Водородные двигатели принцип работы: Как работает водородный двигатель в автомобиле?

Содержание

Как работает водородный двигатель в автомобиле?

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира.

Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Интересный факт! Водород – самый распространенный элемент во Вселенной, но найти его в чистом виде на нашей планете будет очень непросто.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок:

агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

А знаете ли вы? Специалисты компании Toyota начали работать с технологией топливных элементов еще 20 лет назад. Примерно тогда стартовал и проект гибридного автомобиля Prius.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Интересно знать! Генератор Power Exporter 9000 (может входить в комплектацию Honda Clarity) способен питать всю домашнюю технику почти целую неделю.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Двигатель внутреннего сгорания на водороде: устройство и принцип работы

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Содержание статьи

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

Водородный двигатель автомобиля — как работает и основные недостатки

Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.

Как работает

Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.

Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.

Потому что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90%, уходит от 15 минут до часа в зависимости от окружающей температуры.

В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.

Главные недостатки

Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.

Серьезный недостаток — энергетическая эффективность. Если использовать водород только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.

Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.

Если производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать на водородном топливе и бензине. Владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.

Лет через десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии не радуют. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.

Как работают водородные автомобили » 1Gai.Ru

Водородные автомобили: Принцип действия.

В мире в последние годы наблюдается повышенный интерес к альтернативным источникам энергии. Не обошла эта тенденция и автопромышленность, которая является главным источником загрязнения атмосферы Земли. Именно поэтому большинство стран мира планируют к 2030 году отказаться от использования автомобилей с традиционными двигателями внутреннего сгорания.

 

Смотрите также: Автомобили и экология: Запретят ли автомобили?

 

Мы знаем, что на смену обычным бензиновым автомобилям скорее всего придут гибриды и электрокары. Но не стоит сбрасывать со счетов и другие автомобили, которые могут работать на альтернативных источниках энергии. Давайте рассмотрим например, водородные автомобили, которые возможно рано или поздно смогут вытеснить с авторынка весь существующий ныне автотранспорт. Мы расскажем вам о том, как работают водородные автомобили, о их плюсах и минусах, сравним их с бензиновыми, дизельными и электрическими автотранспортными средствами. 

 

Принцип работы

Это химическая реакция происходящая в водородном топливном элементе.

 

Водородные автомобили, которые начала серийно выпускать автопромышленность, в качестве своего альтернативного источника топлива используют как известно, водород, который взаимодействуя с кислородом превращается в водяной пар, а в результате этого выделяется уже энергия. Эта энергия в водородном автомобиле обычно направляется либо на электродвигатели, либо на аккумуляторную батарею, которая затем и питает электродвигатель машины.

 

На основе этой технологии возможно построить и двигатель внутреннего сгорания, который сможет работать на том же водороде и будет аналогичен моторам, которые работают на бензине. 

 

Преимущества

Подобно электромобилям данные транспортные средства, что работают на водородном топливном элементе, не выделяют углекислого газа. В результате этого получается, что водородные автомобили не способствуют глобальному потеплению или загрязнению атмосферы воздуха. Нынешние водородные автомобили стали практически бесшумными, а это также является хорошим преимуществом перед автомобилями, которые оснащены двигателями внутреннего сгорания (ДВС). К сожалению, но увы, в мире пока не существует оснащенных ДВС машин, которые работали бы совсем бесшумно. 

 

Смотрите также: Водород в автомобилях: Опасности и сложности использования

 

Поскольку в автомобилях с водородным топливным элементом используются только электродвигатели, то в этих видах автотранспорта максимальный крутящий момент доступен сразу, т.е. с 0-ых оборотов в минуту работы двигателя.

 

Водородные автомобили, в отличие от электрокаров и обычных бензиновых транспортных средств могут иметь более широкий диапазон работы, они более эффективны. Например, 1 грамм водорода выделяет в 3 раза больше энергии, чем грамм бензина. Заправка же водородного автомобиля происходит намного быстрее электрического авто. Кроме того, на полном баллоне заправленного водородом, автомобиль имеет гораздо больший запас хода, чем электрокар. В итоге получается, что водородные автомобили больше подходят для длительных поездок и на длительные расстояния в сравнении с электромобилями, которые  рассчитаны как известно для передвижения на небольшие расстояния. 

 

Недостатки

 

Основным недостатком водородных автомобилей является то, что такое топливо как водород, чрезвычайно сложно и трудно хранить. Чтобы заправить нормальное количество водорода в резервуар, его необходимо для начала сжать, примерно до 700 бар. А для сжатия водорода потребуется энергия. Кроме того, чтобы храненить водород под высоким давлением, требуется тяжелый усиленный высокопрочный резервуар, чтобы это легкоиспоряемое топливо не представляло ни какой опасности всей окружающей среде .

 

Таким образом, в случае такой утечки или разгерметизации баллона с водородом всегда существует огромный риск, что газообразный легковоспламеняющийся водород воспламениться или хуже того, возьмет и взорвется. 

 

Что касаемо его производительности, то водородные автомобили с ДВС работающие на водороде, нуждаются в гораздо большем объеме количества воздуха, если сравнивать их с бензиновыми автомобилями. Вот например, идеальное химическое соотношение воздуха с топливом для бензиновых моторов составляет около 14,3 к 1, а для водородных автомобилей это соотношение уже будет составлять примерно 38 к 1. Однако при таком соотношении водорода и кислорода водородные двигатели внутреннего сгорания сжигают топливо при очень большой температуре, что приводит к разрыву тройных связей азота в воздухе и в результате этого начинает образовываться закись азота (да, это так и есть, образуется тоже вещество, которое выбрасывается в атмосферу при работе дизельного мотора). Это вещество является одним из самых вредных загрязнителей окружающей природы. 

 

Чтобы уменьшить уровень вредных выбросов в ДВС который работает на водороде необходимо, чтобы соотношение между водородом и кислородом увеличилось почти до 80 к 1. Но вместе с этим, ДВС работающий на водороде потеряет большое количество своей мощности в сравнении с аналогичными бензиновыми моторами. Дело здесь вот в чем, как мы уже ранее сказали, водород является более энергоемким топливом по сравнению с бензином. 

 

Один из способов обойти подобный неблагоприятный эффект, это использовать для максимальной мощности твердый топливный элемент, который будет давать энергию электромоторам, которая потребуется в тех случаев, когда автомобилю будет нужна максимальная мощность. То есть, как вы уже поняли идея заключается в том, чтоб в данном автомобиле при небольшой мощности и нагрузке в качестве альтернативы использовать водородное топливо а не бензин, которое и будет питать ДВС. Для максимальной же мощности в действие вступит уже аккумулятор, который и будет подпитывать электродвигатель.  

 

Другой проблемой для такого типа двигателей является тот факт, что водород чрезвычайно энергоемкое вещество, т.е. топливо. Если сравнивать его с бензином, то в 1 литре водорода содержится всего около 30% энергии в отличие от того же бензина. Соответственно, что запас хода водородного автомобиля на одном полном заправленном баке будет небольшим, если его сравнивать с бензиновой машиной. 

 

Водородные автомобили (не важно какую технологию они используют: топливный элемент или же водород, который используется напрямую вместо бензина в качестве топлива) так же как и бензиновые транспортные средства не так эффективны, если например их сравнивать с электрокарами. КПД водородных автомобилей составляет примерно 30 — 50%, что сопоставимо с бензиновыми автомобилями. А это почти на половину меньше, чем КПД электрических автотранспортных средств.

 

Это может означать или означает следующее, что сами водородные автомобили как и бензиновые, основную и большую часть своей энергии теряют в процессе обработки так называемой тепловой выделяемой энергии.

 

Есть еще один серьезный минус таких машин, которые работают на водородном топливном элементе. Этот тип или вид машин не очень-то приспособлен работать при холоде. 

 

Откуда же берут водород?

 

Существует два основных способа получения водорода. Первый включает в себя следующее, а именно, взаимодействие паров с метаном (природным газом) в результате чего получается водород и двуокись углерода.

 

При таком способе получения водорода, существуют две проблемы. Первая, -при этом процессе выделяется углекислый газ, который является парниковым газом наносящим вред атмосфере планеты. Вторая, -газ метан является ископаемым топливом и он не возобновляется. 

 

Второй способ получения водорода, это расщепление воды посредством электролиза. В результате этого процесса из воды выделяется чистый водород, который может служить источником топлива для водородного автомобиля. К нашему сожалению для этого процесса необходимо слишком много энергии, которая не будет потом возобновлена на все 100%. Кроме того, в процессе получения чистого водорода происходят некоторые косвенные выбросы углекислого газа.

 

Смотрите также: Почему двигатели V4 редко встречаются в автомобилях?

 

В том числе, в процессе получения водорода часть энергии топлива теряется, что делает водородные автомобили менее эффективными в сравнении, например с тем же электрическим транспортом. 

 

В заключительном итоге, в водородных автомобилях топливо стало обычным источником подзарядки аккумуляторных батарей, которые в свою очередь и питают сам электромотор. Тут есть все очень просто. Энергия от водорода поступает в так называемый накопительный аккумулятор, чтобы поддерживать уровень заряда самой батареи, который постоянно снижается из-за питания электродвигателя. Вот и вся хитрость.

 

Какие водородные автомобили сегодня продаются на мировом авторынке?

 

Прямо сейчас, единственным массово серийным водородным автомобилем, который можно купить и приобрести, является Toyota Mirai. В настоящий момент эта машина продается в США, в Японии и в некоторых странах Европы и ОАЭ. По имеющимся сегодня данным Японская компания продала уже более 3000 тысяч автомобилей. К большому сожалению этот водородный седан стоит очень дорого.

В среднем его цена- 60 000 долларов США. И эти деньги вы должны выложить и отдать за автомобиль мощностью всего в 152 л.с., где максимальный запас хода равен 500 км, и те только при идеальных условиях езды. В среднем автомобиль может проехать, где-то 300 км, что сопоставимо с автомобилем седан Tesla Model S. Так что запас хода этого водородного автомобиля не очень-то впечатляет.

 

Но есть еще одна важная проблема для автомобиля. Где вы будете заправлять Toyota Mirai? Ведь водородных заправок даже в мировом масштабе не так уж много. Именно отсутствие такой инфраструктуры и тормозит развитие водородного автотранспорта. 

 

В мире существуют еще две серийные водородные модели автомобилей. Речь идет о Honda Clarity и Hyundai Tucson FCEV. Но эти машины доступны для граждан только в нескольких странах мира, и то в ограниченном тираже.

 

Недавно, компания Mercedes на автосалоне во Франкфурте представила на всеобщее обозрение свой первый серийный водородный кроссовер, под маркой- GLC, который в скором времени будет доступен для покупки его во всех странах Евросоюза. 

 

Таким образом вы убедились, что выбор водородных авто не так уж на сегодня и богат даже в его глобальном мировом масштабе. Но тем не менее, мировая автопромышленность не стоит на месте, в настоящий момент уже многие автомобильные компании занимаются своими разработками и исследованиями в этой области автомобилестроения.

 

Смотрите также: Mercedes GLC F-Cell: Теперь и водородная версия

 

Например, компания BMW в настоящий момент проводит инженерные испытания своего водородного спорткара, созданного на базе i8.

 

В том числе активные разработки водородных автомобильных технологий ведет и компания Mazda. Вот например, у известного Японского бренда есть новая разработка роторного мотора, который способен работать на водородном топливе. Подобная технология была также использованна и на прототипе автомобиля RX-8 Hydrogen RE. Эта машина может работать и на водороде, и на бензине. Правда при работе на водороде мощность машины существенно падает и состовляет всего 109 л.с.

 

Не отстает от таких разработок и компания Aston Martin, которая уже создала Rapide S способный работать как на бензине, так и на водороде. Например, эта машина может использовать разные виды топлива как по отдельности, так и вместе взятые.

 

Кстати Aston Martin Rapide S стал первым водородным автомобилем, который успешно завершил 24-часовые гонки в Нюрбургринге.

 

Вывод

 

Итак, самый существенный вопрос, который волнует сегодня миллионы человек на Земле. Будут ли водородные автомобили в будущем жизнеспособными? И другой немало важный вопрос. Смогут ли они заменить все ныне существующие автомобили?

 

Однозначно, что на эти вопросы сегодня вам никто не ответит: ни великие инженеры и автоконстукторы, ни физики и ни химики, даже самые известные всему миру фантасты не смогут сегодня дать ответ на эти конкретно поставленные вопросы..

 

А спрогнозировать заранее на чем будут ездить люди во всем мире примерно через 100 лет, просто невозможно.

 

Лично мы со своей стороны считаем, что водородные автомобили никогда не смогут стать нашими основными транспортными средствами и заменить традиционные автомобили с двигателями внутреннего сгорания. Ведь такие автомобили недостаточно эффективны. Кроме того, во всем мире под водородные автомобили нет необходимой инфраструктуры, а чтобы ее развить до уровня бензиновых и дизельных АЗС, потребуется не одно столетие и огромные инвестиционные средства. 

 

Сегодня использование электричества в плане топлива для автомобилей, более предпочтительно. Ведь согласитесь, что использование напрямую электричества для питания электродвигателей куда логичней, чем использование преобразования воды в водород и обратно только с одной целью,- подпитывание или питание аккумуляторных батарей. Причем надо не забывать, что при данном процессе теряется до 50% всей энергии. Согласитесь, это не очень впечатляет.

 

Тем не менее мы хотим сказать, что водородные автомобили могут использоваться например, в тех же  самых автогонках электрокаров, где поддерживать нужный уровень заряда аккумулятора является главной задачей всех спортивных команд. Используя водород во время таких гонок, т.е. гонок электрокаров, командам не нужно будет часто менять аккумуляторы, что естественно увеличит саму зрелищность этих соревнований.

как работают водородные автомобили и когда они появятся на дорогах / Хабр

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?

Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?

Водород можно получать разными методами:

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

Наиболее экономичным способом производства водорода сейчас считается паровая конверсия. Так называют получение водорода из легких углеводородов (метан, пропан-бутановая фракция) с использованием парового риформинга. Риформингом называют процесс каталитической конверсии углеводородов в присутствии водяного пара. Водяной пар смешивается с метаном при высокой температуре (700–1000 Сº) и большом давлении с использованием катализатора.

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.


Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?

Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.

Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?

Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

В Mirai и других моделях водородных авто используются очень прочные баки для водорода. Toyota сделала свои баки пуленепробиваемыми, их стенки из сверхпрочного волокна выдерживают выстрелы из крупнокалиберного оружия. Для тестов компания наняла снайперов и пробить бак смогла только пуля калибром .50 после двойного попадания в одно и тоже место.

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?

Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Какие компании уже выпускают или собираются выпускать автомобили на водороде?

Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?

В настоящий момент водородные автомобили немного дороже обычных в плане эксплуатации. Так, при поездке в Европе протяженностью 480 км затраты на горючее для владельца обычной машины составят примерно $45, а вот владелец Mirai заплатит около $57. И это при том, что правительство некоторых стран субсидирует производство водорода для машин. Стоимость 1 кг водорода составляет в среднем $11.45.

Чем водородные авто лучше электромобилей?

Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Если сравнивать стоимость большинства электромобилей и Toyota Mirai, то они сравнимы, это несколько десятков тысяч долларов США. Стоимость Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс. Стоимость электрокаров Tesla начинается с $45 тыс. (базовая комплектация с прайсом в $35 тыс. пока доступна лишь для предзаказа). Электромобили от BMW стоят около $50 тыс.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?

Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.


Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости

Запасы нефти подходят к концу, что вынуждает человечество искать альтернативные источники энергии, способные заменить «черное золото». Одним из решений является применение водородного двигателя, отличающегося меньшей токсичностью и большим КПД. Главное то, что запас сырья для производства горючего почти неограничен.

Когда появился водородный двигатель? В чем особенности его устройства, и каков принцип действия? Где применяется такая технология? Реально ли сделать такой мотор своими руками? Эти и другие вопросы рассмотрим ниже.

Когда появился водородный двигатель, основные компании, ведущие его разработку

Интерес к применению водорода появился еще в 70-х годах в период острого дефицита топлива. Первым современным разработчиком, который представил двигатель для автомобиля работающий на водороде, стал концерн Toyota. Именно он в 1997 году выставил на всеобщее обозрение внедорожник FCHV, который так и не пошел в серийное производство.

Несмотря на первую неудачу, многие компании продолжают исследования и даже производство таких автомобилей. Наибольших успехов добились концерны Тойота, Хендай и Хонда. Разработки ведут и другие компании — Фольксваген, Дженерал Моторз, БМВ, Ниссан, Форд.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom (ранее GEC-Alsthom) . Планируется, что новый состав Coranda iLint начнет движение в конце 2017 года по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Интерес к покупке Coranda iLint уже проявила Норвегия, Дания и другие страны.

Особенности водорода как топлива для двигателя

В ДВС бензин смешивается с воздухом, после чего подается в цилиндры и сгорает, в результате чего происходит перемещение поршней и движение транспортного средства.

Применение водорода в виде топлива имеет ряд нюансов:

  • После сжигания топливной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем в случае с дизельным топливом или бензином.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • Водород — летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы мотора путем дозирования консистенции.

С учетом перечисленных нюансов применять H2 в чистом виде для двигателя внутреннего сгорания нельзя. Требуется внесение конструктивных изменений в ДВС и установка дополнительного оборудования.

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

  • Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
  • Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.

Как отмечалось выше, конструкция мотора, работающего на H2, почти не отличается от ДВС за исключением некоторых аспектов.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения. Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

  1. Моторы внутреннего сгорания;
  2. Двигатели на водородных элементах.

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от H2O для последующей реакции с O2.

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается H2, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

Где использовались водородные топливные элементы?

Особенность топливных элементов водородного типа —способность производить энергию для электрического мотора. Как результат, система заменяет ДВС или становится источником бортового питания на транспортном средстве.

Впервые топливные элементы были использованы в 1959 году компанией из США.

Если говорить в целом, топливные элементы применяются:

  • НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ. В отличие от КПД стандартного двигателя, они показывают лучшие результаты. На испытании первого автобуса топливные элементы показали КПД в 57%. Сегодня такие устройства тестируются многими производителями автомобилей — Хонда, Форд, Ниссан, Фольксваген и другими.
  • НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ. На современном этапе больше 60% транспорта на ж/д — тепловозы. Сегодня водородные поезда разрабатываются во многих странах — Японии, Дании, США и Германии.
  • НА МОРСКОМ ТРАНСПОРТЕ. Водородные топливные элементы наиболее востребованы на подводных лодках. Активные работы в этом направлении ведутся в Германии и Испании, а в роли заказчиков выступают другие страны, среди которых Италия, Греция, Израиль.
  • В АВИАЦИИ. Первые самолеты на водородном двигателе появились еще в 80-х годах прошлого века. На современном этапе новый вид топлива применяется для создания беспилотных летательных аппаратов (в том числе вертолетов).

Также водородные топливные элементы нашли применение на вилочных погрузчиках, велосипедах, скутерах, мотоциклах, тракторах, автомобилях для гольфа и другой технике.

Преимущества и недостатки

Чтобы понять особенности и перспективы водородного двигателя в автомобиле, стоит знать его плюсы и минусы. Рассмотрим их подробнее.

Плюсы:

  • ЭКОЛОГИЧНОСТЬ. Внедрение водородного двигателя — возможность забыть о проблеме загрязнения окружающей среды. При глобальном переходе на этот вид топлива удастся снизить парниковый эффект и, возможно, спасти планету. Экологичность новых разработок подтверждена компанией Тойота. Работники концерна доказали, что выхлоп из машины безопасен для здоровья. Более того, выходящую воду можно пить, ведь она дистиллирована и очищена от примесей.
  • ОПЫТ РАЗРАБОТОК. Известно, что водородный двигатель создан давно, поэтому с его применением на автомобилях проблем быть не должно. Если углубится в историю, первое подобие мотора на водороде в начале XIX века удалось создать Франсуа Исаак де Ривазу — конструктору из Франции. Кроме того, в период блокады Ленинграда на новый вид топлива было переведено почти 500 машин.
  • ДОСТУПНОСТЬ. Не менее важный фактор в пользу H2 — отсутствие дефицита. При желании этот вид топлива можно получать даже из сточных вод.
  • ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ В РАЗНЫХ СИЛОВЫХ УСТАНОВКАХ. Существует мнение, что водород используется только в ДВС. Это не так. Новая технология задействована при создании топливного элемента, с помощью которого удается получить электрический ток и запитать электромотор транспортного средства. Преимущества заключаются в безопасности и отсутствии ископаемых элементов, что исключает загрязнение окружающей среды. На современном этапе такая схема считается наиболее безопасной и пользуется наибольшим спросом у разработчиков.

Также к плюсам стоит отнести:

  • Минимальный уровень шума;
  • Улучшение мощности, приемистости и других параметров двигателя;
  • Большой запас хода;
  • Низкий расход горючего;
  • Простота обслуживания;
  • Высокий потенциал применения в виде альтернативного топлива.

Недостатки водородного двигателя:

  • СЛОЖНОСТЬ ИЗВЛЕЧЕНИЯ H2 ИЗ ВОДЫ. Как отмечалось, данный газ считается наиболее распространенным элементом на планете, но в чистом виде его почти нет. Этот газ имеет минимальный вес, поэтому он поднимается и удерживается в верхних слоях атмосферы. Атомы H2 быстро связываются с другими элементами, в результате чего образуется вода, метан и другие вещества. Вот почему для применения водорода его необходимо извлечь, а для этого требуются большие объемы энергии. На текущий момент такое производство нерентабельно, что тормозит процесс внедрения водородных двигателей. По приблизительным расчетам цена литра, сжиженного H2 равна от 2 до 8 евро. Итоговые расходы во многом зависят от способа добычи топлива.
  • ОТСУТСТВИЕ НЕОБХОДИМОГО ЧИСЛА ЗАПРАВОК. Не меньшая проблема — дефицит АЗС, готовых заправлять машины водородным топливом. Проблема заключается в высокой стоимости оборудования для таких автозаправочных станций (если сравнивать с обычной АЗС). Сегодня разработано множество проектов станций для заправок водородом — от крупных до небольших заправок, но из-за дороговизны и отсутствия массового применения водородных двигателей на автомобилях процесс внедрения идеи может растянуться на десятилетия.
  • НЕОБХОДИМА ДОРОГОСТОЯЩАЯ МОДЕРНИЗАЦИЯ ДВС. Как отмечалось, водородное топливо теоретически может использоваться для заправки ДВС. Но для применения H2 в качестве основного топлива требуются конструктивные изменения. Если ничего не менять, мощность мотора падает на 20-35%, а ресурс силового узла значительно снижается. Но и это не главный недостаток. Опасность в том, что такой механизм проработает недолго и быстро выйдет из строя. Сгорая, водородная смесь выделяет большее тепло, что приводит к перегреву поршневой и клапанной системы, а мотор работает в режиме повышенных нагрузок. Кроме того, высокие температуры негативно влияют на материалы, из которых сделан силовой узел, и смазывающие вещества. В результате рабочие элементы двигателя быстро износятся. Это значит, что без модернизации ДВС применение H2 невозможно.
  • ДОРОГОВИЗНА МАТЕРИАЛОВ. Главным «камнем преткновения» в вопросе развития водородных технологий является высокая стоимость материалов. В качестве катализатора используется платина, цена которой для рядового автовладельца очень высока. Проще потратить деньги и подарить дорогое кольцо жене, чем отдавать их для установки новой детали. Надежда остается на ученых, которые ищут альтернативы для дорогостоящего катализатора. Проводятся тестирования элементов, способных заменить драгоценный металл.

Кроме уже рассмотренных выше, стоит выделить еще ряд недостатков:

  • Опасность пожара или взрыва.
  • Риски для планеты, ведь увеличение объема водорода может привести к непоправимым последствиям для озонового слоя.
  • Увеличение веса машины из-за применения мощных АКБ и преобразователей.
  • Наличие проблем с хранением водородного топлива — под высоким давлением или в сжиженном виде. Исследователи еще не пришли к единому выводу, какой из вариантов лучше.

Опасность водородного топлива

В рассмотренных выше недостатках упоминалось об опасности применения водородного топлива для двигателя. Это главный минус новой технологии.

В сочетании с окислителем (кислородом) возрастает риск воспламенения водорода или даже взрыва. Проведенные исследования показали, что для воспламенения H2 достаточно 1/10 части энергии, необходимой для зажигания бензиновой смеси. Другими словами, для вспыхивания водорода хватит и статической искры.

Еще одна опасность заключается в невидимости водородного пламени. При горении вещества огонь почти незаметен, что усложняет процесс борьбы с ним. Кроме того, чрезмерное количество H2 приводит к появлению удушья.

Опасность в том, что распознать данный газ крайне сложно, ведь у него нет запаха и он полностью невидим для человеческого глаза.

Кроме того, сжиженный H2 имеет низкую температуру, поэтому в случае утечки с открытыми частями тела высок риск серьезного обморожения. Находится данный газ должен в специальных хранилищах.

Из рассмотренного выше напрашивается вывод, то водородный двигатель опасен, и использовать его крайне рискованно.

На самом деле, газообразный водород имеет небольшой вес и в случае утечки он рассеивается в воздухе. Это значит, что риск его воспламенения минимален.

В случае с удушьем такая ситуация возможна, но только при нахождении в замкнутом помещении. В ином случае утечка водородного топлива опасности для жизни не несет. В оправдание стоит отметить, что выхлопные газы ДВС (а именно угарный газ) также несут смертельный риск.

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

  • Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
  • Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
  • Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
  • «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
  • Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
  • Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
  • Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
  • БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
  • В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
  • Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
  • Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
  • Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
  • Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
  • Дизайнерский дом Pininfarina создал машину на водородном топливе h3 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.

Трудности в эксплуатации водородных ДВС

Главным препятствием для внедрения новой технологии является чрезмерные расходы на получение водородного топлива, а также на приобретение комплектующих материалов.

Возникают проблемы и с хранением H2. Так, для удерживания газа в требуемом состоянии требуется температура на уровне -253 градусов Цельсия.

Простейший способ получения водорода — электролиз воды. Если производство H2 требуется в промышленных масштабах, не обойтись без высоких энергетических затрат.

Чтобы повысить рентабельность производства, требуется применение возможностей ядерной энергетики. Чтобы избежать рисков, ученые пытаются найти альтернативы такому варианту.

Перемещение и хранение требует применения дорогих материалов и механизмов высокого качества.

Нельзя забывать и о других сложностях, с которыми приходится сталкиваться в процессе эксплуатации:

  • Взрывоопасность. При утечке газа в закрытом помещении и наличии небольшой энергии для протекания реакции возможен взрыв. Если воздух чрезмерно нагрет, это только усугубляет ситуацию. Высокая проникаемость H2 приводит к тому, что газ попадает в выхлопной коллектор. Вот почему применение роторного мотора считается более предпочтительным.
  • При хранении водорода применяются емкости, имеющей большой объем, а также системы, исключающие улетучивание газа. Кроме того, используются устройства, исключающие механическое повреждение емкостей. Если для грузовых машин, водного или пассажирского транспорта эта особенность не имеет большого значения, легковая машина теряет ценные кубометры.
  • При больших нагрузках и высокой температуре H2 провоцирует разрушение элементов ЦПГ (цилиндропоршневой группы) и смазки в двигателе. Использование специальных сплавов и смазочных материалов приводит к повышению стоимости производства водородных двигателей.

Будущее водородных двигателей

Применение H2 открывает большие перспективы и не только в автомобильной сфере. Водородные двигатели активно применяются на ж/д транспорте, на самолетах и вертолетах. Также они устанавливаются на вспомогательной технике.

Интерес к разработке таких моторов проявляют многие концерны, о которых уже упоминалось выше — Тойота, БМВ, Фольксваген, Дженерал Моторс и другие.

Уже сегодня на дорогах встречаются реальные автомобили, которые работают на водороде. Многие из них рассмотрены выше — БМВ 750i Hydrogen, Хонда FSX, Тойота Mirai и другие.

К работе подключились почти все крупные концерны, которые пытаются найти свою нишу на рынке.

Главным недостатком остается высокая цена H2, нехватка АЗС, а также дефицит квалифицированных работников, способных обслуживать такую технику. Если имеющиеся проблемы удастся решить, машины с водородными двигателями обязательно появятся на наших дорогах.

Конкурирующие технологии

Внимание к моторам на водороде развеивается по той причине, что у технологии имеются конкуренты.

Вот только некоторые из них:

  • ГИБРИДНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА — автомобили, способные работать от нескольких источников энергии. Многие концерны объединяют обычный двигатель внутреннего сгорания и электрический мотор. Еще один вариант гибридной машины — совмещение ДВС, а также силового узла, использующего в качестве топлива сжатый воздух.
  • ЭЛЕКТРИЧЕСКИЕ АВТОМОБИЛИ (ЭЛЕКТРОМОБИЛИ) — транспортные средства, которые приводятся в движение с помощью одного или группы электрических моторов, питающихся от АКБ или топливных элементов. В таких машинах ДВС не применяется. Электромобили не стоит путать с авто, имеющими электрическую подачу, а также с электрическим общественным транспортом (троллейбусами и трамваями).
  • АВТОМОБИЛИ НА ЖИДКОМ АЗОТЕ. Источником энергии, как уже понятно по названию, является жидкий азот (находится в специальных емкостях). Мотор работает следующим образом. Топливо нагревается в специальном механизме, после чего испаряется и преобразуется в газ высокого давления. Далее оно направляется в мотор, где действует на ротор или поршень, передавая таким способом имеющуюся энергию. Машины на жидком азоте были представлены публике, но на современном этапе они не получили широкого применения. Один из таких автомобилей «сыграл» в фильме «Жидкий воздух» в 1902 году. Разработчики уверяют, что такое транспортное средство способно проехать больше 100 км на одном баке.
  • АВТОМОБИЛЬ НА СЖАТОМ ВОЗДУХЕ. Особенность транспортного средства заключается в применении пневмодвигателя, благодаря которому и перемещается транспортное средство. Специальный привод называется пневматическим. Вместо топливовоздушной смеси источником энергии является сжатый воздух. Как отмечалось выше, такая технология входит в состав гибридных машин.

Можно ли сделать своими руками?

Технология работы двигателя на газ известна давно, и многие концерны достигли успехов в вопросе внедрения водородных двигателей. Над совершенствованием классического ДВС задумались и народные умельцы.

Суть заключается в подаче в камеру сгорания специального газа. Такое устройство носит название системы Брауна. При этом бензин также подается в двигатель, но смешивается с газом, что обеспечивает лучшее горение.

В результате появляется водяной пар, очищающий клапана и поршни двигателя от нагара, улучшающий характеристики мотора и повышающий его ресурс.

Чтобы своими руками разложить воду на газ, требуется катализатор, дистиллят, электроды и электричество.

Конструкция собирается из подручных материалов. Допускается применение одной банки, но лучше использовать шесть.

После вырезаются пластинки и объединяются по принципу крест-накрест. Далее они обматываются проволокой и крепятся на крышке. Важно, чтобы электроды не замыкались между собой.

На последнем этапе банки заполняются электролитом и катализатором. Такая схема может работать на любом автомобиле.

Если же говорить о полноценном водородном двигателе, то в гаражных условиях сделать его конечно же не получится из-за сложности технологии.

Toyota сообщила о разработке нового водородного двигателя — Экономика и бизнес

ТОКИО, 22 апреля. /ТАСС/. Ведущий японский автоконцерн Toyota Motor занимается разработкой нового водородного двигателя в рамках концепции снижения выбросов парниковых газов. Об этом говорится в распространенном в четверг пресс-релизе корпорации.

Новый турбомотор будет трехцилиндровым с объемом 1,6 л. Работать он будет за счет сжигания водорода и использования модифицированных систем впрыска и подачи топлива. Такой двигатель по принципу работы похож на бензиновый. Однако за исключением незначительного расхода моторного масла он не будет выделять никаких выбросов.

Кроме того, процесс сжигания водорода происходит быстрее, чем в случае с бензиновым мотором, что положительно влияет на динамику автомобиля. Toyota рассчитывает опробовать свою разработку в мае во время одного из этапов местной гоночной серии на трассе в префектуре Сидзуока.

У Toyota уже есть опыт создания водородных двигателей. В 2014 году компания представила первый в мире серийный автомобиль на этом виде топлива Mirai. Однако там по сути установлен электромотор, который получает необходимую для приведения машины в движение энергию за счет химической реакции водорода и кислорода. Побочным продуктом в данном случае выступает только вода. Несмотря на вышедшее недавно второе поколение, Mirai в Японии не пользуется большим спросом из-за своей дороговизны и отсутствия развитой сети водородных заправок.

Правительство Японии в конце прошлого года одобрило новый план сокращения выбросов парниковых газов, который в том числе ставит цель к середине 2030-х годов отказаться от производства полностью бензиновых и дизельных автомобилей. Документ затрагивает в общей сложности 14 отраслей, таких как нормы жилищного строительства, развитие водородной энергетики и т. д. По оценкам японского правительства, принятая стратегия развития должна в конечном итоге стимулировать экономику страны и создать экономический эффект в размере почти $900 млрд к 2030 году и более 1,8 трлн в течение следующих 20 лет.

Как работают топливные элементы в водородных автомобилях?

Столетие назад или около того, количество автомобилей на Земле исчисляется тысячами. Сегодня существует около миллиарда автомобилей — примерно одна на каждые семь человек на планете, и ожидаемое количество достигнет 2 миллиардов к 2040 году. Думайте о Земле как о гигантской заправочной станции с ограниченным запасом топлива, и вы довольно быстро поймете что у нас проблема.Многие геологи думают, что мы достигли точки они называют «пиком нефти», а в ближайшие несколько десятилетий поставки бензина (и все остальное, сделанное из нефти) начнет истощаться. Если такое случается, откуда все наши машины будут получать топливо? Кратковременное решение — повысить топливную экономичность. от существующих автомобилей. В долгосрочной перспективе решение может быть переключение автомобилей с бензиновых и дизельных двигателей на электрические топливные элементы, которые немного похожи на батареи, работающие на водороде газ, который никогда не выходит из строя.Бесшумные и экологически чистые, они среди самые чистые и экологически чистые источники энергии из когда-либо созданных. Они все, кем обещаны быть? Давайте подробнее рассмотрим, как они работают!

Фото: демонстрационный автомобиль Ford Motor Company на водородных топливных элементах (модифицированный Ford Focus). Фото любезно предоставлено Космическим центром Кеннеди НАСА (NASA-KSC).

Что такое топливные элементы?

Фото: Под капотом автомобиля Ford на водородных топливных элементах. Фото любезно предоставлено Ford Motor Company и Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии.

На самом деле есть всего два способа привести современный автомобиль в действие. Большинство машин на Дорога сегодня использует двигатель внутреннего сгорания сжигать топливо на нефтяной основе, выделять тепло и толкать поршни вверх и вниз, чтобы управлять трансмиссией и колесами. Электрический машины работают совершенно по-другому. Вместо двигателя они полагаться на батареи, которые питают электроэнергией электродвигатели, приводящие в движение колеса напрямую. Гибридные автомобили имеют оба двигатели внутреннего сгорания и электрические двигатели и переключайтесь между ними в зависимости от условий вождения.

Топливные элементы немного похожи на нечто среднее между двигателем внутреннего сгорания. мощность двигателя и аккумулятора. Как двигатель внутреннего сгорания, они производят мощность за счет использования топлива из бака (хотя топливо находится под давлением водородный газ, а не бензин или дизельное топливо). Но, в отличие от двигателя, топливный элемент не сжигает водород. Вместо этого он слит химически с кислородом воздуха для получения воды. В процессе, что похоже на то, что происходит в батарее, электричество высвобождается и это используется для питания электродвигателя (или двигателей), который может управлять транспортное средство.Единственный ненужный продукт — это вода, и она настолько чиста, что вы можете выпей это!

Думайте о топливных элементах как о батареях, которые никогда не разряжаются. Вместо того медленно истощая химические вещества внутри них (как это делают обычные батарейки), топливные элементы работают на постоянном запасе водорода и продолжают производить электричество до тех пор, пока в баке есть топливо.

Стек топливных элементов

Один топливный элемент производит примерно столько же электроэнергии, сколько одиночная сухая батарея — недостаточная для питания портативного компьютера, не говоря уже об автомобиле.Вот почему в топливных элементах, предназначенных для автомобилей, используются стеки. топливных элементов, соединенных вместе в серию. Общее электричество они продукция равна количеству ячеек, умноженному на мощность каждой клетка производит.

Виды топливных элементов

Фото: Вот как на самом деле выглядит топливный элемент. Это типичный водородный топливный элемент с протонообменной мембраной (PEM), который может производить 5 киловатт (5000 ватт) энергии. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / National Лаборатория возобновляемых источников энергии (DOE / NREL).

Топливные элементы PEM (иногда называемые PEMFC) в настоящее время инженеры предпочитают приводить в движение автомобили, но они никоим образом не возможен только дизайн. Так же, как есть много видов батарей, каждая используя различные химические реакции, поэтому существует много видов топлива ячейка тоже. Космические аппараты используют более примитивную конструкцию, называемую щелочным. топливный элемент (AFC), в то время как гораздо большее количество энергии может быть генерируется альтернативной конструкцией, известной как твердооксидный топливная ячейка (ТОТЭ). Микробные топливные элементы имеют дополнительную особенность: они используют бак бактерий для переваривания сахара, органических веществ или другого топлива и производить электрический ток (который может использоваться для питания двигатель) или водород (который может питать топливный элемент обычным способом).Другая возможность — иметь автомобиль с солнечной панелью на крыше, который использует электричество Солнца для разделения воды на водород и кислород. электролизер (см. вставку ниже). Затем эти газы рекомбинируются в топливном элементе для производства электроэнергии. (Преимущество такого подхода по сравнению с прямым использованием энергии Солнца состоит в том, что вы можете накапливать водород в дневное время, когда светит Солнце, а затем использовать его для движения топливный элемент ночью.)

Откуда возьмется весь водород?

За последние 150 лет практически каждая машина бег по жидкости, которую мы весьма сбивчиво называем газом.Но в следующие 150 лет многие люди думают, что автомобили будут работать на настоящем газе: водород. Теоретически запустить автомобили на водороде — отличная идея: это самый простой способ. и наиболее распространенный химический элемент, и он составляет подавляющее большинство (что-то вроде трех четвертей) всей материи Вселенной. Тогда хватит всем! Но есть загвоздка: ковыряться в воздухе вокруг вас, и вы не найдете много водорода — только около одного литр водорода на каждый миллион литров воздуха. (В натуральном выражении это то же самое, что случайно найти около двух литров воды перепутал в каждом олимпийском бассейне полный).Так откуда же взяться всем огромным облакам водорода, чтобы управлять нашим глобальным автопарком? Нам нужно будет сделать его самим из воды, волшебного вещества, которое покрывает 70 процентов поверхности Земли, частично состоит из водорода. Разделите старый добрый h3O на части, и вы получите h3 (водород) и O2 (кислород). Как ты это делаешь? С электролизером!

Почему топливные элементы так долго завоевывают популярность?

Фото: Может пройти некоторое время, прежде чем насосы для заправки водородом станут обычным явлением.Фото любезно предоставлено Исследовательским центром Гленна НАСА.

« На протяжении десятилетий водород был Дракулой автомобильного топлива: когда вы думаете, что ставка была сделана через его сердце с нулевым уровнем выбросов, технология поднимается из могилы».

Лоуренс Ульрих
The New York Times, апрель 2015 г.

Люди провозглашали топливные элементы следующим большим достижением в области энергетики поставляет с 1960-х годов, когда космический корабль Аполлона сначала ракеты продемонстрировал, что технология практична.Четыре десятилетия спустя на наших улицах почти нет автомобилей на топливных элементах — из-за множества причины. Во-первых, мир настроен на производство бензиновых двигателей за счет миллион, поэтому они, естественно, намного дешевле, лучше протестированы и многое другое надежный. Купить обычную машину можно за несколько тысяч. долларов за фунт, но до недавнего времени автомобиль на топливных элементах обошелся бы вам в сотни долларов. тысячи. («Относительно доступный» автомобиль Toyota Mirai наконец стал широко доступен в 2016 году. по цене чуть менее 60 000 долларов США, что вдвое превышает цену его гибрида Prius.Отчасти поэтому некоторые автомобили на топливных элементах доступны только в лизинг. договоренности. В то время, когда я обновляю эту статью, в 2021 году автомобиль Honda Clarity Fuel Cell можно будет арендовать за относительно скромные 379 долларов в месяц.) Стоимость — не единственная проблема. Также есть огромное нефтяная экономика для поддержки бензиновых двигателей: есть гаражи везде, где обслуживают бензиновые автомобили и заправочные станции повсюду, чтобы снабдить их топливом. Напротив, почти никто ничего не знает об автомобилях на топливных элементах, и в них практически нет заправки станции подачи сжатого водорода.«Водородная экономика» — это далекая мечта.

Легко понять, как может работать мир, полный водородных автомобилей. У нас было бы много заводов по производству электролизеров по всему миру, производящих водородный газ из воды. Теперь газы занимают гораздо больше пространство, чем жидкости или твердые тела, поэтому нам нужно превратить водород газ в жидкий водород, что упрощает транспортировку и хранение, сжав его до высокого давления. Затем мы транспортировали водород на заправочные станции («водородные станции»?) где люди могли бы закачивать его в свои автомобили, которые работали бы на топливных элементах вместо обычных бензиновых двигателей.

Фото: Топливные элементы предназначены не только для автомобилей. Этот трактор приводится в движение одним. Фото Кейта Випке любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL) (идентификатор фотографии NREL № 33995).

Беда с водородом

Но вы видите проблему? Для производства водорода электролизом используется энергия — и довольно много: мы должны использовать электричество для разделения воды. Если мы будем использовать обычные солнечные батареи для обеспечения этого электричества, они могут быть примерно на 10 процентов эффективнее. в то время как электролизер может иметь КПД 75 процентов, что дает жалкую общую эффективность всего лишь 7.5 процентов. Это довольно плохой старт — и это только старт!

Мы также используем энергию для транспортировки водорода и его сжатия (превращая газообразный водород в жидкость), чтобы автомобили могли перевозить его в своих баках в количестве, достаточном для поездки куда угодно. Это настоящая проблема, потому что плотность энергии водород (количество энергии, которое он несет на единицу своего объема или массы), равно только около одной пятой бензина. Другими словами, вам нужно в пять раз больше, чтобы зайти так далеко. (при условии, что ваш водородный автомобиль тяжелый, как ваш бензиновый, что может быть не так — потому что бензиновым автомобилям нужны тяжелые двигатели и трансмиссии).Другая проблема в том, что водород трудно хранить в течение длительного времени, потому что он чрезвычайно крошечные молекулы легко вытекают из большинства контейнеров, а поскольку водород легковоспламеняющийся, утечка может вызвать ужасные взрывы.

И затем, конечно, есть все недостатки на противоположном конце процесса, когда топливный элемент Автомобиль превращает водород обратно в электричество, чтобы приводить в действие электродвигатели, приводящие в движение его колеса.

Водород не является топливом

« …водород — это разрекламированная подножка … Водород — не чудесный источник энергии; это просто энергоноситель, как аккумуляторная батарея. И это довольно неэффективная энергия носитель, с кучей практических недоработок ».

Профессор Дэвид Маккей
Устойчивая энергетика без горячего воздуха

Водород сам по себе не является топливом, а просто средством транспортировки топлива, полученного в результате какого-либо другого процесса. Так что лучше сравнить с батареями (еще один способ упаковки и транспортировки энергии) чем бензин (настоящее топливо).В целом, современные водородные автомобили значительно менее эффективны, чем лучшие электромобили, работающие от батарей, и часто менее эффективны, чем обычные автомобили с бензиновым или дизельным двигателем!

На данный момент в мире относительно мало водорода для заправки автомобилей, и практически все это (около 95 процентов) производится из ископаемого топлива экологически вредным способом, поэтому его вряд ли можно назвать «зеленым». По данным Международного энергетического агентства: «Спрос на водород, который вырос более чем в три раза с 1975 года, продолжает расти — почти полностью обеспечивается за счет ископаемого топлива, при этом 6% мирового природного газа и 2% мирового угля идут на производство водорода.» Чтобы это изменить, проводится множество исследований, и есть много способов получения водорода из воды. Мы могли бы, например, использовать солнечные элементы для электролиза воды «бесплатно», но мы могли бы так же легко хранить ту же энергию в батареях и использовать их для питания наших автомобилей. Автомобили на топливных элементах звучат многообещающе, но если автомобили с аккумулятором действительно лучше, водород может оказаться дорогим отвлечением от важного дела по переводу мира с ископаемого топлива на возобновляемые источники энергии.

Все эти проблемы, подытоженные, объясняют, почему защитники автомобилей с аккумуляторными батареями, такие как Илон Маск из Tesla, любят высмеивать водородные автомобили как «автомобили с дурацкими элементами», которые являются «ошеломляюще глупыми».

Но и у водорода есть свои плюсы!

Так почему люди до сих пор ищут топливные элементы? Потому что, как утверждают их сторонники, у них есть множество преимуществ перед другими электроэнергетическими технологиями. Если на зарядку автомобиля с батарейным питанием может уйти от получаса до целой ночи, вы можете заправить водородный автомобиль всего за пять минут — так же быстро, как вы можете заправить бензобак обычного автомобиля.Запас хода автомобилей с батарейным питанием также был предметом разногласий. Современные модели теперь заявляют, что могут проехать сотни километров или миль без подзарядки, но не все из них справляются с этим; это зависит от того, сколько энергии вы используете для других целей во время вождения; и дальность действия снижается по мере старения аккумулятора. Автомобили на топливных элементах, напротив, имеют такой же запас хода, что и обычные газовые автомобили, хотя их характеристики ухудшаются с возрастом. В то время как аккумуляторные технологии, возможно, лучше всего работают в небольших автомобилях, топливные элементы одинаково хороши для больших автомобилей и грузовиков.Действительно, Баллард, один из ведущих производителей топливных элементов, утверждает, что топливные элементы скоро станут наиболее жизнеспособным решением для тяжелых транспортных средств, таких как грузовики, автобусы и т. Д. поезда и даже самолеты, которые иначе работали бы на грязном ископаемом топливе. В Калифорнии сейчас идет огромный толчок к тому, чтобы сделать водород более популярным.

Что-нибудь, кроме масла?

Таким образом, до тех пор, пока автопроизводители не перестанут производить бензиновые и дизельные двигатели, у автомобилистов будет мало или совсем не будет стимулов переходить на автомобили на топливных элементах. Даже тогда, потому что конкурирующие аккумуляторно-электрические и гибридные технологии иметь огромное преимущество, автомобили на топливных элементах могут никогда не завоевать популярность.Большинство из нас пока будет придерживаться двигателей внутреннего сгорания, хотя заявление крупных автопроизводителей о том, что будущее за электромобилями, заставит нас в ближайшее десятилетие изменить свой образ жизни. или так. Увидим ли прямой переход на электромобили с бортовыми аккумуляторами? ты заряжаешься дома? Или, возможно, более мягкий переход через гибридные автомобили с бензиновыми двигателями. и электродвигатели, которые позволят нам увеличить мировые поставки нефти на достаточно долгое время. придумать совершенно новую технологию — возможно, даже атомные автомобили! Никто не знает, что нас ждет в будущем, но одно можно сказать наверняка: нефть будет играть в нем гораздо меньшую роль.Чем раньше мы обнимемся альтернативы — электромобили на батареях, биотопливо, топливные элементы или что-то еще — тем лучше.

Как работают автомобили на водородных топливных элементах?

При преобразовании газообразного водорода в электричество в качестве побочного продукта образуется только вода и тепло, а это означает, что автомобили на топливных элементах не загрязняют выхлопные трубы, когда они находятся в движении. Производство водорода само по себе может привести к загрязнению, включая выбросы парниковых газов, но даже когда топливо поступает из одного из самых грязных источников водорода, природного газа, современные легковые и грузовые автомобили с топливными элементами ранних моделей могут сократить выбросы более чем на 30 процентов по сравнению с их Бензиновые аналоги.Будущие стандарты возобновляемого топлива, такие как требования, действующие в настоящее время в Калифорнии, могут сделать водород еще чище.

Поскольку автомобили на топливных элементах только начинают выходить на рынок США, заинтересованные водители должны убедиться, что они живут рядом с водородными заправочными станциями.

Характеристики водородного топливного элемента

Автомобили, работающие на водородных топливных элементах, сочетают в себе диапазон и возможность заправки обычных автомобилей с преимуществами для отдыха и окружающей среды от езды на электричестве.

Заправка автомобиля на топливных элементах сравнима с заправкой обычного автомобиля или грузовика; водород под давлением продается на станциях заправки водородом, для заправки существующих моделей требуется менее 10 минут. Некоторые договоры аренды могут полностью покрывать расходы на заправку. После заправки запасы хода автомобиля на топливных элементах различаются, но аналогичны диапазонам автомобилей с бензиновым или дизельным двигателем (200–300 миль). По сравнению с аккумуляторными электромобилями, которые заряжают свои батареи путем подключения к электросети, сочетание быстрой централизованной дозаправки и увеличенного запаса хода делает топливные элементы особенно подходящими для более крупных транспортных средств, требующих больших расстояний, или для водителей, у которых отсутствует доступ к подключению к электросети. дом.

Как и другие электромобили, легковые и грузовые автомобили на топливных элементах могут использовать режим холостого хода, при котором топливный элемент отключается при появлении знаков остановки или в движении. В некоторых режимах движения рекуперативное торможение используется для улавливания потерянной энергии и зарядки аккумулятора.

Отличия автомобилей на топливных элементах от других электромобилей

Аккумуляторные электромобили работают от электродвигателя и аккумулятора. Это обеспечивает им повышенную эффективность и, как автомобили на топливных элементах, позволяет им ездить без выбросов, когда электричество поступает из возобновляемых источников.В отличие от легковых и грузовых автомобилей на топливных элементах, электромобили с аккумуляторными батареями могут использовать существующую инфраструктуру для подзарядки, но должны быть подключены к сети на длительные периоды времени. Узнайте больше о том, как работает электрика аккумуляторной батареи.

Подключаемые гибридные электромобили похожи на аккумуляторные электромобили, но также имеют обычный бензиновый или дизельный двигатель. Это позволяет им ездить на короткие расстояния только на электричестве, а в дальних поездках переходить на жидкое топливо. Хотя гибриды с подзарядкой от электросети и не такие чистые, как электромобили или автомобили на топливных элементах, они производят значительно меньше загрязнения, чем их обычные аналоги.Узнайте больше о том, как работают автомобили с подзарядкой от сети.

Обычные гибриды также имеют обычные двигатели, электродвигатель и аккумулятор, но не могут быть подключены к электросети. Несмотря на то, что они чище, чем обычные легковые и грузовые автомобили, гибриды без подключения к электросети получают всю свою энергию от бензина и дизельного топлива и не считаются электромобилями. Узнайте больше о том, как работают гибриды.

Узнайте больше о технологиях для электромобилей, включая их потенциал в качестве общенационального решения для экономии масла.

Как электромобили на топливных элементах работают с использованием водорода?

Как и полностью электрические транспортные средства, электромобили на топливных элементах (FCEV) используют электричество для питания электродвигателя. В отличие от других электромобилей, FCEV вырабатывают электричество, используя топливный элемент, работающий на водороде, а не потребляя электричество только от батареи. В процессе проектирования транспортного средства производитель транспортного средства определяет мощность транспортного средства размером электродвигателя (двигателей), который получает электроэнергию от комбинации топливного элемента и батареи соответствующего размера.Хотя автопроизводители могут спроектировать FCEV с возможностью подключения для зарядки аккумулятора, большинство FCEV сегодня используют аккумулятор для возврата энергии торможения, обеспечения дополнительной мощности во время коротких событий ускорения и для сглаживания мощности, подаваемой от топливного элемента, с возможностью на холостом ходу или выключите топливный элемент во время низкой потребности в энергии. Количество энергии, хранящейся на борту, определяется размером водородного топливного бака. Это отличается от полностью электрического транспортного средства, где количество доступной мощности и энергии тесно связаны с размером батареи.Узнайте больше об электромобилях на топливных элементах.

Изображение в высоком разрешении

Ключевые компоненты электромобиля на водородных топливных элементах

Аккумулятор (вспомогательный): В транспортном средстве с электрическим приводом низковольтная вспомогательная аккумуляторная батарея обеспечивает электричеством для запуска автомобиля до включения тягового аккумулятора; он также приводит в действие автомобильные аксессуары.

Аккумулятор: Эта высоковольтная аккумуляторная батарея накапливает энергию, генерируемую рекуперативным торможением, и обеспечивает дополнительную мощность тяговому электродвигателю.

Преобразователь постоянного тока в постоянный: Это устройство преобразует мощность постоянного тока высокого напряжения от тягового аккумуляторного блока в мощность постоянного тока низкого напряжения, необходимую для работы аксессуаров автомобиля и зарядки вспомогательной аккумуляторной батареи.

Электрический тяговый двигатель (FCEV): Используя энергию топливного элемента и тягового аккумулятора, этот двигатель приводит в движение колеса автомобиля. В некоторых автомобилях используются мотор-генераторы, которые выполняют как приводную, так и регенеративную функции.

Блок топливных элементов: Набор отдельных мембранных электродов, которые используют водород и кислород для производства электричества.

Заливная горловина: Форсунка топливораздаточной колонки присоединяется к резервуару на транспортном средстве для заправки топливного бака.

Топливный бак (водород): Хранит газообразный водород на борту автомобиля до тех пор, пока он не понадобится топливному элементу.

Контроллер силовой электроники (FCEV): Этот блок управляет потоком электроэнергии, подаваемой топливным элементом и тяговой батареей, регулируя скорость электрического тягового двигателя и создаваемый им крутящий момент.

Тепловая система (охлаждение) — (FCEV): Эта система поддерживает надлежащий диапазон рабочих температур топливного элемента, электродвигателя, силовой электроники и других компонентов.

Трансмиссия (электрическая): Трансмиссия передает механическую энергию от тягового электродвигателя для привода колес.

Как работают автомобили на водороде? — CSIROscope

Вы, наверное, слышали об электромобилях.Но слышали ли вы о автомобилях с водородом и ?

Мы строим новую заправочную станцию ​​водородом в нашем центре в Клейтоне в Виктории. Это похоже на заправочную станцию, но для автомобилей, работающих на водороде, с нулевым уровнем выбросов.

Но как на самом деле автомобиль работает на водороде? И как работает водородный топливный элемент?

Самый распространенный элемент на Земле

Молекулярный водород — это газ. Как химический элемент водород — самый распространенный элемент на Земле. И он содержит много химической энергии.

Если вы воспламените водород, он вступит в реакцию с кислородом воздуха. Он высвобождает свою энергию посредством взрыва. Но вместо неконтролируемого взрыва мы можем безопасно использовать эту энергию в водородном топливном элементе. Это топливный элемент, который питает водородные автомобили.

Как на самом деле работает водородный автомобиль?

Топливный элемент — это устройство, которое принимает химическую энергию в виде водорода и превращает ее в электричество, которое может приводить в действие электродвигатель, как аккумулятор.Итак, автомобиль на водороде приводится в движение электродвигателем.

Как это работает? Во-первых, водород, хранящийся в баке (толстостенном и прошедшем краш-тесты, обычно под задним сиденьем), смешивается с воздухом и закачивается в топливный элемент. Внутри ячейки химическая реакция извлекает электроны из водорода.

Оставшиеся протоны водорода перемещаются по клетке и соединяются с кислородом воздуха, образуя воду. Между тем электроны создают электричество, которое заряжает небольшую аккумуляторную батарею, используемую для питания электрической трансмиссии (как в электромобиле).Вот почему автомобили называются электромобилями на топливных элементах (FCEV), по сравнению с электромобилями на аккумуляторных батареях (BEV), которые уже все чаще встречаются на наших дорогах.

Самая большая разница между FCEV и BEV (например, автомобилем Tesla) — это источник электричества. Электромобили работают от аккумуляторов, заряженных электрически (даже от солнечных батарей). Но автомобили, работающие на водороде, производят собственное электричество. У них на борту есть небольшая электростанция — это топливный элемент.

Итак, в отличие от двигателя внутреннего сгорания, который производит углекислый газ, единственными конечными продуктами этой водородной реакции являются электричество, вода и тепло.Единственными продуктами выхлопа являются водяной пар и теплый воздух.

Toyota Mirai — Frontansicht (фото M 93 из Википедии).

Водородные автомобили в Австралии

Австралия рассматривает водород как новый источник топлива. Реализуется несколько масштабных демонстрационных и пилотных проектов. «Зеленый водород» — водород, полученный без использования ископаемого топлива — является потенциальным топливом будущего. Это чистый источник энергии, который может помочь нам достичь будущего с нулевыми выбросами.

Водород можно использовать в качестве источника топлива в автомобилях, грузовиках, кораблях и даже самолетах.Несколько компаний работают над водородными автомобилями. В настоящее время в Австралии существует две модели автомобилей — седан Toyota Mirai (и Mirari второго поколения) и внедорожник Hyundai Nexo. Хотя их еще нельзя купить в частном порядке, их можно сдать в аренду. И как заправить этот топливный бак? Вот тут-то и пригодится наш водородный заправщик!

Как заправить водородный автомобиль?

Водородная заправочная станция очень похожа на заправочную станцию. В Германии, США и других странах водородные заправочные насосы находятся на обычных заправочных станциях.

Вы заправляете его как бензиновый или дизельный автомобиль. В топливозаправщиках есть насос с соплом, которое крепится к автомобилю. После герметизации водородный газ начинает заполнять бак в автомобиле. Если уплотнение не прикреплено, перекачивание не начнется, что гарантирует отсутствие утечек.

Заправочные станции водородом сегодня могут заполнить типичный бак водородного автомобиля примерно за пять минут. Это одно из преимуществ перед автомобилями с батарейным питанием, которые могут заряжаться намного дольше.

Наша новая АЗС в Мельбурне

Мы приветствуем финансирование правительством штата Виктория Технологического университета Суинберна для создания викторианского водородного хаба (Vh3).В рамках партнерства с Суинберном CSIRO получит 1 миллион долларов на строительство одной из первых в Австралии водородных заправочных станций на нашем предприятии в Клейтоне.

Предлагаемая демонстрационная установка водородной технологии и система заправки водородом.

Финансирование осуществляется в рамках гранта в размере 10 миллионов долларов, выделенного Технологическому университету Суинберна (Суинберн) на сотрудничество с нами и создание викторианского центра водорода (Vh3).

Под руководством Суинберна Vh3 призван объединить исследователей, партнеров по отрасли и предприятия для тестирования, испытания и демонстрации новых и появляющихся водородных технологий.Станция будет базироваться на нашем объекте в Клейтоне, совместно с Суинберном.

Благодаря этому новому финансированию мы установим коммерческую заправочную станцию ​​водородом на нашем предприятии в Клейтоне в Виктории. Он будет располагаться рядом с интегрированным демонстрационным комплексом по производству и хранению водорода. Водород будет храниться на территории и использоваться в качестве топлива для электромобилей Toyota Mirai на водородных топливных элементах.

Первоначально парк водородных автомобилей будет доступен для CSIRO и наших партнеров в качестве пробного и примера использования в «реальном мире».Существует потенциал для расширения, чтобы обеспечить заправку для других транспортных средств с нулевым уровнем выбросов в данной местности.

Движение вперед с водородом в Австралии

Чистый водород уже считается экономичным топливом для автомобильного транспорта. Но одним из основных препятствий на пути к большему проникновению на рынок является отсутствие инфраструктуры, поддерживающей его использование.

Новая водородная заправочная станция — ключевой шаг на пути к устранению этого барьера. Это будет лишь частью нашей новой миссии по водородной промышленности, которая помогает Австралии снизить риски при развертывании водородных технологий и продемонстрировать новые технологии.

И, что наиболее важно, это часть того, как мы помогаем Австралии перейти к чистому нулевому будущему.

Почему водородные двигатели внутреннего сгорания — не лучшая идея

Водородная энергия для транспортных средств звучит заманчиво: вода — единственный выброс, а водород, кажется, доступен везде, верно?

Неправильно.

Водород может приводить в действие транспортные средства, но то, как он приводит их в действие, имеет решающее значение. Двигатели водородного внутреннего сгорания сильно отличаются от автомобилей на водородных топливных элементах, и Джейсон Фенске из Engineering Explained разбирает оба этих момента в видео.

Самая главная причина, по которой водородные двигатели внутреннего сгорания не годятся? Они создают оксид азота, который вреден для людей и окружающей среды. Несмотря на то, что углерод не является частью процесса сгорания водорода, NOx не является компромиссом, поскольку автопроизводители стремятся к автомобилям с нулевым уровнем выбросов.

Во-вторых, водородные двигатели внутреннего сгорания во многих отношениях не так эффективны, как водородные топливные элементы. К тому времени, когда водород попадает в двигатель, через трансмиссию и в дифференциал, приводящий в движение колеса автомобиля, передается только 25 процентов потенциальной энергии водорода.В водородном топливном элементе водород попадает в топливный элемент, где электроны отправляются в преобразователь, затем в блок управления мощностью и в электродвигатель. Затем двигатель приводит в действие редуктор, приводящий в движение колеса автомобиля. Несмотря на многочисленные передачи, топливная энергия водорода более эффективно передается на колеса, до 50 процентов по данным Фенске.

В основном автомобили на топливных элементах — это электромобили, работающие на водороде.

Эффективность также имеет каскадный эффект.Поскольку водород занимает много места при хранении, автомобили с водородными топливными элементами могут иметь меньшие топливные баки по сравнению с автомобилями, работающими на водороде. А поскольку водород не совсем дешев, топливный элемент гораздо более эффективен в эксплуатации и потребляет на 25 процентов меньше энергии, чтобы выполнять ту же работу, что и двигатель водородного внутреннего сгорания.

Если вам не терпится получить дополнительную информацию о водороде и о том, как он питает топливные элементы и двигатели, нажмите «Играть» выше.

Создание и будущее водородного двигателя

После нескольких лет обещаний, что водород является чистым топливом будущего, только потому, что ничего особенного не произошло, теперь кажется, что будущее, наконец, почти наступило.

Производители автомобилей, включая Mazda и Toyota, в настоящее время разрабатывают водородные двигатели для своих транспортных средств, и эти двигатели однажды могут заменить не только технологию водородных топливных элементов и традиционные двигатели внутреннего сгорания, но, возможно, даже электромобили.

Однако, в то время как рынок электромобилей движется вперед, использование технологии водородных двигателей в коммерческих транспортных средствах все еще находится на начальной стадии, и возможность использования газообразного водорода в качестве полезной и практической альтернативы еще предстоит доказать.

Что такое водородный двигатель?

Источник: Тим Моссхолдер / Unsplash

Водородный двигатель — это усовершенствованная версия традиционных двигателей внутреннего сгорания, в которых в качестве топлива используется жидкий водород вместо бензина. Автомобиль, работающий на водородных двигателях, называется автомобилем с водородным двигателем внутреннего сгорания (HICEV). Они отличаются от электрифицированных транспортных средств на водородных топливных элементах (FCEV), таких как Toyota Mirai или Hyundai Tucson, в которых используется топливный элемент, в котором водород химически реагирует с кислородом в воздухе для производства электричества, которое приводит в действие электродвигатель.

Водородные двигатели вырабатывают энергию за счет сгорания водорода и используют системы подачи и впрыска топлива, которые являются модифицированными версиями систем, используемых с бензиновыми двигателями. За исключением сгорания небольшого количества моторного масла, что также имеет место в бензиновых двигателях, водородные двигатели не выделяют CO2 при использовании.

Источник: onurdongel / iStock

Водородные двигатели выделяют в основном воду или водяной пар в качестве побочного продукта, но процесс производства водородного топлива может вызвать выбросы парниковых газов.Однако одно исследование показало, что даже если водород извлекается самым неэффективным способом, это, вероятно, сократит выбросы CO2 более чем на 30% по сравнению с бензином.

Разница между HICEV и FCEV

Ключевое различие между HICEV и FCEV заключается в способе использования водорода в этих транспортных средствах. Первый включает в себя сгорание водорода, в то время как последний выполняет электрохимическую реакцию и использует жидкий водород для выработки энергии для своего электродвигателя.

Источник: Global Market Insights

Технология водородных двигателей внутреннего сгорания (HICE) все еще находится на ранней стадии разработки. Между тем, мировой рынок электромобилей на топливных элементах уже преодолел отметку в 1 миллиард долларов США, и в ближайшие годы ожидается, что он будет демонстрировать ежегодный рост примерно на 38%.

Происхождение и эволюция водородного двигателя

Источник: Sam Loyd / Unsplash

В 1806 году Франсуа Исаак де Риваз создал экспериментальный двигатель внутреннего сгорания, в котором в качестве топлива использовалась смесь водорода и кислорода.Двигатель De Rivaz считается самым первым в мире двигателем, работающим на водороде.

De Rivaz Engine Источник: Mobility Head

Вскоре после этого, в 1820 году, преподобный У. Сесил написал для Кембриджского философского общества статью под названием «О применении водородного газа для производства движущейся энергии в машинах». В этой статье описан двигатель, работающий по принципу вакуума, где вакуум создается за счет сжигания газообразного водорода.

Примерно 150 лет спустя Пол Дигес запатентовал модификацию двигателя внутреннего сгорания, которая могла работать как на бензине, так и на водороде.Конечно, к тому времени автомобили с бензиновым двигателем были нормой, и лишь немногие производители видели необходимость в разработке автомобилей с водородным топливом.

В последующие годы пагубные последствия использования ископаемого топлива для увеличения загрязнения воздуха, здоровья, глобального потепления, кислотных дождей и других областей в транспортных средствах и промышленности стали широко признаваться вместе с их воздействием. Ученые, активисты, лидеры и исследователи начали выражать озабоченность по поводу увеличения выбросов CO2 и экологических рисков, связанных с добычей и использованием ископаемого топлива.

Растущие экологические проблемы и спрос на экологически чистые альтернативы энергии заставили многие автомобильные компании сосредоточиться на разработке топлива с низким содержанием свинца, а затем на водороде и электромобилях.

В начале 2000-х годов японский автопроизводитель Mazda начал устанавливать двигатели Ванкеля на свою модель RX-8. Двигатель Ванкеля — это тип двигателя внутреннего сгорания, в котором используется эксцентриковая поворотная конструкция для преобразования давления во вращательное движение. При заданной мощности они компактнее и весят меньше двигателя внутреннего сгорания.Их также можно легко преобразовать для работы на водороде.

Совсем недавно они обновили конструкцию, разработав водородный роторный двигатель RENESIS, в котором используется инжектор газообразного водорода с электронным управлением и который может быть адаптирован для работы в качестве гибридного бензин-водородного двигателя.

BMW Hydrogen 7 Источник: More Cars / Wikimedia Commons

На этом работа по разработке эффективного водородного двигателя не закончилась. Примерно в 2006 году BMW разработала двухтопливный водородно-бензиновый двигатель внутреннего сгорания для своего ограниченного производства Hydrogen 7, который был разработан, чтобы продемонстрировать, что водород может работать в качестве топлива.Во время испытаний автомобилю удалось разогнаться со скоростью 187 миль в час (301 км / ч), и компания также заявила, что их водородный автомобиль достиг нулевого уровня выбросов CO2.

Однако претензии BMW были позже отклонены Агентством по охране окружающей среды США (EPA), указавшим, что автомобиль все еще выделяет углерод в результате испарения моторного масла. Кроме того, эффективность автомобиля при работе на водороде была чрезвычайно низкой, в среднем около 5,6 миль на галлон (50 л / 100 км). В основном это было связано с разницей в плотности энергии бензина и водорода.

Преимущества двигателей с водородным двигателем

Источник: NASA / Unsplash

Существуют различные важные причины, по которым водородные двигатели рассматриваются некоторыми как будущее автомобильной промышленности, и почему производители автомобилей тратят миллионы долларов на их создание. эффективные гидродвигатели.

Эксперты и компании в области энергетики считают, что водород может служить бесконечным и относительно низкоуглеродным источником энергии. Это также может стать жизнеспособной альтернативой использованию тяжелых металлов в батареях, которые наносят ущерб окружающей среде и могут стать очень дорогими в ближайшие годы с ростом электромобилей.

Источник: Global Market Insights

Низкая энергия воспламенения и высокая эффективность

Водородный ДВС имеет низкую энергию воспламенения по сравнению с обычными бензиновыми двигателями, поскольку при сжигании водорода в этих двигателях используются более низкие температуры пламени и меньшая теплопередача. Это позволяет двигателю работать на очень бедных смесях и при этом быстро сгорать. Кроме того, из-за высокого коэффициента диффузии (водород смешивается с воздухом быстрее, чем бензин) использование водорода снижает опасность, связанную с возможными утечками.

Без выбросов углерода

Считается, что водородные двигатели обеспечивают больший объем повышения энергетической безопасности и сокращения выбросов углекислого газа. Это связано с тем, что при работе этих транспортных средств на водороде в качестве побочных продуктов не выделяются углеродные соединения.

Быстрая заправка

Поскольку водород имеет низкую объемную плотность энергии, его необходимо хранить в виде сжатого газа, чтобы обеспечить запас хода обычных транспортных средств. Это требует использования резервуаров высокого давления, способных хранить водород с плотностью 5 000 или 10 000 фунтов на квадратный дюйм (psi).Розничные диспенсеры, которые устанавливаются на автозаправочных станциях, могут заполнить эти баки примерно за 5 минут. Это намного быстрее, чем время, необходимое для подзарядки электромобилей, даже при быстрой зарядке. Хотя, конечно, электромобили можно заряжать дома, а водородные автомобили — нет. Другие технологии хранения находятся в стадии разработки, включая химическое связывание водорода с таким материалом, как гидрид металла или низкотемпературные сорбирующие материалы.

Альтернативный источник энергии

Поскольку двигатели внутреннего сгорания могут быть адаптированы для сжигания водорода вместо бензина или в дополнение к нему, ряд стран работают над инициативой по увеличению производства водорода для использования в качестве топлива в самолетах. , корабли и даже для выработки электроэнергии.Если водород производится с использованием альтернативной энергии, это может быть рентабельным способом быстрого сокращения использования ископаемого топлива в ряде областей.

Недостатки водородных двигателей

Источник: Tramino / iStock

Несмотря на многочисленные достоинства их использования, водородные двигатели до сих пор не используются в больших масштабах, и с водородным топливом связаны многочисленные сложности. Рост эффективных транспортных средств с батарейным питанием и FCEV также привел к потере интереса производителей автомобилей и новаторов к разработке HICE.Помимо этого, существует также ряд серьезных проблем, которые необходимо решить, прежде чем это станет практической альтернативой электромобилям.

Дорогая технология

Процесс извлечения водорода является дорогостоящим и энергоемким. Хотя FCEV, работающий на водороде, считается транспортным средством с нулевым уровнем выбросов, извлечение самого водорода не означает нулевого выброса. В настоящее время большая часть водорода извлекается с помощью парового риформинга, при котором высокотемпературный пар сочетается с природным газом для извлечения водорода.

Водород можно также получать из воды с помощью электролиза. Это более энергоемко, но может быть выполнено с использованием возобновляемых источников энергии, что позволит устранить значительную часть выбросов. Однако стоимость производства водорода по-прежнему выше, чем у бензина (или электричества), поэтому необходимо будет немного их снизить, прежде чем водородные двигатели смогут стать рентабельными в больших масштабах.

Более низкая плотность энергии

Водород не так энергоемок, как другие виды топлива, а это означает, что вам нужно больше его для выполнения определенного объема работы.Добавьте к этому присущую поршневому двигателю неэффективность, и водородные двигатели не дают в целом значительного энергетического преимущества.

Загрязнение

Хотя водородные двигатели не выделяют углерод, из-за тепла, выделяемого в камере сгорания, оксид азота может образовываться как побочный продукт. Это соединение вредно для окружающей среды, а это означает, что, хотя водородные двигатели имеют нулевой выброс углерода, они не являются свободными от выбросов.

Вопросы безопасности

Транспортные средства, работающие на водородных двигателях внутреннего сгорания, оборудованы баками для водородного топлива под давлением.Эти резервуары спроектированы так, чтобы быть очень безопасными, но в случае утечки легковоспламеняющийся водород может вызвать серьезные повреждения. Решением может быть установка в автомобиле специальных датчиков для обнаружения любых таких утечек, за что приходится платить.

Большой размер и пониженная выходная мощность

Для водородных двигателей внутреннего сгорания стехиометрическое соотношение воздух / топливо составляет 34: 1. Это означает, что водородный двигатель использует вдвое больше воздуха для полного сгорания.

Однако это также приводит к снижению выходной мощности, и, следовательно, водородный двигатель имеет тенденцию выдавать только половину мощности по сравнению с бензиновым двигателем того же размера.Чтобы уравновесить эту потерю мощности, водородные двигатели делают больших размеров и часто оснащены турбонагнетателем.

Будущее, факты и тенденции, связанные с водородной энергетикой

Производство чистого водорода Источник: Ballard Power
  • Автомобильный сектор не единодушен в целесообразности использования водородной технологии для сегмента легковых автомобилей, и некоторые производители автомобилей, такие как Volkswagon и Audi больше не работает над разработкой HICEV, вместо этого сосредоточившись на электромобилях.Другие автопроизводители, в том числе Toyota, Renault и Hyundai, более оптимистично настроены в отношении автомобилей, работающих на водороде, и, как ожидается, продолжат разработку водородных двигателей. Toyota Mirai HFCV была представлена ​​в 2014 году и с декабря 2019 года продана по всему миру 10300 автомобилей, в то время как южнокорейская Hyundai производит внедорожник Nexo с водородным двигателем.
  • Для ускорения производства водорода Европейский Союз поставил цель установить по всему континенту электролизеры мощностью 40 гигаватт.Испания уже объявила о плане потратить 10,5 млрд долларов (8,9 млрд евро) на строительство водородных электролизеров мощностью 4 гигаватта (ГВт), работающих на солнечной энергии. Другие страны, в том числе Дания, создают заводы для увеличения производства водорода при электролизе на основе электроэнергии. Даже лидер ОПЕК Саудовская Аравия строит завод по производству экологически чистого водорода.

  • Корпорация Microsoft тестирует использование водородных топливных элементов для замены дизельных генераторов в качестве резервного источника питания.Американский стартап ZeroAvia планирует создать самолет с водородным двигателем к 2024 году.
  • Израильский производитель двигателей, Aquarius Engines, разработал новый водородный двигатель весом 22 фунта (10 кг), в котором используется уникальная система внутреннего газообмена, и компания утверждает, что это легкая, экономичная и экологически чистая альтернатива традиционным двигателям внутреннего сгорания.

  • Asian Renewable Energy Hub — крупный проект в области устойчивой энергетики в Австралии, который в настоящее время находится в стадии реализации.При полной функциональности планируется вырабатывать более 50 ТВтч электроэнергии за счет солнечной и ветровой энергии. Основная часть этой электроэнергии будет использоваться для производства аммиака и чистого водорода.
  • В настоящее время в США и Великобритании доступны только три автомобиля с водородным двигателем, это Honda Clarity, Toyota Mirai и Hyundai Nexo. Однако ожидается, что в ближайшие годы это число будет расти, поскольку многообещающие разработки в области водородной энергетики и технологии двигателей происходят во всем мире.

Хотя водородные двигатели по-прежнему сталкиваются с рядом проблем, ожидается, что в ближайшие годы рынок водорода как экологически чистого источника энергии будет быстро расти, и, по некоторым оценкам, к 2030 году он достигнет 70 миллиардов долларов. Согласно Bloomberg New Energy Finance, на стадии разработки находятся проекты «зеленого» водорода в разведке, добыче и переработке нефти на сумму более 90 миллиардов долларов. Что бы ни случилось с автомобилями HICE, использование возобновляемого водорода в качестве источника энергии будет продолжать расти.

Автомобили на водородных топливных элементах: что вам нужно знать

Помимо тонкой сети заправочных станций, есть еще одна причина низкого спроса на автомобили на водородных топливных элементах: их относительно дорого покупать. Несколько моделей автомобилей на топливных элементах, которые уже доступны на рынке, стоят около 80 000 долларов США за автомобиль среднего или высшего класса. Это почти вдвое больше, чем у сопоставимых полностью электрических или гибридных автомобилей.

Есть ряд причин, по которым автомобили на водородных топливных элементах все еще дороги.В дополнение к небольшим объемам, что означает, что производство еще предстоит индустриализировать, существует также вопрос о потребности в драгоценном металле, платине, которая действует как катализатор при выработке электроэнергии. Количество платины, необходимой для топливных элементов транспортных средств, уже значительно уменьшено. «Общая цель — снизить цены на автомобили с водородным двигателем до уровня, аналогичного цене других электромобилей», — поясняет Рюкер.

Другая причина высокой закупочной цены заключается в том, что автомобили на водородных топливных элементах, как правило, довольно большие, поскольку водородный бак (и) занимает много места.С другой стороны, привод для электромобиля с чисто аккумуляторным приводом также подходит для небольших автомобилей. Вот почему классические электромобили в настоящее время можно найти во всех классах автомобилей.

Помимо стоимости покупки, эксплуатация затраты также играют важную роль в рентабельности и приемлемости двигательной технологии. В автомобилях с водородными топливными элементами эти затраты не в последнюю очередь зависят от цены на топливо. В настоящее время 1 фунт (0,45 кг) водорода стоит около 14 долларов США в США.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *