшипники с сальниками расположены в противоположных крайних секциях, во внутренних сегментах установлены роторы. В центральных сегментах расположены впускные порты, выпускные же размещены с обоих краёв корпуса.

Принцип работы

Принцип действия роторного двигателя, как и его конструкция, радикальным образом отличается от поршневого автомобильного аналога. Именно ротор, вращаясь, передает крутящий момент на трансмиссию и, в конечном итоге, – на колёса. Сгорание топливно-воздушной смеси происходит не в цилиндрах, а полостях, образуемых сторонами ротора, представляющего собой равнобедренный треугольник с немного выпуклыми сторонами. Он изготавливается только из высококачественной легированной стали.

Корпус, играющий роль статора – вторая важная компонента роторного силового агрегата. В разрезе он имеет вид продолговатого овала, между стенками которого и сторонами ротора формируются динамические камеры сгорания и происходят все стандартные фазы сгорания ТВС: впрыск смеси, сжатие, воспламенение, выпуск отработанных газов.

Рабочие такты двигателей

Поскольку ось, на которой расположен ротор, расположена не по центру, вращением это назвать сложно. Да и сама геометрия внешних сторон корпуса и ротора далека от симметрии. Однако именно это позволяет в каждый момент времени формировать три полости, в каждой из которых в конкретный момент времени происходит один из четырёх вышеназванных циклов.

Опишем схематически, как работает роторный двигатель, на примере одной отдельно взятой стороны ротора.

На фазе впуска в начинающую расширяться полость всасывается топливная смесь, причём происходит это самотёком, за счёт создаваемого в полости разрежения. В этой же фазе происходит и смешивание ТВС. За счет силы инерции (ведь таких полостей в двигателе три, и одна из оставшихся как раз и толкает ротор в нужном направлении) полость смещается, точки максимального объема и затем начиная опять сжиматься. Максимум этого процесса приходится на нижнюю мёртвую точку, в которой смесь сжимается до такой степени, что готова отдать всю энергию. Именно в этот момент и происходит воспламенение ТВС свечой зажигания, после чего в результате сгорания и резкого расширения продуктов горения струя газов, пытаясь вырваться наружу, толкает ротор, пока он опять не подойдёт к верхней точке траектории. А здесь уже газам есть куда выйти через выпускной клапан. Таким образом, цикл завершается, а весь процесс происходить непрерывно. Важно понять, что в каждый момент времени в каждой из камер происходит один из процессов, аналогичных вышеописанным.

Другими словами, один полный оборот выходного вала соответствует трём тактам работы мотора.

Если учесть, что современные роторные двигатели оснащаются двумя или тремя роторами, для каждого из которых имеется свой статор, то бишь корпус, то картина получается впечатляющая. К слову, в настоящее время производством таких автомобильных силовых агрегатов занимается только автоконцерн Mazda.

Как видим, конструкции и принцип работы роторного двигателя достаточно прост, дополнительных узлов и механизмов требуется минимум, не в пример меньше, чем у поршневого собрата. Это позволяет при сравнимых габаритах обеспечить намного большую производительность. Так, по выходной мощности двухроторный мотор сопоставим с шестицилиндровым поршневым силовым агрегатом, трёхроторный выдает столько же лошадиных сил, как двенадцатицилиндровый поршневой двигатель.

Следует отметить, что повышенная производительность – далеко не единственный конёк этого типа моторов, но есть у него, разумеется, и ряд недостатков, которые и не позволяют (надеемся – пока) сделать его массовым продуктом. Но об этом – в следующей главе.

Преимущества и недостатки РДВС

С момента своей презентации роторно-поршневой силовой агрегат постоянно был в центре внимания специалистов, а многие солидные автопроизводители начали инвестировать в исследования, посвящённые разработке этого типа мотора, громадные суммы. И неспроста: конструкция такого агрегата на порядок проще классического двигателя. Собственно говоря, основными в нём являются две детали: корпус и ротор. Куда уж проще!

Перечислим преимущества, которые сулит использование роторного привода:

  • простота конструкции – фактор, способствующий достижению практически идеальной сбалансированности двигателя: минимум деталей позволил свести вибрационные процессы, характерные для ПДВС, практически на нет;
  • даже не слишком удачные реализации роторного силового агрегата позволяли получать великолепную динамику без увеличения нагрузки на сам мотор. Это наглядно демонстрируют и последние модели Мазда. К примеру, RX-8 с роторным двигателем разгоняется до сотни примерно за такое же время, но без перехода на самую высокую передачу, просто за счёт высоких оборотов;
  • хотя несколько роторов требуют относительно большого объема для размещения, за счёт отсутствия множества дополнительных узлов и агрегатов такой двигатель получается заметно компактнее поршневого, и намного легче. Для конструкторов это идеальный вариант, предоставляющий возможность выполнить идеальную межосевую развесовку. А это, кстати, фактор, существенно улучшающий устойчивость транспортного средства во время выполнения скоростных манёвров;
  • минимизация узлов существенно упрощает обслуживание такого агрегата, увеличивается его надёжность и безотказность;
  • наконец, роторный ДВС характеризуется отменной удельной мощностью, недостижимой для своих классических собратьев.

Вы спросите, почему же при таком количестве впечатляющих достоинств роторные моторы не вытеснили поршневые?

Всё очень просто: минусы роторного двигателя перевешивают плюсы, а современное автомобилестроение – это, прежде всего, целесообразность. Даже если речь идёт об экологичных машинах, учтите, что их производство в значительной степени субсидируется на государственном уровне. О роторных установках этого не скажешь.

Так в чём же заключаются их недостатки? Судите сами:

  • главным, и самым существенным минусом этого типа двигателей считается очень высокий расход горючего, особенно на невысоких скоростях и низких оборотах. Типичный показатель – 20 и более литров на 100 километров. При нынешнем уровне цен на топливо это, конечно неприемлемо. Особенно если сравнивать с аналогичными по мощности бензиновыми ДВС, у которых расход постоянно снижается и уже частично преодолел знаковую отметку в 5 л/100 км.;
  • отсутствие симметрии – другой существенный недостаток таких двигателей. Чтобы идеально скомпоновать ротор и статор, чтобы прохождение эпитрохоидальной кривой было максимально правильным, требуется использование дорогостоящего специализированного и высокоточного оборудования. Без него добиться геометрически безупречной подгонки деталей невозможно. Разумеется, это тоже влияет на стоимость машины, и отнюдь не в сторону снижения;
  • поскольку камера сгорания у роторных агрегатов имеет не круглое, а линзовидное сечение, это негативным образом сказывается на тепловых характеристиках мотора. Другими словами, при сгорании значительная часть энергии из-за специфической формы ротора и статора расходуется не на проталкивание ротора, а на его нагрев. Так что борьба с перегревом – очередное слабое место двигателей данного типа;
  • производителям так и не удалось справиться с проблемой быстрого износа уплотнителей, устанавливаемых между форсунками. Значительные перепады давления, характерные для камер сгорания, разрушают уплотнители, и в результате после 100, максимум 150 тысяч км пробега роторному двигателю требуется капремонт. А это – большая проблема, и даже не из-за высокой стоимости: таких специалистов и автосервисов нужно ещё поискать;
  • наконец, РДВС расход моторного масла гораздо выше: на каждые 1000 километров расходуется примерно 600 мл смазывающей жидкости, и это при новом и неизношенном моторе. Поэтому процедура замены масла производится намного чаще (каждые 5 тысяч километров), что, безусловно, увеличивает стоимость владения таким автомобилем. Но критично не это: если вы забыли вовремя долить/сменить ММ, поломки мотора не заставят себя долго ждать. Так что с точки зрения техобслуживания роторный двигатель, несмотря на свою простоту, не позволит автовладельцу расслабиться.

Разумеется, инженеры Мазда работают над устранением этих проблем, но у главной из них, снижения расхода топлива, похоже, приемлемого решения нет и не предвидится.

На каких авто можно встретить роторный силовой агрегат

Если обратиться к истории, то первым мелкосерийным авто с мотором Ванкеля стал NSU Spider. Его начали выпускать в 1964 году. При развиваемой мощности 54 л.с. этот автомобиль разгонялся до 145-150 км/час. Для первенца, согласитесь, очень неплохие результаты!

Через три года была презентована стендовая модификация NSU Ro-80 – презентабельного четырёхдверного седана, однако до крупносерийного производства дело не дошло. Но именно эта модель подтолкнула многих автопроизводителей к приобретению лицензии на дизельный РДВС (можно упомянуть Citroen, Toyota, GM и, конечно же, Mazda).

К сожалению, попытки создать действительно конкурентный автомобиль не увенчались успехом. О причинах мы уже упоминали: из-за огромного объёма камеры сгорания идеального смешивания ТВС не происходит, в результате даже двухсвечный разряд не позволял эффективно сжигать топливную смесь. А значит, расход топлива возрастает, а выхлоп становится более грязным.

Роторный силовой агрегат

Именно в это время мир накрыл топливный кризис, и компания NSU, практически целиком перешедшая на роторные двигатели, вынуждена была свернуть разработки и в результате была поглощена автоконцерном Volkswagen, где двигатели Ванкеля посчитали бесперспективными.

У Mercedes-Benz, купившей лицензию, дела пошли не лучше – было сконструировано всего две модели с роторным агрегатом. С111 первого поколения при 280 «лошадях» развивала 259 км/час, разгоняясь до сотни ровно за пять секунд. У второго поколения показатели существенно улучшились: 350, 300 и 4.8 соответственно. После этого данное направление было закрыто.

Chevrolet отметился тоже двумя роторными машинами: Corvette оснащался двухсекционным (267 л.с.) и четырёхсекционным (390 л.с.) силовым агрегатом, но дальше прототипа дело не пошло. Citroen сумел довести до серии GS Birotor (108 л.с.), однако впоследствии все машины были отозваны и утилизированы (за исключением порядка 200 экземпляров, обладатели которых не захотели расставаться с уникальными авто). Так что вероятность повстречать эту модель на европейских трассах не равна нулю и сегодня.

Дольше всех держалась Mazda, на протяжении 1967-1972 годов концерн выпустил 1519 автомобилей с роторным двигателем. Примерно в то же время был запущено в серию Luce R130 в форме купе. Дальше – больше: с 1970 года РДВС устанавливали практически на все модели, включая среднегабаритный автобус Parkway Rotary 26. Он весил всего 2.83 тонны и разгонялся до 120 км/час.

В 70-х годах роторные моторы (нелицензированные) начали производить и в СССР. В качестве прототипа взяли классический мотор от Ro-80.

Занимались доводкой автовазовцы, сумевшие в 1976 году довести до ума СА Ваз-311. Но до серии пришлось ждать ещё 6 лет, когда появилась модель Ваз-21018 , оснащаемая роторным мотором мощностью 70 «лошадей». Впрочем, обкатку не прошёл ни один автомобиль, так что эксперимент закончился установкой штатных поршневых моторов. Но в 1983 году ситуация была исправлена, однако модели Ваз-411/413 в розницу не попали: их поставляли исключительно в силовые структуры.

На данный момент Mazda осталась единственной компанией, которая продолжает заниматься данным направлением.

Возможен ли самостоятельный ремонт роторного мотора

Ответ, безусловно, будет скорее отрицательный. И дело не в том, что таких автомобилей в мире очень мало – их конструкция настолько уникальна, что что-либо менять внутри самому не представляется возможным.

Конечно, с заменой свечей дела обстоят не так плохо, однако не для первых моделей. У них свечи оказались спрятанными в стационарный вал (подвижными были не только ротор, но и корпус двигателя). Со временем конструкторы перешли к более простому варианту, а свечи начали устанавливать на стенки неподвижного статора, напротив портов впрыска/выпуска.

Большинство других ремонтных работ самостоятельно произвести практически нереально.

Отметим, что классический мотор Ванкеля имеет примерно на 40% меньше комплектующих, чем поршневой двигатель, но это детали, не имеющие аналогов.

Роторный двигатель ВАЗ

Что ещё можно сделать своими руками? Например, поменять вкладыши приводного вала. Эту операцию выполняют, когда они стерлись настолько, что местами проступает медь. Для этого нужно демонтировать шестерни, поменять вкладыши и напрессовать зубчатые колёса на штатное место. Одновременно можно проверить состояние сальников и при необходимости установить новые.

Если при выполнении ремонтных работ демонтаж пружин маслосъемных колец, следует запомнить, где какие стоят, поскольку по форме передние не совпадают с задними. При необходимости можно выполнить замену торцевых пластин, которые тоже не совместимы друг с другом и имеют соответствующую маркировку.

При замене угловых уплотнителей начинать нужно с передней части ротора. Рекомендуется использовать смазку зелёного цвета от Castrol – это поможет зафиксировать уплотнители, пока вы будете заниматься сборкой остальных деталей. Тыльные угловые уплотнители меняются уже после установки приводного вала. При установке прокладок не забудьте смазать их подходящим герметиком. Апексы следует устанавливать в уплотнители после того, как поместите ротор в корпусе. Последнее, что нужно сделать – смазать прокладки тыловой и фронтальной крышек статора перед их установкой.

принцип работы. Плюсы и минусы роторного двигателя :: SYL.ru

С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.

История возникновения агрегата

Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, – спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.

роторный двигатель принцип работы

После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле».

Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже.

В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.

Устройство и принцип работы

Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых.

В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.
роторный двигатель ваз

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Недостатки и преимущества

Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС.

Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.

принцип работы роторного двигателя мазда

Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов.

Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия.

Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.

Сложность производства деталей

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.

роторный двигатель стирлинга В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.

роторный двигатель принцип работы на вазПосле этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Расход масла

Также роторный двигатель очень требователен к обслуживанию.

принцип работы роторно поршневого двигателяРасход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.

Разновидности

На данный момент существует пять разновидностей данных типов агрегатов:

  1. Роторные моторы с возвратно-вращательными движениями вала.
  2. С равномерным вращением вала. При этом в его конструкции не используются какие-либо уплотнительные механизмы. Расположение камер сгорания у них спирального типа.роторный двигатель принцип работы недостатки и преимущества
  3. Агрегаты с пульсирующе-вращательным движением, направленным в 1 сторону.
  4. С планетарным вращением вала, без уплотнительных элементов. Яркий пример тому – двигатель Ванкеля.
  5. РПД с равномерной работой рабочих элементов и спиральным типом расположения камер сгорания.

Роторный двигатель (ВАЗ-21018-2108)

История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля.

Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» – модели 2101 – за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.

роторный двигатель принцип работы gif

Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй – порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.

Моторы для авиации, «восьмерок» и «девяток»

В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.

Характеристики РПД ВАЗ-414

роторный двигатель принцип работы недостатки и преимущества

Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества:

  • Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд.
  • Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров).
  • Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил.
  • Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах.
  • Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.

Сегодняшняя ситуация с РПД на Волжском автозаводе

Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения.

Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.

Роторный двигатель достоинства и недостатки

Роторный двигатель достоинства и недостатки

В этой статье Вы узнаете достоинства и недостатки роторных двигателей. Кроме того рассмотрим автомобили на которые устанавливался роторный двигатель.

Первый кто придумал роторный двигатель внутреннего сгорания это Феликс Ванкель. Именно поэтому нередко этот двигатель ассоциируется с ним и носит его имя. Первый роторный двигатель заработал в уже 1958 году. Но большинство автопроизводителей так и не решились устанавливать роторный двигатель на свои автомобили.

Единственный кто решился на массовое производство автомобилей с роторным двигателем это Mazda. Один из таких автомобилей RX 8. Советские инженеры тоже создали некоторое ограниченное количество автомобилей с роторным двигателем. Но об этом немного позже.

Вероятней всего от роторных двигателей отказались из-за низкого ресурса. Ресурс роторного двигателя в силу конструкции редко превышает 100 тысяч.км.

Устройство

Принцип работы роторного двигателя схож с поршневым двигателем. Также работа двигателя состоит из 4 тактов. Впуск, сжатие, воспламенение и выпуск. Но есть серьезные отличия у роторного двигателя отсутствует ГРМ, поршни, шатуны, коленвал. Так как в них необходимости.

Цилиндр в роторном двигателе выполнен в овальной форме. Роль поршня выполняет ротор который, имеет треугольную форму. Он же выполняет и роль ГРМ так как в зависимости от момента вращения, то открывает впускное окно для подачи воздуха, то закрывает. Также присутствует выпускное окно через которое выводятся выхлопные газы. Топливо в роторном одно секционном двигателе воспламеняется двумя свечами зажигания.

Достоинства

1) Более высокий КПД в районе 40 %. Это происходит за счёт того, что за одно вращение происходит 3 цикла работы.

2) Более простая конструкция за счёт отсутствия многих деталей которые присуще поршневому двигателю.

3) Более лёгкий вес.

4) Роторный двигатель высок оборотистый его можно раскручивать более 10 000 об/мин. Редко какой поршневой двигатель сможет похвастаться такими высокими оборотами.

5) Более мягкая работа и отсутствие вибраций, так как ротор постоянно движется в одном направлении.

К сожалению роторный двигатель не лишён недостатков.

Недостатки

1) Автомобили с роторным двигателем расходуют больше топлива чем его поршневые собратья.

2) Роторный двигатель менее экологичен.

3) Трудоемкий ремонт. Зачастую ротор приходится менять целиком.

4) Низкий ресурс около 100 тыс.км

Некоторые автомобили с роторным двигателем

1) Mazda RX 8

Компания Mazda одна из немногих кто живо занимался усовершенствованием роторного двигателя вплоть до 21 века. Им удалось достичь немалого прогресса. Двигатель с мизерным объемом 1,3 литра выдавал 215 л.с. Был и еще более мощный вариант с 231 л.с таким же объемом. Это харизматичное заднеприводное купе стало представителем автомобилей с роторным двигателем. К сожалению продажи начали падать поэтому в Августе 2011 года производство автомобилей Mazda RX-8 были вынуждены закрыть.

2) Ваз 2109-90

В России был создан образец с роторным двигателем характеристики которого на тот момент были впечатляющими. Этот двигатель устанавливался на полицейские автомобили. Роторный двигатель на ваз 2109 выдавал 140 л.с благодаря этому мотору разгон до 100 км/ч занимал всего 8 секунд, а максимальная скорость составляла 200 км/ч. Из-за высокой стоимости агрегата и его невысокой надежности автомобили не прижились. Были и более мощные образцы, но их ресурс оставлял желать лучшего. Тем не менее этот автомобиль отлично выполнял роль догонялки и мог обогнать любой советский автомобиль, даже многие не спортивные иномарки.

3)Mercedes C111

Mercedes C111 показался публике в Женеве в 1970 году. На этот автомобиль устанавливался трех-секционный роторный двигатель объемом 1,8 литра, который имел 280 л.с. При этом разгон до первой сотни занимал всего 5 сек. Максимальная скорость 275 км/ч.

4)Ваз 21019 Аркан

С виду ваз 21011, но внутри располагался ваз-411 это двух-секционный роторный двигатель который выдавал мощность 120 л.с. Максимальная скорость такого автомобиля была 160 км/ч. На практике скорее всего больше. Несомненно в советское время укрыться от такого автомобиля было не просто.

Итог

Роторный двигатель очень хорош для гонок так как он высок оборотистый и обладает хорошей мощность при этом обладает более легким весом и занимает меньше места под капотом. Для гонок ресурс двигателя не является самым важным показателем. Если увеличить ресурс, экономичность и экологичность роторного двигателя, то он будет устанавливаться на автомобили гораздо чаще.

dr]ems украина отслеживание

Роторный двигатель — история и перспективы — журнал За рулем

Прошлое роторных двигателей, в том числе советское, очень интересно. А есть ли у этого оборотистого малого будущее?

Феликс был бы доволен

Сегодня обычный двигатель внутреннего сгорания только немцы, да и то лишь иногда, величают мотором Отто. А Феликсу Ванкелю наряду с Рудольфом Дизелем повезло куда больше: в рассказах о роторно-поршневых моторах обязательно хоть раз упоминается его фамилия.

Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7.

Феликс Ванкель, заваривший всю эту кашу, рядом с серийным купе Mazda RX‑7.

Материалы по теме

Правда, злые языки говорили, что Ванкель так и не получил автомобильных прав. Но в историю-то автомобильную он вошел, да и история эта еще не кончилась.

Конструкция роторного двигателя описана множество раз, в том числе в журнале «За рулем» (см., например, ЗР, 2001, № 7). Вкратце: такой мотор — воплощенное торжество геометрии. Блок цилиндров — это статор, который имеет хитрую внутреннюю поверхность, представляющую собой эпитрохоиду. Ротор со специальными уплотнениями движется внутри, выполняя функции поршня и шатуна. В одной камере две свечи — основная и дожигательная. Газообмен происходит через впускные и выпускные окна. Такие секции можно компоновать практически в любых количествах.

Роторный двигатель примерно в полтора раза компактнее и легче аналогичного по характеристикам поршневого. Но есть у него и существенные недостатки. Для смазки уплотнений на роторе масло поступает в топливо. А это означает дополнительный расход масла и сложности с экологией. Для роторного двигателя характерен повышенный расход бензина и относительно низкий ресурс из-за износа тех самых коварных уплотнений. Над решением этих вопросов конструкторы работают много лет, и не без успеха.

NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры.

NSU Wankel Spider особой популярности не снискал, зато теперь его любят коллекционеры.

Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно.

Mazda Cosmo Sport доказала, что «ротор» может быть долговечным. Хотя бы относительно.

Роторный Citroen M35 — купе на основе массовой модели Ami.

Роторный Citroen M35 — купе на основе массовой модели Ami.

Материалы по теме

Пьедестал почета

Первый патент Ванкель получил еще в 1930‑е годы. Изобретением заинтересовалась фирма BMW, но до дела не дошло. В 1950‑х инженер построил-таки несколько небольших моторов с прицелом на автомобили и легкие самолеты и, что не менее важно, сумел заразить своим энтузиазмом компанию NSU.

Осенью 1963 года на выставке во Франкфурте представили компактный родстер NSU Wankel Spider, снаряженный односекционным «ротором» с приведенным объемом 0,5 л (для роторного двигателя приведенный объем вдвое больше геометрического). Двигатель развивал 50 л.с. при 6000 об/мин (позже — даже 54 л.с.). Для сравнения: мотор 408‑го Москвича выдавал ту же мощность с 1,4 л рабочего объема. Максималка 152 км/ч тоже была очень высокой для родстера такого класса. Но… У немцев еще много лет была в ходу шутка: мол, в объявлениях о продаже подержанных спайдеров пишут: «Продаю NSU Wankel Spider и четырнадцать запасных двигателей». Помимо низкого ресурса мотор славился расходом масла и топлива, шокирующим расчетливых немцев. До 1967 года покупателей нашли всего 2375 спайдеров.

NSU Ro 80 в 1968‑м стал автомобилем года, но родную фирму окончательно погубил.

NSU Ro 80 в 1968‑м стал автомобилем года, но родную фирму окончательно погубил.

Силовой агрегат NSU Ro 80.

Силовой агрегат NSU Ro 80.

Но энтузиасты из NSU не угомонились и выпустили элегантный и даже авангардный по дизайну седан Ro 80 с двухсекционным двигателем мощностью 115 л.с. Машина развивала скорость 180 км/ч! Седанов с такой максималкой в мире тогда было немного. В 1968‑м в Европе NSU Ro 80 признали даже автомобилем года. Его производили десять лет, постоянно модернизируя, но продали лишь 37 204 экземпляра. Компания NSU потеряла самостоятельность, влилась в Audi, и о роторном двигателе немцы больше не вспоминали.

В 1990‑м Mazda с роторной моделью 787В выиграла 24‑часовые гонки в Ле-Мане.

В 1990‑м Mazda с роторной моделью 787В выиграла 24‑часовые гонки в Ле-Мане.

Тем временем упорные и усидчивые японцы купили лицензию Ванкеля еще в 1961 году. И в 1963‑м на Токийском автосалоне показали прототип купе Mazda Cosmo Sport с двухсекционным двигателем, выдававшим 110 л.с. при 7000 об/мин. Годом позже начали серийное производство. До 1972‑го продали всего-то 1176 автомобилей. Но компания с завидным терпением продолжала совершенствовать роторные автомобили — вплоть до модели RX‑8 2004 года с 280‑сильным двигателем, обес­печивающим разгон до 100 км/ч за 8,4 с. Эту машину продавали и в России, она была у нас на тесте (ЗР, 2005, № 8). Ездить на ней очень интересно, но, чтобы получить от двигателя всё, на что он способен, приходилось держать обороты не ниже 4000. Компания Mazda вошла в историю еще и благодаря тому, что в 1990‑м выиграла гонку в Ле-Мане с прототипом Mazda 787B. Ее роторный мотор (700 л.с. при 5000 об/мин) выдержал 24‑часовой марафон, «привезя» два круга грозному Ягуару.

ОТ ПЕРВОГО ЛИЦА

Леонид Новиков, конструктор-двигателист, в 1970‑е годы — сотрудник вазовского КБ роторно-поршневых двигателей.

Леонид Новиков, конструктор-двигателист, в 1970‑е годы — сотрудник вазовского КБ роторно-поршневых двигателей.

— В 1968 году в книжном магазине в родном Иркутске я купил книгу В. Бениовича, Г. Апазиди и А. Бойко «Роторно-поршневые двигатели». С помощью создателя первого в Иркутске самодельного автомобиля, моего друга Бориса Демьянóвича, разобрался в кинематике и загорелся идеей постройки односекционного мотора для гоночного мотоцикла.

В феврале 1971 года начальник вазовского КБ двигателей Михаил Коржов принял меня на работу с условием получить высшее образование, забыть о мотоспорте… и о роторных двигателях. Оказалось, Коржова незадолго до этого заставили изучить чертежи явно неработоспособного роторного мотора какого-то изобретателя-любителя. Кому хочется заниматься мартышкиным трудом? А тут еще я со своими роторными мечтами.

Третьего сентября 1973 года я впервые наблюдал за бесшумной работой двухсекционного роторного двигателя Мазды RX‑2, купленной для ВАЗа. Через неделю получил задание снять этот мотор и установить его под капотом ВАЗ‑2103. Так через две недели появился первый вазовский автомобиль с 120‑сильным роторным мотором и стандартной коробкой передач от Жигулей. Синюю машину с обозначением «00–34 Проба» на номерах я прозвал Вазда-Т‑34. Тогда же, в 1973‑м, было создано СКБ роторно-поршневых двигателей, руководителем назначили Бориса Поспелова. Задачу нам поставили серьезную: создать обширное семейство моторов с воздушным и жидкостным охлаждением, а первым делом — односекционный двигатель мощностью 80 л.с.

За прототип, понятное дело, взяли двигатель Mazda. Скомпоновали свой односекционник в моторном отсеке, выдвинув вперед на 170 мм. Такое реше

Что такое вращающиеся инструменты? 7 Применение вращающегося инструмента и советы по безопасности

Что такое вращающийся инструмент и для чего его можно использовать?
Вращающийся инструмент — это универсальный электроинструмент, который можно использовать для различных проектов. Самая известная марка вращающихся инструментов — это Dremel. По сути, это универсальное устройство, которое особенно полезно для легких задач резки, шлифования и очистки, что делает его одним из незаменимых инструментов в любом ящике для инструментов.

Что такое вращающийся инструмент?

Говоря простым языком, вращающийся инструмент — это ручной быстро вращающийся двигатель, соединенный со шпинделем, к которому вы можете прикрепить насадку.Существует широкий ассортимент принадлежностей и приспособлений, таких как отрезные круги, шлифовальные насадки и полировальные инструменты, для решения различных задач на рабочем месте.


Щелкните изображение выше для получения дополнительных сведений

Хотя вращающиеся инструменты бывают разных моделей и уровней мощности, все они разделяют тот факт, что они должны вращаться с очень высокой скоростью для достижения необходимых результатов. Большинство вращающихся инструментов вращаются со скоростью около 20 000 об / мин, а некоторые могут развивать скорость до 35 000 об / мин. Учитывая их небольшой размер, легко увидеть, как эти портативные инструменты могут достигать таких высоких скоростей, не вызывая мышечной усталости и дискомфорта.

Что отличает разные типы вращающихся инструментов, так это величина крутящего момента, которую они могут передать, а это означает, что существует вращающийся инструмент практически для любой задачи, будь то легкая или тяжелая.

Конструкция вращающихся инструментов довольно проста. Во-первых, это шпиндель, который вращается, потому что он соединен с двигателем. Шпиндель обычно имеет резьбу, чтобы принять цангу и гайку цанги. Цанга входит прямо в ось, а гайка цанги ввинчивается в нее, чтобы все удерживать на месте и зажимать фланцы.

На корпусе вы найдете регулятор скорости, который может быть ползунком или парой кнопок, которые вы можете использовать для регулировки скорости в зависимости от проекта и материала. Вы также найдете кнопку питания, которая не требует пояснений, когда речь идет о ее функциях.

Многие торговцы считают вращающиеся инструменты обязательными в своем арсенале из-за их универсальности, портативности и мощности.

7 Использование вращающегося инструмента

Для чего нужен вращающийся инструмент? Как мы уже упоминали выше, вращающиеся инструменты довольно универсальны, и использовать их для различных приложений так же просто, как переключить насадку.Вот некоторые из лучших применений вращающихся инструментов:

1. Шлифование

Установив шлифовальную насадку, например, абразивные камни на связке, вы можете использовать свой вращающийся инструмент для создания острых кромок или их устранения. Другими словами, вращающийся инструмент может пригодиться, когда вы пытаетесь отшлифовать металлические края, затачивая кухонные ножи, ножницы и ножницы, или чистить старые ржавые инструменты.

2. Резка

Вращающиеся инструменты особенно полезны для резки, потому что вы можете выполнять как большие, так и маленькие проекты.

Как, спросите вы?

Ну, просто по

  • Используя прямые сверла для резки дерева, гипсокартона, гипсокартона или любого другого легкого материала.
  • Использование отрезных кругов для обрезки металла или пластика.
  • Использование твердосплавного фрезы для тонкой резки твердых металлов, таких как сталь.

Знаете ли вы, что вращающиеся инструменты — это секретное оружие сантехников, которое они используют, чтобы прорезать сложные ситуации при ремонте смесителей на кухне или в ванной? Может быть, пора и вам добавить его в свои универсальные инструменты.

При резке небольших кусков металла я рекомендую наносить на поверхность смазочно-охлаждающее масло, чтобы уменьшить нагрев и повысить эффективность твердосплавного режущего круга по металлу.

3. Резьба

Вращающиеся инструменты маленькие, удобные и универсальные, что делает их идеальным помощником для ваших проектов гравировки или резьбы. Существуют насадки, такие как твердосплавные насадки, как для дерева, так и для металла, что означает, что вы можете использовать свой вращающийся инструмент для работы с конструкциями, рамками и любым декоративным проектом.Даже вырезать тыквы с помощью вращающегося инструмента — одно дело!

4. Обработка стекла

Вы художник или любитель, любящий делать стеклянные диковинки? С помощью алмазного острия (алмазных коронок) можно выполнять травление, резьбу и гравировку на стекле.

Не пытайтесь резать стекло или работать с ним обычными битами. Стекло разобьется, и вы можете получить травму. Алмазные фрезы — это инструменты, изготовленные из стали с пропитанной алмазной крошкой. Они могут разрезать и снимать стекло, не повреждая его.

Совет Поставьте рядом с рабочей зоной стакан с водой. При резьбе по стеклу биты могут сильно нагреться, и их нужно охладить. Часто окунайте режущую коронку в воду, чтобы контролировать температуру инструмента.

Если вы травляете стеклянный стакан или кувшин, налейте в него ледяную воду. Это предотвратит их растрескивание из-за чрезмерного нагрева.

5. Сверление отверстий

Вы можете приобрести различные сверла и фрезы для вращающихся инструментов, с помощью которых можно просверливать отверстия в мягких материалах, таких как дерево и пластик.Также можно использовать его для сверления гипсокартона и потолков из гипсокартона.

Однако я бы порекомендовал выбрать подходящий сверлильный станок для сверления отверстий в твердой древесине и металле.

6. Шлифование

Хотя в основном они предназначены для небольших легких задач, вращающиеся инструменты можно использовать для шлифования, если вам нужно работать только с лепными украшениями или мелкими деталями. Просто используйте шлифовальную насадку, будь то диск, лента, лепестковый круг или абразивный полировальный круг, и вы всегда сможете добиться впечатляющих результатов.

7.Полировка и чистка

С помощью подходящего приспособления, будь то проволочная щетка, полировальный наконечник или полировальный круг, вы можете использовать свой вращающийся инструмент для чистки множества вещей, включая столовое серебро, украшения или старые устройства. Просто нанесите немного воска или полироли на насадку для полировки / полировки перед тем, как поворачивать инструмент на средней скорости, и любая поверхность станет более блестящей, чем когда-либо.

Конечно, это только заголовки о том, на что способны вращающиеся инструменты, и вы можете проявить столько творчества, сколько захотите, используя их.

Вам нужно

  • Заточить цепь бензопилы? Поворотный инструмент может это сделать.
  • Починить старую кухонную стойку? Просто вставьте проволочную щетку в вращающийся инструмент, и все будет сделано за считанные минуты.
  • Вырезать изгибы плитки в вашей ванной комнате? Это так же просто, как вставить бит для резки плитки во вращающийся инструмент.

Здесь нет предела.

Типы вращающихся инструментов

Поворотный инструмент — это то же самое, что Dremel? Краткий ответ: да.Dremel — одна из самых популярных марок шлифовальных машин. Dremel также производит другие электроинструменты, например, мультиинструменты с качанием. Есть и другие бренды, помимо Dremel, которые производят вращающиеся инструменты.

А как насчет шлифовальных машин? В чем разница между шлифовальным станком и роторным инструментом? Да. Шлифовальные машины — это тип вращающихся инструментов, которые больше и мощнее, чем Dremel. Вращающиеся инструменты Dremel работают на электричестве, тогда как сжатый воздух приводит в действие шлифовальный станок. Вы можете увидеть подробное сравнение штамповочного шлифовального станка и Dremel здесь.

Карандашная шлифовальная машина, которая также работает на сжатом воздухе или электричестве, также попадает в эту категорию. Это тонкие вращающиеся инструменты, которые можно держать в руке, как карандаш. Вы можете очень точно управлять движением этого инструмента, поэтому он отлично подходит для вырезания деталей.

Вкратце, есть 3 типа вращающихся инструментов.
  1. Шлифовальный станок: самый большой вращающийся инструмент, который используется для тяжелых работ.
  2. Инструменты типа Dremel: это самый популярный тип.
  3. Шлифовальные машины для карандашей: недорогие шлифовальные машины для карандашей просты в обращении.

Меры предосторожности

Поскольку в основном это быстровращающиеся двигатели, вращающиеся инструменты могут представлять опасность при неправильном обращении. Хотя эти инструменты не так опасны, как угловая шлифовальная машина, они также выделяют сверхмелкие частицы при резке, шлифовании или шлифовании. Эти частицы могут быть горячими, острыми или чем-то средним. Вот почему при его использовании необходимо соблюдать некоторые меры безопасности.

  • Носите маску или защитные очки.Меньше всего вам нужно, чтобы крошечная частица попала вам в глаз.
  • Защитите свои уши, используя беруши или наушники, поскольку вращающиеся инструменты могут быть довольно громкими, особенно когда речь идет о моделях для тяжелых условий эксплуатации, таких как шлифовальные машины.
  • Для защиты рук и кожи используйте рабочие перчатки или любые средства защиты кожи, особенно если вы работаете со стекловолокном или другими острыми материалами.
  • Если у вас длинные волосы, обязательно соберите их в хвост или, что еще лучше, в пучок, потому что вы действительно не хотите, чтобы ваши волосы прилипали к дремелю во время его прядения.
  • Если вы работаете с материалом, который может производить много пыли, мы настоятельно рекомендуем выполнять работу в хорошо вентилируемом помещении или носить маску для лица.
  • Всегда включайте инструмент перед контактом с материалом.
  • Не забудьте выключить инструмент и отсоединить вилку от источника питания или аккумуляторной батареи, когда вам нужно сменить насадку.
.

Что такое двигатель с прямым приводом?

Двигатель с прямым приводом — это любой двигатель — ротационный или линейный, в котором нагрузка подключена непосредственно к двигателю, без элементов механической передачи, таких как редукторы или системы ремня и шкивов. Другими словами, двигатель напрямую управляет нагрузкой.

Роторные двигатели с прямым приводом

Роторные двигатели с прямым приводом часто называют моментными двигателями из-за их способности создавать высокий крутящий момент на низких скоростях даже при остановке. Моментные двигатели, как правило, представляют собой бесщеточные синхронные двигатели с постоянными магнитами — очень похожие на традиционные серводвигатели, но с большим количеством полюсов.Они часто бывают безрамными, то есть не содержат корпуса, подшипников или устройства обратной связи, а эти компоненты приобретаются отдельно и интегрируются пользователем.

direct drive motor

Моментные двигатели часто поставляются бескаркасными, без корпуса, подшипников или устройства обратной связи.
Изображение предоставлено: ETEL S.A.

Другой тип роторного двигателя с прямым приводом — это двигатель-блинчик, также называемый двигателем силы Лоренца или двигателем с печатным якорем.Эти электродвигатели представляют собой щеточные электродвигатели постоянного тока, в которых обмотки якоря напечатаны на диске из немагнитного изоляционного материала. Диск якоря помещен между двумя дисками статора, на которых установлены постоянные магниты с чередованием северного и южного полюсов. Магнитный поток проходит в осевом направлении по длине двигателя, а ток течет в радиальном направлении (а не в осевом, как в традиционном двигателе). Это вызывает создание крутящего момента вокруг оси двигателя в соответствии с силой Лоренца.

direct drive motor

Блинные двигатели состоят из печатного якоря (ротора) между двумя статорами с постоянными магнитами.Это дает им очень тонкий профиль с большим общим диаметром, отсюда и термин «мотор-блин».
Изображение предоставлено: Энергия, Том. 9, выпуск 4: апрель 2016 г.


Пьезодвигатели и двигатели со звуковой катушкой (исполнительные механизмы) также классифицируются как двигатели с прямым приводом, хотя и являются узкоспециализированными типами, из-за прямой связи между нагрузкой и механизмом пьезо или звуковой катушки.


Варианты двигателей с линейным прямым приводом

Линейные двигатели с прямым приводом часто называют просто «линейными двигателями».К ним относятся версии без железа и с железным сердечником, в зависимости от конструкции первичной части (части, содержащей обмотки). В версиях без железа первичная обмотка состоит из обмоток, залитых эпоксидной смолой, в то время как в версиях с железным сердечником обмотки установлены в стек ламинированной стали. Другой отличительной чертой линейного двигателя с прямым приводом является то, имеет ли он плоскую или трубчатую конструкцию.

Плоские линейные двигатели с прямым приводом

direct drive motor

Плоские линейные двигатели с прямым приводом могут иметь конструкцию без железа (вверху), со щелевым железным сердечником (в центре) или с железным сердечником без паза (внизу).
Изображение предоставлено: Parker Hannifin Corporation

Плоские линейные двигатели без железа имеют плоский магнит (вторичная часть) с первичной частью или форсунком, состоящим из катушек, установленных на алюминиевой пластине. Эти двигатели обладают отличным контролем скорости, но создают меньшую силу, чем другие конструкции. В другом варианте конструкции для двигателей без железа используются две магнитные дорожки, обращенные друг к другу (иногда называемые линейными двигателями с U-каналом или с воздушным сердечником). Вторичная часть без железа, или форсер, движется между магнитными дорожками.Эти двигатели не имеют зубчатого зацепления и могут обеспечивать очень высокие показатели ускорения и замедления.

Плоский железный сердечник Линейные двигатели могут быть как с прорезями, так и без пазов, причем конструкция с прорезным железным сердечником является более распространенной разновидностью. Вторичная часть линейного двигателя со стальным сердечником с прорезями состоит из задней стальной пластины и стальных зубцов или пластин, вокруг которых намотаны катушки. У них самые высокие силовые возможности, но они могут испытывать значительные трудности.

Бесшумные конструкции считаются гибридом между железным сердечником без железа и традиционным железным сердечником с прорезями, потому что они имеют катушки, которые намотаны без ламинирования железа, но прикреплены к задней железной пластине.Вторичная часть часто заключена в алюминиевый корпус. Эти двигатели имеют меньше зубцов и меньшую инерцию, чем конструкции со стальным сердечником с прорезями, но они также обладают меньшей нагрузочной способностью.


Другой вариант плоского линейного двигателя — это линейный шаговый двигатель.


Трубчатые линейные двигатели с прямым приводом

Другой конструкция изменения прямого привода линейного двигателя должны содержать магниты внутри цилиндрической трубки и размещения обмоток в Forcer или упорного блоке, который окружает трубку.Как и их плоские аналоги, трубчатые линейные двигатели могут быть сконструированы с железом во вторичной части или без него (то есть с железным сердечником или без железа). Основное преимущество трубчатого линейного двигателя заключается в том, что его симметричная конструкция позволяет использовать весь магнитный поток для создания осевой силы.

tubular linear motors

Трубчатые линейные двигатели с прямым приводом могут быть с железным сердечником или без железа. Они предлагают альтернативу пневматическим приводам и приводам с шарико-винтовой передачей, как с высокой скоростью, так и с высокой осевой силой.
Изображение предоставлено: LinMot USA, Inc.

Преимущества и применение двигателя с прямым приводом
direct drive motor

Роторные моментные двигатели с прямым приводом часто используются в робототехнике.
Изображение предоставлено: TorqueTec GmbH

Независимо от конструкции — вращающейся или линейной, плоской или трубчатой, с железным сердечником или без железа — двигатель с прямым приводом имеет то преимущество, что исключает механические компоненты, которые могут вызвать люфт или податливость и снизить точность и воспроизводимость позиционирования.Устранение механических соединений также снижает инерцию нагрузки и позволяет более динамично перемещаться, то есть более высокие скорости ускорения и замедления при более тяжелых нагрузках, с меньшим перерегулированием и колебаниями. Двигатели с прямым приводом также имеют более низкий уровень шума, чем обычные двигатели, что важно для чувствительных к шуму приложений, например, в медицинской и лабораторной промышленности.

Без дополнительных элементов трансмиссии двигатели с прямым приводом обычно более компактны, чем традиционные двигатели, что упрощает их интеграцию в машины и системы с ограниченным пространством.А с меньшим количеством механических компонентов (часто единственными изнашиваемыми компонентами являются линейные направляющие) сокращается техническое обслуживание и увеличивается среднее время наработки на отказ (MTBF).

Роторные двигатели с прямым приводом используются для привода гониометров, подвесов, поворотных столов, а также SCARA и 6-осевых манипуляторов. Многие конструкции имеют центральное отверстие, которое позволяет прокладывать электрические кабели и пневматические линии через центр двигателя.

direct drive motor

В портальных конфигурациях используются линейные двигатели с прямым приводом как плоского, так и трубчатого типа (как показано здесь).
Изображение предоставлено: Dunkermotoren GmbH

Линейные версии используются во многих приложениях автоматизации, включая упаковочные машины, требующие постоянного быстрого хода, станки, требующие предельной точности позиционирования и высокой грузоподъемности, а также оборудование для производства полупроводников, которое требует сверхплавного и точного движения.

Изображение предоставлено: Kollmorgen

.

Что такое гидравлические поворотные приводы?

Гидравлические поворотные приводы используются для работы в тяжелых условиях с высоким крутящим моментом. Они обладают высокими силовыми характеристиками, высокой удельной мощностью на единицу веса и объема, хорошей механической жесткостью и высокими динамическими характеристиками. Они обеспечивают вес для подъема, поворота, индексации, зажима, смешивания, гибки, тестирования и рулевого управления, среди прочего.

Поворотные приводы

компактны и эффективны, а также создают высокий мгновенный крутящий момент в любом направлении.Это делает их широко используемыми в системах точного управления и в тяжелых станках, мобильных, морских и аэрокосмических приложениях.

Приводы с поворотными двигателями

связаны непосредственно с вращающейся нагрузкой и обеспечивают хороший контроль ускорения, рабочей скорости, замедления, плавного реверсирования и позиционирования. Они обеспечивают гибкость конструкции и устраняют большую часть объема и веса механических и электрических передач.

Поскольку они полностью закрыты, они выдерживают суровые условия и защищены от пыли, грязи и влаги.

Rotary-Actuator-1

Стили

Наиболее распространенными типами поворотных приводов являются лопастные, реечные или винтовые.

Приводы с лопастями

хорошо подходят для приложений, требующих чрезвычайно высокой прочности, высоких скоростей вращения и необходимости постоянного контроля движения без необходимости поддерживать нагрузку в определенном положении. Их компактный размер делает приводы лопастей подходящими для использования в приложениях, требующих позиционирования, гармонического движения и высокоскоростного колебательного движения, и используются в инструментальных станках, робототехнике и для обработки контейнеров.

В приводе с одной лопастью лопасть жестко прикреплена к центральному валу в цилиндрическом корпусе. Корпус разделен на две камеры второй лопастью или упорным башмаком, закрепленным на его внутреннем диаметре и идущим к выходному валу. Гидравлическая жидкость течет в эти камеры через соединительные отверстия, закрытые от неподвижного башмака. Разница давлений между камерами воздействует на область движущейся лопасти, создавая крутящий момент непосредственно на выходном валу. Поток в этих камерах и из них вращает лопасть и вал.Геометрия обычно ограничивает вращательное движение однолопастного привода до 280 °.

Двухлопастные приводы создают в два раза больший крутящий момент и менее половины вращения по сравнению с однолопастными приводами. Две лопатки и барьеры обеспечивают баланс, который противодействует тенденциям несбалансированных нагрузок.

Механический КПД составляет от 80 до 95%, а лопаточные приводы передают крутящий момент почти до 700 000 фунт-дюймов.

Приводы с реечной передачей идеально подходят для самых высоких требований к крутящему моменту. Они допускают широкий поворот в ограниченном пространстве здания в осевом направлении.Привод с реечной передачей требует значительно больших размеров по сравнению с пластинчато-роторным двигателем для передачи двух крутящих моментов равной величины.

Приводы с реечной передачей

особенно полезны для тяжелых условий эксплуатации, поскольку они выдерживают большие боковые и торцевые нагрузки и могут работать с крупными подшипниками. Благодаря постоянному выходному крутящему моменту и устойчивости к дрейфу они часто используются для точного управления.

Приводы с реечной передачей

имеют низкую ударопрочность, нулевую внутреннюю утечку, а также имеют закрытые движущиеся части.

Винтовые приводы преобразуют линейное вращение поршня во вращательное движение с помощью нескольких косозубых шестерен. Вращательное движение больше, если линейное движение поршня длиннее. Винтовые приводы нашли применение для позиционирования стрелы, вращения головки и управления колесами сельскохозяйственных харвестеров, например, а также для позиционирования подъема и рулевого управления в строительстве, энергетике, судостроении, погрузочно-разгрузочных работах, военной и горнодобывающей промышленности, а также в арматуре. операции.

Одинаковый крутящий момент создается как при вращении по часовой стрелке, так и против часовой стрелки. Средний КПД винтовых приводов обычно составляет 70%. Поскольку угол поворота определяется длиной привода, теоретически возможно любое вращение. Многие приводы в стандартной комплектации имеют поворот на 90 °, 180 ° и 360 °.

Rotary-Actuator-2

Другие типы гидравлических поворотных приводов включают закрытые поршнево-кривошипные, кулисные и баллонные конструкции. Закрытые поршнево-кривошипные конструкции имеют регулируемый ход для переменного вращения вала до 110 °.Шток, соединенный с кривошипом, приводит в движение вращающийся вал. В приводах с кулисой два поршня соединены общим штоком. В начале и в конце хода выходной крутящий момент вдвое превышает значение, создаваемое в средней точке хода. Этот тип привода подходит для приложений, требующих высокого крутящего момента для перемещения нагрузки. В конструкции баллонов пара резиновых баллонов поочередно нагнетается и опускается для создания движущей силы. Под давлением баллон прижимается к чашеобразному рычагу, который вращает выходной вал.Отсутствие внутренних утечек делает этот привод очень точным и устойчивым к загрязнениям.

.Поворотные преобразователи частоты

— Мотор-генераторные установки

Georator — международный лидер в производстве и продаже поворотных преобразователей частоты. Мы работаем по всему миру и гордимся своим качеством и сервисом. Обратитесь к одному из наших опытных торговых представителей сегодня, чтобы запросить расценки или дополнительную информацию.

Что такое вращающийся преобразователь частоты?

Вращающиеся преобразователи частоты (также называемые «Мотор-генераторы» или MG Sets) преобразуют поступающую мощность переменного тока в механическую энергию вращения (вращающийся двигатель), который передает свою мощность вращения генератору, который преобразует его механическую энергию в электрическую мощность переменного тока на выходе.Мощность вращения часто описывается в лошадиных силах, в то время как электрическая мощность описывается в киловаттах (кВт) или киловольт-амперах (кВА). Этому процессу присуще преобразование частоты (герц — Гц), напряжения и / или фазы (3 фазы, 1 фаза).

Типы поворотных преобразователей и двигателей-генераторов

Электрогенераторные установки с ременной муфтой

Электрогенераторные установки с ременной муфтой

Самый простой способ соединения приводного двигателя с генератором — использование приводных ремней и шкивов.

Читать далее

Электрогенераторные установки с прямым подключением

Электрогенераторные установки с прямым подключением

Этот метод также позволяет параллельную работу нескольких преобразователей частоты.

Читать далее

Электрогенераторы с общим валом

Электрогенераторы с общим валом

Синхронный двигатель — это самый совершенный и точный преобразователь частоты вращения.

Читать далее

Бесщеточные генераторы на постоянных магнитах

Бесщеточные генераторы на постоянных магнитах

Бесщеточные преобразователи частоты с постоянным магнитом 400 Гц, также известные под торговым названием «NoBrush».

Читать далее

Что питает вращающийся преобразователь частоты?

Двигатель В генераторных установках используется несколько методов соединения приводного двигателя с генератором. Самый простой и наименее затратный метод — это преобразователи с ременной муфтой, в которых приводные ремни и шкивы используются не только для передачи энергии от двигателя к генератору, но и для изменения частоты с помощью передаточного числа шкивов. Некоторые клиенты обеспокоены долговечностью приводных ремней, но на практике приводные ремни не выходят из строя при правильной конструкции и установке.Georator имеет безупречный послужной список в этом отношении.

Другой метод — это преобразователи с прямым соединением, которые напрямую соединяют вал двигателя с валом генератора с помощью механической муфты и регулируют скорость приводного двигателя для изменения скорости вращения генератора, таким образом изменяя выходную частоту. Для этой цели используется электронный привод с регулируемой скоростью (ASD) вместо обычного пускателя двигателя.

Наконец, наиболее сложным и дорогостоящим методом является сборка двигателя и генератора на одном общем валу, называемых преобразователями частоты с общим валом.В этом случае изменение частоты осуществляется путем намотки двигателя с другим числом электрических полюсов, чем у генератора. Например, 12-полюсный двигатель и 10-полюсный генератор обеспечат преобразование с 60 Гц на 50 Гц.

В некоторых приложениях требуется только изоляция линии электропередачи (полное отсутствие непрерывности на входе и выходе) или кондиционирование линии электропередачи (плохая входящая электрическая мощность преобразуется в хорошую выходную мощность). В этих изоляторах линий электропередачи между двигателем и генератором используется изолированная гибкая муфта, которая передает мощность от двигателя к генератору и полностью изолирует вход от выхода.Обычно частоты не меняются, хотя может потребоваться преобразование фазы или напряжения.

Каковы общие области применения поворотных преобразователей?

Роторные преобразователи частоты очень хороши при запуске и работе с типичными заводскими нагрузками. Они обладают способностью создавать высокие пусковые импульсные токи в течение коротких периодов времени, что делает их идеальными для нагрузок двигателя. Эти преобразователи очень прочные и могут выдерживать суровые условия эксплуатации. Несмотря на то, что они подвержены проливному дождю, с соответствующими кожухами эти устройства могут быть размещены на открытом воздухе и выдерживают широкий диапазон рабочих температур.

Типовые характеристики поворотных преобразователей частоты

  • Больше подходит для более крупных приложений 10 кВА плюс
  • Намного лучше при пуске двигателя при нагрузках
  • Прочная конструкция для напольного монтажа
  • Обычно фиксированная выходная частота
  • Стоимость не увеличивается линейно с увеличением мощности; например, 3x мощность = 1,5x стоимость
  • Гармонические искажения и шум от входной мощности не передаются на выход
  • Может вызывать сильные токи перегрузки 2-4X на короткие периоды времени
  • КПД при полной нагрузке до 90 +% на больших агрегатах
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *