Водород топливо: Что такое водородное топливо для автомобиля и каковы его перспективы?

Содержание

Водород — топливо будущего

Проекты по использованию водорода в качестве топлива будущего в нашей стране, похоже, переходят из области научной фантастики в практическую плоскость. Россия, известная как крупный поставщик на международном рынке нефти и газа, в скором времени будет поставлять на европейские рынки водород. Продажи его сейчас только начинают набирать темпы роста. По расчетам специалистов, к 2050 году потребность в водороде увеличится в десятки раз и займёт 15−20% всего мирового рынка энергоресурсов. Начиная с 2040 года, в Великобритании и странах Европы планируют прекратить продажу машин с бензиновыми двигателями. Это решение должно простимулировать эволюцию водородной энергетики и всей её технической составляющей в целом.
Засучив рукава, за дело берутся российские атомщики. Так, в конце 2018 года госкорпорация «Росатом» заявила о своём решении включить водородную энергетику в состав своих «приоритетных направлений технологического развития в составе отраслевого национального проекта». А в роли основного заказчика технических решений для потребностей атомно-водородной энергетики выступает АО «ВНИИАЭС».

Тут важно будет пояснить, что для атомщиков водород – это скорее побочный продукт технологического процесса, как и попутный газ у нефтяников. Скапливаясь, он становится опасным, и его проще сжечь, чем найти какое-то практическое применение. Ох, не зря смесь водорода с кислородом называется «гремучий газ». Даже небольшая концентрация примеси кислорода в водороде делает его взрывоопасным. На АЭС типа ВВЭР в активной зоне реактора и в системе защитных оболочек происходит радиолиз воды с выделением водорода. Для нейтрализации этого опасного явления и обеспечения взрывобезопасности АЭС используют различные системы контроля и газоочистки. Разработкой таких систем занимается АО «ВНИИАЭС», с богатым опытом работы в направлении водородной энергетики и большим числом собственных наработок. Водород нейтрализуют различными способами, но чаще всего сжигают.

Системой «дожигания водорода» оснащены некоторые АЭС в европейской части России:

Кольская АЭС – 4 энергоблока;
Ростовская АЭС – 2 энергоблока;
Балаковская АЭС – 4 энергоблока;
Нововоронежская АЭС – 2 энергоблока;
Калининская АЭС – 3 энергоблока.

По всей видимости, светлые головы учёных-атомщиков решили эту проблему так же, как и известный персонаж фильма «Кавказская пленница»: «Тот, кто нам мешает, тот нам поможет!»

Зачем понапрасну сжигать водород, решили атомщики, когда можно зарабатывать на его продаже. Тем более что в Европе сейчас спрос на него возрастает год от года.

В течение 2019 года в АО «ВНИИАЭС» запланированы формирование заявок на аванпроекты и проработка технических требований технологии выработки, накопления и транспортировки водорода.

Планируются следующие инновационные разработки:
• металлогидридный термосорбционный компрессор с давлением водорода на выходе 80 МПа и производительностью 108 нм3Н2/час;

• электролизер-генератор водорода производительностью 108 нм3 Н2/час;
• установки производства сплавов (сорбентов) производительностью 500 кг/сут.;
• блок производства метилциклогексана гидрированием толуола и логистического центра транспортировки и доставки продуктов ВКЭК (водород/ кислород) к потребителям и водород-хабу.

Также следует отметить проблему, существующую в энергосистемах с неравномерным графиком нагрузок в течение суток. Пиковые нагрузки днём чередуются спадами потребления в ночное время. Переключая часть мощности АЭС на генерацию водорода в периоды спада потребления, можно будет уравнивать графики потребления мощности. Режим работы с равномерным распределением нагрузки является наиболее предпочтительным для всего генерирующего электрооборудования.

В одном из проектов прорабатывается возможная дозагрузка генерирующих мощностей части АЭС в европейской части России для производства товарного водорода под нужды потребителей. Для этих целей рассматривается Кольская АЭС и готовящаяся сейчас к вводу в эксплуатацию ПАТЭС (плавучая атомная теплоэлектростанция) «Академик Ломоносов». Летом 2019 года ПАТЭС планируют разместить у берегов Чукотского АО, в порту Певек. Планируется, что ПАТЭС сможет заменить собой два крупных энергообъекта – Билибинскую АЭС и Чаунскую ТЭЦ.

Водород — топливо будущего

ПАТЭС «Академик Ломоносов» — плавучая атомная теплоэлектростанция

В заявлении сказано:

«Водород может найти применение для заправки грузового транспорта на водородных топливных элементах, в качестве теплоносителя в автономных пунктах производства электроэнергии и тепла для удаленных районов».

Что касается тепла, выделяемого при сжигании водорода с кислородом, то стоит отметить высокую температуру горения этой смеси (почти 3000 градусов Цельсия) с выделением большого количества энергии (до 24 000 Дж/Г). Это свойство применяется при плавлении тугоплавких металлов, кварца и т.п., для создания сплавов, резки и сварки металла. При сжигании водорода не происходит образование вредных веществ, а образуется лишь вода.

Остановимся отдельно на водородных топливных элементах, чтобы читателю было понятно, о чём идёт речь. Можете представить себе батарейку с «бесконечным» зарядом, в которой источником энергии являются не те компоненты, из которых состоит батарея, а постоянно протекающие через нее газы — водород и кислород. Внутри топливного элемента происходит окислительная реакция (2H2 + O2 → 2H2O), а источником тока выступает движение электронов в ионной среде. В качестве катализатора здесь используется дорогостоящая платина, но в скором времени учёные её планируют заменить более дешевыми материалами на основе нанотехнологии.

Водород — топливо будущего

Топливный элемент работает на водороде и кислороде

Водород — топливо будущего

Основные области применения водородных топливных элементов

Это не фантастика. Несколько лет назад начался первый серийный выпуск легкового автомобиля, работающего на водороде. Автомобиль имел гибридный электроводородный «двигатель». Энергия производится с помощью окислительной реакции водорода в электрохимическом генераторе. Вместо вредного выхлопа — вода.

Водород — топливо будущего

Toyota Mirai — серийный автомобиль, работающий на водороде

Знакомьтесь, Toyota Mirai (что означает «будущее»). Мощность двигателя 154 л.с., крутящий момент 335 Нм. Время разгона машины от 0 до 100 км/ч всего 9 секунд. Заправка водородом занимает до 5 минут. В машине установлено 2 баллона высокого давления ёмкостью в 60 и 62,4 л водорода. Между прочим, сейчас практически каждый крупный производитель автомобилей ведет свои разработки на топливных элементах. Основным препятствием развития этого направления является отсутствие достаточного числа водородных АЗС, но это дело наживное.

Вот так это выглядит в реальности по всему миру.

Водород — топливо будущего

Действуют и передвижные водородные АЗС (Австралия)

Немцы даже выпустили детский набор h3-Sprinter, который представляет собой комплект: гоночный автомобиль с водородным топливным элементом, водородная заправка (электролизер) и солнечный модуль, вырабатывающий электроэнергию для электролиза.

Дети наливали из-под крана воду в «заправочную» станцию, ждали, пока солнце сделает всю работу, заправлялись и гоняли эту машинку на водородном топливе.

Водород — топливо будущего

Детский игровой набор h3-Sprinter

В Америке компания Hyundai в рекламных целях предлагает своим клиентам на Tucson FCEV заправляться водородом бесплатно.

Водород — топливо будущего

Hyundai Tucson FCEV на водороде

А что, мы снова опоздали на этот «праздник жизни»? Где же наши разработки?

Об этом более подробно можно почитать здесь.

Автомобиль «Антэл»

Серия экспериментальных автомобилей «Антэл»: был такой отечественный проект с участием отечественных НИИ и предприятий (концерн «АвтоВАЗ», РКК «Энергия» и др.). При разработке «Антэл-1» на базе ВАЗ-2131 все основные компоненты, разработанные, между прочим, для «Буранов», разместили в багажном отделении. Кроме водородных, в машине располагались и кислородные баллоны, что делало её эксплуатацию небезопасной. Тем более что рядом с кислородом находилось ещё и масло, повышая опасность возгорания и взрыва.

Водород — топливо будущего

Авто 2131ТЭ Антэл-1 на топливных элементах (Московский автосалон 2001г.)

Следующую машину разработали на базе ВАЗ-2111, но главное — избавились от взрывоопасных баллонов с кислородом, заменив их воздушным компрессором. Машина стала значительно легче и улучшила свои характеристики. Пробег автомобиля до 350 км, максимальная скорость до 100 км/ч. Общий объём водородных баллонов — 90 л. Максимальная мощность электрического двигателя — 90 кВт.

Водород — топливо будущего

Авто 2111ТЭ «Антэл-2» (Московский автосалон, 2003 г.)

Скорее всего, противниками проекта выступили крупнейшие нефтяные компании или наши злейшие друзья — «западные партнёры», хотя формально финансирование этих разработок на ВАЗ в 2004 году было прекращено из-за «сложного финансового положения». А когда в 2005 году сменилось руководство автозавода, то проект «Антэл» полностью свернул свою деятельность.

Теперь мы с завистью смотрим на зарубежные автомобили с водородными топливными элементами, когда могли бы их опередить в своё время. В других странах уже созданы электропоезда, яхты и даже самолёты на водородных топливных элементах. Да, они снова нас обогнали.

Наш президент совсем недавно говорил о необходимости «технологического прорыва» в развитии страны — так вот же эти технологии! Если мы их не будем внедрять, то это всё равно не остановит прогрессирующее развитие водородных технологий по всему земному шару. И всё-таки хочется надеяться, что мы будем не только продавать в другие страны свои углеводородные ресурсы или водород, а ещё и сами сможем в полной мере пользоваться «высокими технологиями» собственного производства.

что мешает продвижению автомобилей на легком газе :: Свое дело :: РБК

Прощание с бензином

У водородных двигателей долгая и непростая история: еще в 1979 году BMW выпустила первый автомобиль, работающий на этом газе. Однако нефтяные кризисы 1970-х, заставившие задуматься о разработке такого автомобиля, миновали, и вплоть до 2000-х автогиганты положили идею под сукно. Все изменилось в новом веке, когда нефть снова стала дорожать, а правительства задумались о снижении выбросов в атмосферу углекислого газа. Экологичность — один из главных плюсов водородных двигателей, ведь единственный побочный продукт их работы — обычная вода. Ни углекислого газа, ни соединений свинца.

В 2007 году BMW выпустила партию из ста автомобилей Hydrogen 7, способных работать как на бензине, так и на водороде, сопроводив это событие масштабной рекламной кампанией: за рулем таких авто появлялись голливудские звезды Брэд Питт, Анджелина Джоли, Ричард Гир, Шарон Стоун. Однако сотней машин дело и ограничилось: их технические характеристики оставляли желать лучшего. Компания выбрала тупиковый путь: гибридная модель сжигала водород в камере сгорания, и газового баллона в 8 кг хватало всего на 200–250 км. А стоил автомобиль на уровне топовых моделей концерна.

Фото: Paul Sancya / AP

Фото: Paul Sancya / AP

Другие компании извлекли из эксперимента BMW урок. Сейчас уже три фирмы серийно выпускают легковые автомобили на водородных топливных ячейках, использующих топливо более эффективно: в результате электрохимической реакции они вырабатывают энергию, которая подается на электрический двигатель. Первой работающей по такой схеме была машина Hyundai ix35 Fuel Cell, поступившая в автосалоны в начале 2013 года. Годом позже в Японии стартовали продажи Toyota Mirai, а в 2015–2016 годах на японский и американский рынки вышла Honda Clarity. Еще полтора десятка компаний в последние годы объявили о скором выпуске или по крайней мере о начале разработки таких автомобилей. Совершенствование технологий позволило существенно удешевить производство: цена Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс.

Тем не менее цены кажутся высокими по сравнению с обычными машинами: так, Hyundai ix35 с обычным двигателем стоит от $10 тыс. до 35 тыс. Да и сам водород пока обходится дороже бензина. Но инновационные автомобили не только чище, но и потенциально выгоднее. Согласно подсчетам бывшего главного исследователя по вопросам альтернативной энергии Лос-Аламосской национальной лаборатории (США) Стива Хенча использовать водород в качестве энергоносителя намного выгоднее, чем обычный бензин. Энергоемкость одного галлона (4,54 л) бензина и 1 кг водорода, эквивалентного ему по объему, почти одинакова: 130 против 130–140 мДж. Галлон бензина в США стоит около $2,90, 1 кг водорода обойдется дороже — в $8,6. Однако если учесть, что термодинамическая эффективность бензина составляет 20–25%, а водорода — 60% и более, получится, что топливные ячейки в 2,5–3 раза эффективнее двигателя внутреннего сгорания. А значит, на том же объеме топлива водородные автомобили смогут проехать в 2,5–3 раза дольше.

Высокая энергия

В России компании также проявляют интерес к водородным технологиям. В 2006 году «Норильский никель» приобрел контрольный пакет акций американского пионера водородной энергетики Plug Power. Однако кризис 2008–2009 годов вынудил «Норникель» продать бумаги.

В 2014 году в России появился производитель водородных топливных ячеек — AT Energy. Компании удалось найти свою нишу: она поставляет аккумуляторные системы для дронов, в том числе военных. Топливными элементами AT Energy были, например, оснащены дроны компании «АФМ-Серверс», снимавшие с воздуха Олимпиаду-2014 в Сочи. «Оснащение дронов водородными элементами дает большой выигрыш по длительности полета, кроме того, они перестают зависеть от температуры воздуха», — говорит основатель компании Данила Шапошников.

В июне 2017 года AT Energy подписала стратегическое соглашение с АО «Линде Газ Рус», дочерней компанией производителя промышленных газов Linde Group. Партнеры будут поставлять владельцам беспилотных аппаратов баллоны с водородом производства Linde. Это поможет решить важнейшую проблему водородной энергетики для беспилотников — заправочной инфраструктуры.

Легок на помине

Ажиотаж по поводу самого легкого в природе газа, стартовавший в начале 2000-х, был подхвачен политиками. В 2004 году губернатор Калифорнии Арнольд Шварценеггер рисовал картины «водородных шоссе», которыми будет опоясан его штат всего через шесть лет. Ничего такого, конечно, не произошло. «Автомобильная отрасль консервативна: все новые технологии дорогие, требуют оптимизации моделей по массе и габаритам, испытаний на ресурс», — говорит гендиректор AT Energy Данила Шапошников.

Сказалась и экономическая ситуация. «В глобальном контексте замедление развития водородной энергетики связано с тем, что выбор технологий снижения выбросов в энергетике, транспорте, горнодобывающей промышленности и ЖКХ определяется экономической выгодой, — говорит советник по возобновляемой энергии в MoJo Energy Говард Рамсден, в 2000-х принимавший участие в разработке законодательства Европейского союза в области электроэнергетики. — Если финансовые механизмы стимулирования выбора низкоуглеродных технологий не являются существенными для стимулирования потребителя, то он либо не будет менять своих привычек, либо будет делать это очень вяло. Водородные технологии оказались слишком дороги для производителей в условиях двух глобальных экономических кризисов, где война за покупателя была жесткой».

Проблемы вызваны не только экономической конъюнктурой. Первому элементу таблицы Менделеева то и дело достается от глав технологических компаний. Так, владелец Tesla Илон Маск неоднократно называл топливные ячейки «ошеломляюще тупой технологией», противопоставляя их электрическим аккумуляторам, на которые сделала ставку его компания. Основная претензия заключается в том, что в качестве средства хранения энергии ячейки уступают аккумуляторам, поскольку преобразование химической энергии в электрическую внутри топливного элемента ведет к неизбежным потерям.

Илон Маск

Илон Маск (Фото: Marcio Jose Sanchez / AP)

Другие критики отмечают, что водородные автомобили по умолчанию небезопасны. Водород невидим, легко воспламеняется и не имеет запаха, а значит о его утечке водитель не догадается вплоть до взрыва. Правда, и Toyota и Honda специально отмечают, что в их моделях водород хранится в герметичных и ударопрочных контейнерах из углеволокна. И все-таки никакое углеволокно не выдержит сильного удара при ДТП.

И даже подсчеты экономических выгод водорода могут быть обманчивы. «Главная проблема — высокая стоимость производства самих топливных элементов, так как водородные батареи содержат платину, один из самых дорогих металлов в мире, — напоминает Кристиан Цбинден. — Многие заблуждаются, считая водородную энергетику спасением от глобального изменения климата. На самом деле энергия из водорода — это плацебо, поскольку при производстве подобных батарей используется непропорционально большое количество электроэнергии. Поэтому «зелеными» данные технологии назвать нельзя». Самый распространенный в наши дни процесс получения водорода — паровой риформинг метана. Он требует использования углеводородов. Правда, теоретически его можно заменить электролизом воды, энергию для которого будут давать, например, солнечные батареи.

Кроме того, под водородные двигатели нужно строить специальные сети заправок. «Вопрос не столько в разработках производителей двигателей, сколько в подготовке и развитии необходимой инфраструктуры, — считает Никита Игумнов, финансовый эксперт, ранее работавший в инвестпроектах Газпромбанка, в органах управления и контроля МОЭСК и «Мосэнергосбыта». — При реализации данного направления возникнет ряд проблем, требующих решения. Среди них — высокая стоимость производства, хранения и транспортировки топлива, а также необходимость масштабного развития необходимой инфраструктуры: заправки, терминалы хранения, производственные мощности. Все эти вопросы требуют масштабных инвестиций».

Нишевой элемент

И все-таки будет ошибочным считать водородную энергетику тупиковым направлением. «Например, она давно применяется в ракетостроении, но СМИ редко об этом пишут», — отмечает Шапошников. Пока автомобили на топливных элементах делают первые шаги, их меньшие братья — автопогрузчики уже вовсю переходят на самый легкий газ. В июле Walmart приобрела 55 млн акций одного из пионеров водородной энергетики — компании Plug Power, объявив о планах оснастить 30 своих центров дистрибуции водородными автозаправками, где смогут заряжаться погрузчики компании (сейчас такими заправками оснащены 22 американских магазина Walmart). В апреле этого года Amazon.com купила более 50 млн акций Plug Power, параллельно начав оснащать водородными заправками свои склады.

Компании-конкуренты считают, что водород поможет их центрам быть более эффективными. «Складская техника — это ниша, в которой водородные топливные ячейки уже прочно закрепились, — говорит Данила Шапошников. — Электрические аккумуляторы погрузчиков быстро садятся и подолгу заряжаются. Возникают большие паузы в работе. Кроме того, батареи имеют короткий срок службы. А техника на водороде надежна, неприхотлива и, кроме того, экологична — такие погрузчики могут работать в закрытых помещениях».

То, что силовые установки, работающие на водороде, практически бесшумны, делает их привлекательными для производства военной техники. Уже сейчас такими установками оснащают, например, подводные лодки. Водород служит и для нужд домохозяйств: энергетические станции мощностью от 1 до 5 кВт могут вырабатывать электроэнергию в режиме когенерации, попутно давая тепло для системы отопления и нагрева воды.

В Японии такие автономные системы получили широкое признание после аварии на «Фукусиме», когда ядерная энергетика стала восприниматься как нечто страшное. Агентство по природным ресурсам и энергетике Японии рассматривает развитие водородной промышленности как один из приоритетов, рассчитывая

начало большого пути / Блог компании Toshiba / Хабр

Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.

Водородные топливные элементы


Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.


Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов. Источник: James Humphreys / Wikimedia Commons

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.


Принцип работы водородного топливного элемента. Источник: Geek.com

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.

Проблемы добычи


Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа. Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.


Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba h3One.   

Мобильная электростанция Toshiba h3One


Мы разработали мобильную мини-электростанцию h3One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер h3One генерирует до 2 м3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м3 водорода станции требуется до 2,5 м3 воды.

Пока станция h3One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.   

Сейчас Toshiba h3One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.


Монтаж системы h3One в городе Кавасаки

Водородное будущее


Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика — это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.

Водород в автомобилях: Опасности и сложности использования

Плюсы и минусы использования водорода в качестве автомобильного топлива

Водород в автомобилях: Опасности и сложности использования

Начало 21-го века, как и само начало XX века, также считается временем перемен. Вновь перед населением нашей Планеты замаячила технологическая революция и вновь главное место в ней занимают, как и всегда — автомобили. Как и сто лет назад быстрыми темпами начали развиваться альтернативные виды транспорта, не связанные с привычными нам двигателями внутреннего сгорания. Все чаще можно увидеть на дорогах мира автомобили гибриды, которые приводятся в движение электродвигателем и ДВС. В развитых странах Мира и Европы все чаще входят в обиход электрокары. Совсем еще недавно, каких-то 7 — 10 лет назад, ученные и инженеры пророчили таким машинам с ДВС большое будущее, работающим на самом распространенном элементе в нашей вселенной — водороде. Все это человечество уже проходило в начале прошлого столетия. А потому, заново и вновь подтверждает свою актуальность распространенное по всему белу свету изречение: «Все новое — это хорошо забытое старое».

 

Сейчас наша Планета переживает новый кризис,- нефтяной. Только связан он не с дефицитом черного золота ставшего на 100 лет локомотивом развития всего человечества, а с перенасыщенностью данного вида товара на рынке. Это быть может и есть тот первый сигнал говорящий нам о том, что «нефтяной век» подходит к своему концу. Как говорят, — каменный век закончился не потому что закончились камни. Поэтому нам так важно сегодня развивать запасной план (запасной источник знергии, для авто в том числе) на случай, если…

 

21 век в автомобильном мире будет веком распространения технологий будущего. Но не всем новым технологиям суждено выиграть в этом  естественном отборе.

 

И так, приступим. Менее десяти лет назад единственной реальной альтернативой ископаемым видам топлива был по сути водород. Прошли годы, а никаких серьезных подвижек в этом направлении так сделано и не было. Наоборот, аутсайдер того времени то есть электрокар,  из пешек, перешел в дамки, с появлением автомобиля Tesla и разработкой очень надежных и прогрессивных аккумуляторов, из которых всем стало ясно, что электрические автомобили — это всерьез и надолго.

Водород в автомобилях: Опасности и сложности использования

Почему так получилось? Ведь водородный ДВС был практически идеальным способом приводить в движение автомобиль. Он не требовал больших вложений в разработку нового агрегата (водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания). По данным статистики, в случае использования водородного топлива мощность мотора упадет с 82 — до 65%, по сравнению с обычным бензиновым мотором. Но внеся небольшие изменения в саму систему зажигания, мощность того же двигателя сразу увеличится до 118%.

 

Водород в автомобилях: Опасности и сложности использования Первый плюс ДВС работающего на водороде: -необходимы минимальные изменения в конструкции двигателя для того, чтобы мотор перевести на новый вид топлива

 

Экологичность такого вида топлива тоже не подвергается сомнениям. Последняя серийная разработка японской автомобилестроительной корпорации «Toyota» доказала, что «выхлоп» водородного автомобиля можно…по-просту пить. Это лмчно продемонстрировал один зарубежный автожурналист. Он сделал несколько глотков воды поступающей прямо из выхлопной трубы автомобиля Toyota Mirai, и тут-же сказал, что на вкус данная вода вполне себе даже ничего, настоящая дистиллированная, без примесей.

Водород в автомобилях: Опасности и сложности использования

 

Водород в автомобилях: Опасности и сложности использования  Второй плюс этих ДВС — экологичность. Никакого загрязнения окружающей среды вредными выбросами в атмосферу. Значит, сведение к минимуму этих парниковых газов и спасение нашей прекрасной Планеты. Вот к чему может привести использование этого вида топлива.

 

Следующий фактор о водородных двигателях (его косвенно можно считать таковым). Исторически так уж сложилось, что водородом заправляли еще «автопионеров» среди ДВС. Первый такой водородный двигатель был построен французским конструктором Франсуа Исаак де Ривазом аж в 1806 году.

 

Не забудем и те героические времена истории Нашей с вами страны. В блокадном Ленинграде на водород было переведено более 500 автомобилей. И они без особых проблем несли свою непростую но нужную службу.

 

Водород в автомобилях: Опасности и сложности использования  Получается, что водород, как топливо для сжигания в ДВС, используют уже достаточно давно. Значит и особых проблем в создании современного автомобиля не должно просто быть.

 

Четвертый значительный фактор говорящий за целесообразность использования вещества с формулой h3- это его колоссальная распространенность на планете. h3 (водород) можно получать даже из отходов и сточных вод.

 

Водород в автомобилях: Опасности и сложности использования  Часто встречающиеся в природе вещества достаточно дешево стоят. Значит и водородное топливо не должно быть дорогим.

 

 

 

Пятый фактор. — Водород может использоваться не только в ДВС. Технологии также позволяют применять его в так называемом «топливном элементе».

Водород в автомобилях: Опасности и сложности использования

Топливный элемент отделяет один электрон в атоме водорода от одного протона и использует электроны для получения электрического тока. Это электричество способно питать двигатель в электрокаре. В самих топливных элементах также не используется ископаемое топливо, поэтому таковые (топливные элементы) по-просту не загрязняют окружающую среду. И главное достоинство — они безопасны, водород не может сам по себе самопроизвольно испарится из них. Казалось бы, просто идеальный преемник двигателю внутреннего сгорания в качестве источника энергии для автомобилей 21-го века.

 

Водород в автомобилях: Опасности и сложности использования  Использование водорода может происходить в различных силовых установках, делая его таким образом более гибким к развитию технологий. Разрабатываемые современные водородные автомобили в основном используют эту данную схему, как наиболее безопасную и продуктивную.

 

Не мало плюсов, неправда ли друзья? И они все очень даже весомые. Но почему тогда до сих пор мы не видим миллионы водородных самодвижущихся экипажей вокруг нас по всей планете? На то есть свои определенные причины, и они также очень сегодня важны.

 

Смотрите также: Десять самых странных источников энергии для автомобильных двигателей

Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.

Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

 

В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, h3O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.

 

Смотрите также: Истинные радиационные опасности в нашей окружающей среде

 

Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.

 

Водород в автомобилях: Опасности и сложности использования На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения h3 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.

 

Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.

Водород в автомобилях: Опасности и сложности использования

 

Водород в автомобилях: Опасности и сложности использования Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.

 

Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).

 

Водородный автомобиль BMW: Прототип

 

В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО!!!), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур h3 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.

 

Водород в автомобилях: Опасности и сложности использования Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.

 

А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.

 

Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.

 

Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!

Водород в автомобилях: Опасности и сложности использования

 

Водород в автомобилях: Опасности и сложности использования Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

 

Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что «топливные элементы будущего» могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.

 

И наконец последними, возглавляющими наш список минусов водородных технологий являются: — смертельные опасности, связанные с жидким и газообразным водородом.

Водород в автомобилях: Опасности и сложности использования

Возглавляет окончательный список проблем — само возгорание водорода. В присутствии окислителя, т.е. кислорода, водород может сам по-себе просто загореться. Иногда такое возгорание происходит в виде взрыва. Согласно проведенным исследованиям было установлено, что для воспламенения водорода достаточно всего одной 10(десятой) частички энергии, что требуется для воспламенения бензина. Проще говоря можно сказать, что достаточно  всего маленькой искры от статического электричества, чтобы этот гремучий газ вспыхнул.

 

Еще одна проблема кроется в том, что это пламя водорода почти невидимо. При возгорании водорода пламя настолько тускло, что с ним не так-то просто бороться (справиться).

 

Это интересно: 5 «зеленых» технологий из-за которых мы не понимаем, почему бензин до сих пор так популярен

 

А вот друзья еще одно летальное свойство водорода: -он может привести к удушью. h3 конечно не ядовит, но, если вы начнете дышать чистым водородом, то можете просто задохнуться и все потому, что будете просто-напросто лишены обычного кислорода. И хуже того, распознать, что концентрация водорода в воздухе очень высока просто невозможно, так как он совсем невидим и не имеет запаха, так же как и сам кислород.

 

И наконец последняя причина. Как и любой сжиженный газ водород имеет очень низкую температуру. При утечке из бака и непосредственным контактом с открытыми участками тела человека, он может привести к серьезному обморожению.

 

Действительно ли водород на столько опасен?

Водород в автомобилях: Опасности и сложности использования

Наверное, после всего прочитанного Вы будете уважаемые читатели просто в шоке, что водород на столько опасен. И возможно никогда не захочете покупать себе водородный автомобиль, если в будущем у вас появится такая возможность(?).

 

На самом деле не все так уж и плохо. Поскольку газообразный водород чрезвычайно легок, то при утечке он быстро рассеется в самой атмосфере. Тогда ни какой гремучей смеси не получится и опасность взрыва будет сведена к минимуму.

 

Что касается опасности удушья, то мы ответим вам так: –такая проблема может случиться только в замкнутом пространстве, например в гараже. Если же утечка водорода произойдет на открытом воздухе, то его концентрация будет незначительной и небольшой, опасности для жизни она не представляет.

 

И напоследок: -самые известные водородные автомобили современности:

 

Honda FCX Clarity

Водород в автомобилях: Опасности и сложности использования

Mercedes-Benz F-CELL

Водород в автомобилях: Опасности и сложности использования

 

Toyota Mirai

Водород в автомобилях: Опасности и сложности использования

 

BMW Hydrogen 7

Водород в автомобилях: Опасности и сложности использования

 

Mazda RX-8 hydrogen

Водород в автомобилях: Опасности и сложности использования

Водородное топливо — Техническая библиотека Neftegaz.RU

Lh3 является самым экологически чистым видом моторного топлива, поэтому его перспективы очевидны

Использование водорода в качестве топлива

В Австралии на бурых углях в штате Виктория отрабатывается технология технология газификации угля с последующим выделением водорода, вернее удаления серы, ртути и двуокиси углерода (СО2).

В Норвегии — Nel Hydrogen отрабатывает технологию использования ВИЭ для высокотемпературного электролиза для разделения воды на водород и кислород, который будет выбрасываться в атмосферу.

Kawasaki Heavy Industries разрабатывает танкер — водородовоз для транспортировки жидкого водорода ( LH2).

Реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H2 (2 г) и 0,5 моль O2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н2 + 0,5 О2= Н2О

после завершения реакции образуется 1 моль H2O (18 г) с выделением энергии 285,8 кДж/моль.

Для сравнения: теплота сгорания ацетилена — 1300 кДж/моль, пропана — 2200 кДж/моль.

1 м³ водорода весит 89,8 г (44,9 моль), поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии.

1 кВт*ч = 3600 кДж, поэтому получим 3,56 кВт*ч электроэнергии. Целесообразность перехода на водородное топливо можно оценить, сравнив имеющийся тариф на 1 кВт*ч электричества и, к примеру, стоимость 1 м³ газа или стоимость другого энергоносителя.

При сжигании водорода получается чистая вода. То есть водородное топливо производится без вреда для окружающей среды, в отличие от газа или бензина.

Получение водорода

Для получения водорода используют химические методы, в тч реакции разложения воды электрическим током.
Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа.
Она проводится при высокой температуре:

СН4 + 2Н20 = CO2 + 4Н2 — 165 кДж

  • 1.Электролиз водных растворов солей:
2NaCl + 2h3O → h3↑ + 2NaOH + Cl2
  • 2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
h3O + C ⇄ h3 + CO
  • 3.Из природного газа.
Конверсияс водяным паром: CH4 + H2O ⇄ CO + 3H2 (1000 °C) Каталитическое окисление кислородом: 2CH4 + O2 ⇄ 2CO + 4H2
  • 4. Крекинг и реформинг углеводородов в процессе переработки нефти.
  • 5. Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:
Zn + 2HCl → ZnCl2 + H2
  • 6.Взаимодействие кальция с водой:
Ca + 2H2O → Ca(OH)2 + H2
  • 7.Гидролиз гидридов:
NaH + H2O → NaOH + H2
  • 8.Действие щелочей на цинк или алюминий:
2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2↑ Zn + 2KOH + 2H2O → K2[Zn(OH)4] + h3↑
  • 9 .С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:
2H3O+ + 2e → H2↑ + 2H2O
  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в 2х формах (модификациях) — в виде орто — и пара-водорода.
В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны).
Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота.
При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода.
При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25).
Без катализатора превращение происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.
Молекула водорода двухатомна — Н. При обычных условиях — это газ без цвета, запаха и вкуса.
Водород — самый легкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре.
Как самые легкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому.
Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в 7 раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2=2Н — 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2 и с единственным неметаллом — фтором, образуя фтороводород:

F2+H2=2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении.

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н20

Записанное уравнение отражает реакцию восстановления — процесс, в результате которого от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются).

Реакция восстановления противоположна реакции окисления.

Обе эти реакции всегда протекают одновременно как 1 процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N2 + 3H2 → 2 NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl2 + H2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 → CH4

Оксиды восстанавливаются до металлов:

CuO + H2 → Cu + H2O Fe2O3 + 3H2 → 2 Fe + 3H2O WO3 + 3H2 → W + 3H2O

Геохимия водорода

Водород — самый распространенный элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.
На Земле содержание водорода понижено по сравнению с Солнцем.
Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.
В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.
В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением.
Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение кроме энергетики:

  •  для атомно-водородной сварки,
  •  в пищевой промышленности, как пищевая добавка E949- упаковочный газ, для производства маргарина из жидких растительных масел,
  •  химической промышленности — при производстве аммиака, мыла и пластмасс,
  •  в качестве ракетного топлива,

Пожароопасность и взрывоопасность

Водород при смеси с воздухом образует взрывоопасную смесь — гремучий газ. 
Наибольшую взрывоопасность — при объемном отношении водорода и кислорода 2:1, или водорода и воздуха приближенно 2:5, так как в воздухе кислорода содержится примерно 21%.
Водород пожароопасен.

что это, как работает, схема, фото, безопасность,

Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.

Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.

В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles — электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.

водородный автомобиль groveводородный автомобиль grove

В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.

автомобили на водородном топливеавтомобили на водородном топливеРиваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

водородный автомобиль grove ценаводородный автомобиль grove цена

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

как работает водородный двигатель на автомобилекак работает водородный двигатель на автомобиле

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.

водородный двигатель для автомобиля принципводородный двигатель для автомобиля принципФото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.водородные автомобили принцип работыводородные автомобили принцип работы
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.водородная ячейка на автомобильводородная ячейка на автомобиль
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.как работает водородный автомобилькак работает водородный автомобиль

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Плюсы и минусы водородной установки для автомобиля

Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.

водородный двигатель для автомобиля сссрводородный двигатель для автомобиля ссср

Недостатки водородного топлива:

  • Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
  • Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
  • Высокая стоимость автомобиля.
  • Передвигаться можно лишь в тех местах, где имеются заправки.
  • Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
  • Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.

Плюсы водородного топлива:

  • Нет вредных выбросов в атмосферу.
  • Водородные двигатели практически не шумят.
  • Быстрая заправка – менее 5 минут.
  • Есть большой потенциал для развития.
  • Водород даёт в 3 раза больше энергии, чем бензин.
  • Высокий крутящий момент при начале движения.
  • Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
  • Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
  • Хороший запас хода водородного авто – 400-1000 км.

Опасен ли водород для человека?

Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.

водородное топливо для автомобилей что этоводородное топливо для автомобилей что это

Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.

Чем водородные авто лучше электромобилей?

Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.

Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.

Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.

принцип работы водородного двигателя автомобиля groveпринцип работы водородного двигателя автомобиля groveКак выглядит батарея в электрокаре

На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.

Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?

Как работает водородный автомобиль

Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.

Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.

водородный автомобиль на чем ездитводородный автомобиль на чем ездит

Попов Андрей ГеннадьевичПопов Андрей Геннадьевич

Попов Андрей Геннадьевич

Автослесарь, стаж работы 19 лет

Задать вопрос

За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).

А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.

автомобили с водородным двигателем в россииавтомобили с водородным двигателем в россии

 

Мелехов Алексей ВикторовичМелехов Алексей Викторович

Мелехов Алексей Викторович

Автоэлектрик , стаж работы 9 лет

Задать вопрос

Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.

А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.

Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.

электро или водородные автомобилиэлектро или водородные автомобилиMazda RX-8 Hydrogen RE

Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.

Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.

Где заправляют водородные автомобили?

К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.

Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.

чем заправляется водородный автомобильчем заправляется водородный автомобиль

Автозаправки бывают 3 типов:

  1. Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
  2. Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
  3. Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.

водородные батареи для автомобиляводородные батареи для автомобиля

Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.

Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

как работает водородный двигатель на автомобиле groveкак работает водородный двигатель на автомобиле grove

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

что значит водородный автомобильчто значит водородный автомобиль

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

водород автомобильводород автомобиль

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

стоимость водородного топлива для автомобилястоимость водородного топлива для автомобиля

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina h3 Speed

водородные элементы для автомобиляводородные элементы для автомобиля

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

существует ли автомобиль на водородном топливесуществует ли автомобиль на водородном топливе

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

как устроен водородный автомобилькак устроен водородный автомобиль

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

устройство водородного автомобиляустройство водородного автомобиля

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.


Сколько раз прочитали статью:
926

Есть свое мнение или вопрос по теме статьи? Напиши свой комментарий ниже!

как работают водородные автомобили и когда они появятся на дорогах / Хабр

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?


Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?


Водород можно получать разными методами:
  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

Наиболее экономичным способом производства водорода сейчас считается паровая конверсия. Так называют получение водорода из легких углеводородов (метан, пропан-бутановая фракция) с использованием парового риформинга. Риформингом называют процесс каталитической конверсии углеводородов в присутствии водяного пара. Водяной пар смешивается с метаном при высокой температуре (700–1000 Сº) и большом давлении с использованием катализатора.

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.


Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?


Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.


Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?


Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

В Mirai и других моделях водородных авто используются очень прочные баки для водорода. Toyota сделала свои баки пуленепробиваемыми, их стенки из сверхпрочного волокна выдерживают выстрелы из крупнокалиберного оружия. Для тестов компания наняла снайперов и пробить бак смогла только пуля калибром .50 после двойного попадания в одно и тоже место.

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?


Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Какие компании уже выпускают или собираются выпускать автомобили на водороде?


Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?


В настоящий момент водородные автомобили немного дороже обычных в плане эксплуатации. Так, при поездке в Европе протяженностью 480 км затраты на горючее для владельца обычной машины составят примерно $45, а вот владелец Mirai заплатит около $57. И это при том, что правительство некоторых стран субсидирует производство водорода для машин. Стоимость 1 кг водорода составляет в среднем $11.45.

Чем водородные авто лучше электромобилей?


Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Если сравнивать стоимость большинства электромобилей и Toyota Mirai, то они сравнимы, это несколько десятков тысяч долларов США. Стоимость Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс. Стоимость электрокаров Tesla начинается с $45 тыс. (базовая комплектация с прайсом в $35 тыс. пока доступна лишь для предзаказа). Электромобили от BMW стоят около $50 тыс.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?


Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.


Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

90000 Fuel Cells | Hydrogenics 90001 90002 90003 Hydrogen + Oxygen = Electricity + Water Vapor 90004 90005 90006 90007 90003 Cathode: O 90009 2 90010 + 4H 90011 + 90012 + 4e 90011 — 90012 → 2H 90009 2 90010 O 90004 90007 90003 Anode: 2H 90009 2 90010 90004 90003 → 90004 90003 4H 90011 + 90012 + 4e 90011 — 90012 90004 90007 90003 Overall : 2H 90009 2 90010 + O 90004 90003 90009 2 90010 90004 90003 → 90004 90003 2H 90009 2 90010 O 90004 90002 A fuel cell is a device that converts chemical potential energy (energy stored in molecular bonds) into electrical energy.A PEM (Proton Exchange Membrane) cell uses hydrogen gas (H 90009 2 90010) and oxygen gas (O 90009 2 90010) as fuel. The products of the reaction in the cell are water, electricity, and heat. This is a big improvement over internal combustion engines, coal burning power plants, and nuclear power plants, all of which produce harmful by-products. 90005 90002 Since O 90009 2 90010 is readily available in the atmosphere, we only need to supply the fuel cell with H 90009 2 90010 which can come from an electrolysis process (see Alkaline electrolysis or PEM electrolysis).90005 90002 90003 There are four basic elements of a PEM Fuel Cell: 90004 90005 90002 The anode, the negative post of the fuel cell, has several jobs. It conducts the electrons that are freed from the hydrogen molecules so that they can be used in an external circuit. It has channels etched into it that disperse the hydrogen gas equally over the surface of the catalyst. 90005 90002 The cathode, the positive post of the fuel cell, has channels etched into it that distribute the oxygen to the surface of the catalyst.It also conducts the electrons back from the external circuit to the catalyst, where they can recombine with the hydrogen ions and oxygen to form water. 90005 90002 The electrolyte is the proton exchange membrane. This specially treated material, which looks something like ordinary kitchen plastic wrap, only conducts positively charged ions. The membrane blocks electrons. For a PEMFC, the membrane must be hydrated in order to function and remain stable. 90005 90002 The catalyst is a special material that facilitates the reaction of oxygen and hydrogen.It is usually made of platinum nanoparticles very thinly coated onto carbon paper or cloth. The catalyst is rough and porous so that the maximum surface area of ​​the platinum can be exposed to the hydrogen or oxygen. The platinum-coated side of the catalyst faces the PEM. 90005 90070 90002 As the name implies, the heart of the cell is the proton exchange membrane. It allows protons to pass through it virtually unimpeded, while electrons are blocked. So, when the H 90009 2 90010 hits the catalyst and splits into protons and electrons (remember, a proton is the same as an H + ion) the protons go directly through to the cathode side, while the electrons are forced to travel through an external circuit.Along the way they perform useful work, like lighting a bulb or driving a motor, before combining with the protons and O 90009 2 90010 on the other side to produce water. 90005 90002 How does it work? Pressurized hydrogen gas (H 90009 2 90010) entering the fuel cell on the anode side. This gas is forced through the catalyst by the pressure. When an H 90009 2 90010 molecule comes in contact with the platinum on the catalyst, it splits into two H + ions and two electrons (e-). The electrons are conducted through the anode, where they make their way through the external circuit (doing useful work such as turning a motor) and return to the cathode side of the fuel cell.90005 90002 Meanwhile, on the cathode side of the fuel cell, oxygen gas (O 90009 2 90010) is being forced through the catalyst, where it forms two oxygen atoms. Each of these atoms has a strong negative charge. This negative charge attracts the two H + ions through the membrane, where they combine with an oxygen atom and two of the electrons from the external circuit to form a water molecule (H 90009 2 90010 O). 90005 90002 All these reaction occurs in a so called cell stack. The expertise then also involves the setup of a complete system around core component that is the cell stack.90005 90002 The stack will be embedded in a module including fuel, water and air management, coolant control hardware and software. This module will then be integrated in a complete system to be used in different applications. 90005 90002 Due to the high energetic content of hydrogen and high efficiency of fuel cells (55%), this great technology can be used in many applications like transport (cars, buses, forklifts, etc) and backup power to produce electricity during a failure of the electricity grid.90005 90002 90003 Advantages of the technology: 90004 90005 90099 90100 By converting chemical potential energy directly into electrical energy, fuel cells avoid the «thermal bottleneck» (a consequence of the 2 90011 nd 90012 law of thermodynamics) and are thus inherently more efficient than combustion engines, which must first convert chemical potential energy into heat, and then mechanical work. 90103 90100 Direct emissions from a fuel cell vehicle are just water and a little heat. This is a huge improvement over the internal combustion engine’s litany of greenhouse gases.90103 90100 Fuel cells have no moving parts. They are thus much more reliable than traditional engines. 90103 90100 Hydrogen can be produced in an environmentally friendly manner, while oil extraction and refining is very damaging. 90103 90110 .90000 Hydrogen Fuel Basics | Department of Energy 90001 Skip to main content 90002 90003 National Labs 90004 90003 Energy.gov Offices 90004 90007 90008 Search 90009 Office ofEnergy Efficiency & Renewable Energy 90010 90011 About EEREAbout EERE 90012 90013 About EERE Home 90004 90015 EERE Blog 90004 90015 EERE NewsEERE News 90012 90013 EERE News Home 90004 90015 News Releases 90004 90015 Photographs 90004 90007 90004 90015 Leadership 90004 90015 EERE BudgetEERE Budget 90012 90013 EERE Budget Home 90004 90015 Development & Implementation 90004 90015 Performance Planning & Management 90004 90015 Archives 90004 90007 90004 90015 EERE Timeline 90004 90015 EERE Offices 90004 90015 Business OperationsBusiness Operations 90012 90013 Business Operations Home 90004 90015 Workforce Management Office 90004 90015 Information & Technology Services Office 90004 90015 Project Management Coordination OfficeProject Management Coordination Office 90012 90013 Project Management Coordination Office Home 90004 90015 Methods & Process Stewardship 90004 90015 Project Portfolio Oversight 90004 90015 Competency Management & Cross-Cutting Activities 90004 90015 Operations, Audit Resolution, & Internal Controls 90004 90007 90004 90015 Golden Field OfficeGolden Field Office 90012 90013 Golden Field Office Home 90004 90015 Golden Field Office Reading Room 90004 90015 Contact Us 90004 90007 90004 90015 National Environmental Policy Act 90004 90015 Contact Business Operations 90004 90007 90004 90015 Strategic ProgramsStrategic Programs 90012 90013 Strategic Programs Home 90004 90015 Policy & Analysis 90004 90015 InternationalInternational 90012 90013 International Home 90004 90015 International Partnerships & Projects 90004 90007 90004 90015 Stakeholder Engagement 90004 90015 Communications 90004 90015 Legislative Affairs 90004 90015 Contact Strategic Programs 90004 90007 90004 90015 Initiatives & Projects 90004 90015 Success Stories 90004 90015 Employment OpportunitiesEmployment Opportunities 90012 90013 Employment Opportunities Home 90004 90015 Working at EERE 90004 90015 Job Vacancies 90004 90015 Internships & Fellowships 90004 90015 EERE Employment Related Links 90004 90007 90004 90015 EERE FAQs 90004 90015 Contact EERE 90004 90007 90004 90011 Initiatives 90004 90007 eere Home 90010 90011 About EEREAbout EERE 90012 90013 About EERE Home 90004 90015 EERE Blog 90004 90015 EERE NewsEERE News 90012 90013 EERE News Home 90004 90015 News Releases 90004 90015 Photographs 90004 90007 90004 90015 Leadership 90004 90015 EERE BudgetEERE Budget 90012 90013 EERE Budget Home 90004 90015 Development & Implementation 90004 90015 Performance Planning & Management 90004 90015 Archives 90004 90007 90004 90015 EERE Timeline 90004 90015 EERE Offices 90004 90015 Business OperationsBusiness Operations 90012 90013 Business Operations Home 90004 90015 Workforce Management Office 90004 90015 Information & Technology Services Office 90004 90015 Project Management Coordination OfficeProject Management Coordination Office 90012 90013 Project Management Coordination Office Home 90004 90015 Methods & Process Stewardship 90004 90015 Project Portfolio Oversight 90004 90015 Competency Management & Cross-Cutting Activities 90004 90015 Operations, Audit Resolution, & Internal Controls 90004 90007 90004 90015 Golden Field OfficeGolden Field Office 90012 90013 Golden Field Office Home 90004 90015 Golden Field Office Reading Room 90004 90015 Contact Us 90004 90007 90004 90015 National Environmental Policy Act 90004 90015 Contact Business Operations 90004 90007 90004 90015 Strategic ProgramsStrategic Programs 90012 90013 Strategic Programs Home 90004 90015 Policy & Analysis 90004 90015 InternationalInternational 90012 90013 International Home 90004 90015 International Partnerships & Projects 90004 90007 90004 90015 Stakeholder Engagement 90004 90015 Communications 90004 90015 Legislative Affairs 90004 90015 Contact Strategic Programs 90004 90007 90004 90015 Initiatives & Projects 90004 90015 Success Stories 90004 90015 Employment OpportunitiesEmployment Opportunities 90012 90013 Employment Opportunities Home 90004 90015 Working at EERE 90004 90015 Job Vacancies 90004 90015 Internships & Fellowships 90004 90015 EERE Employment Related Links 90004 90007 90004 90015 EERE FAQs 90004 90015 Contact EERE 90004 90007 90004 90011 Initiatives 90004 90007 90010 90011 ServicesServices 90012 90013 Services Home 90004 90015 Careers and Education 90004 90015 Energy Analysis 90004 90015 Funding 90004 90015 Publications 90004 90015 Small Business Program 90004 90015 States & Local Communities 90004 90015 Technical Assistance 90004 90007 90004 90011 EfficiencyEfficiency 90012 90013 Efficiency Home 90004 90015 Advanced Manufacturing 90004 90015 Building Technologies Office 90004 90015 Government Energy Management 90004 90015 Weatherization Assistance 90004 90007 90004 90011 RenewablesRenewables 90012 90013 Renewables Home 90004 90015 Solar 90004 90015 Geothermal 90004 90015 Wind 90004 90015 Water 90004 90007 90004 90011 TransportationTransportation 90012 90013 Transportation Home 90004 90015 Bioenergy 90004 90015 Hydrogen & Fuel Cells 90004 90015 Vehicles 90004 90007 90004 90007 90002 90003 National Labs 90004 90003 Energy.gov Offices 90004 90007 .90000 Alternative Fuels Data Center: Hydrogen Basics 90001 90002 Hydrogen (H 90003 2 90004) is an alternative fuel that can be produced from diverse domestic resources. Although hydrogen is in its infancy in the market as a transportation fuel, government and industry are working toward clean, economical, and safe hydrogen production and distribution for widespread use in fuel cell electric vehicles (FCEVs). Light-duty FCEVs are now available in limited quantities to the consumer market in localized regions domestically and around the world.The market is also developing for buses, material handling equipment (such as forklifts), ground support equipment, medium- and heavy-duty vehicles, and stationary applications. For more information, see fuel properties and the Hydrogen Analysis Resource Center. 90005 90002 Hydrogen is abundant in our environment. It’s stored in water (H 90003 2 90004 O), hydrocarbons (such as methane, CH 90003 4 90004), and other organic matter. One of the challenges of using hydrogen as a fuel comes from being able to efficiently extract it from these compounds.90005 90002 Currently, steam reforming, combining high-temperature steam with natural gas to extract hydrogen, accounts for the majority of the hydrogen produced in the United States. Hydrogen can also be produced from water through electrolysis. This is more energy intensive but can take advantage of inexpensive excess renewable energy, such as wind or solar, while avoiding the harmful emissions associated with other kinds of energy production. 90005 90002 Almost all of the hydrogen produced in the United States each year is used for refining petroleum, treating metals, producing fertilizer, and processing foods.90005 90002 Although the production of hydrogen may generate emissions affecting air quality, depending on the source, an FCEV running on hydrogen emits only water vapor and warm air as exhaust and is considered a zero-emission vehicle. Major research and development efforts are aimed at making these vehicles and their infrastructure practical for widespread use. This has led to the initial rollout of light-duty production vehicles to retail consumers in northern and southern California and fleet availability in northeastern states.90005 90002 Learn more about hydrogen and fuel cells from the Fuel Cell Technologies Office. 90005 90020 Hydrogen as an Alternative Fuel 90021 90002 Hydrogen is considered an alternative fuel under the Energy Policy Act of 1992 The interest in hydrogen as an alternative transportation fuel stems from its ability to power fuel cells in zero-emission FCEVs, its potential for domestic production, its fast filling time, and the fuel cell’s high efficiency. In fact, a fuel cell coupled with an electric motor is two to three times more efficient than an internal combustion engine running on gasoline.Hydrogen can also serve as fuel for internal combustion engines. However, unlike FCEVs, these produce tailpipe emissions and are less efficient. Learn more about fuel cells. 90005 90002 The energy in 2.2 pounds (1 kilogram) of hydrogen gas is about the same as the energy in 1 gallon (6.2 pounds, 2.8 kilograms) of gasoline. Because hydrogen has a low volumetric energy density, it is stored onboard a vehicle as a compressed gas to achieve the driving range of conventional vehicles. Most current applications use high-pressure tanks capable of storing hydrogen at either 5,000 or 10,000 pounds per square inch (psi).For example, the FCEVs in production by automotive manufacturers and available at dealerships have 10,000 psi tanks. Retail dispensers, which are mostly co-located at gasoline stations, can fill these tanks in about 5 minutes. Other storage technologies are under development, including bonding hydrogen chemically with a material such as metal hydride, or low-temperature sorbent materials. Learn more about hydrogen storage. 90005 90026 90002 Data from retail hydrogen fueling stations, collected and analyzed by the National Renewable Energy Laboratory, show the average time spent fueling an FCEV is less than 4 minutes.90005 90002 California is leading the nation in funding and building hydrogen fueling stations for FCEVs. As of mid-2019, there were 40 retail hydrogen stations open to the public in California and 20 more in various stages of construction or planning. California continues to provide funding for building the infrastructure, with the Energy Commission having authorization to allocate up to $ 20 million per year through 2024 until there are at least 100 operational stations. In addition, 12 retail stations are planned for the northeastern states, with some of those already serving fleet customers.Vehicle manufacturers are only offering FCEVs to consumers who live in regions where hydrogen stations exist. Non-retail stations in California and throughout the country also continue serving FCEVs, including buses, for research or demonstration purposes. Multiple distribution centers are using hydrogen to fuel material-handling vehicles in their normal operations. In addition, several announcements have been made regarding the production of heavy-duty vehicles such as line-haul trucks that will push fueling stations to have much higher capacities than existing light-duty stations.Find hydrogen fueling stations across the United States. 90005 .90000 Alternative Fuels Data Center: Hydrogen Production and Distribution 90001 90002 Although abundant on earth as an element, hydrogen is almost always found as part of another compound, such as water (H 90003 2 90004 O), and must be separated from the compounds that contain it before it can be used in vehicles. Once separated, hydrogen can be used along with oxygen from the air in a fuel cell to create electricity through an electrochemical process. 90005 90006 Production 90007 90002 Hydrogen can be produced from diverse, domestic resources including fossil fuels, biomass, and water electrolysis with electricity.The environmental impact and energy efficiency of hydrogen depends on how it is produced. Several projects are under way to decrease costs associated with hydrogen production. 90005 90002 There are a number of ways to produce hydrogen: 90005 90012 90013 90002 90015 Natural Gas Reforming / Gasification: 90016 Synthesis gas, a mixture of hydrogen, carbon monoxide, and a small amount of carbon dioxide, is created by reacting natural gas with high-temperature steam. The carbon monoxide is reacted with water to produce additional hydrogen.This method is the cheapest, most efficient, and most common. Natural gas reforming using steam accounts for the majority of hydrogen produced in the United States annually. 90005 90002 A synthesis gas can also be created by reacting coal or biomass with high-temperature steam and oxygen in a pressurized gasifier, which is converted into gaseous components-a process called 90015 gasification 90016. The resulting synthesis gas contains hydrogen and carbon monoxide, which is reacted with steam to separate the hydrogen.90005 90022 90013 90002 90015 Electrolysis: 90016 An electric current splits water into hydrogen and oxygen. If the electricity is produced by renewable sources, such as solar or wind, the resulting hydrogen will be considered renewable as well, and has numerous emissions benefits. Power-to-hydrogen projects are taking off, where excess renewable electricity, when it’s available, is used to make hydrogen through electrolysis. 90005 90022 90013 90002 90015 Renewable Liquid Reforming: 90016 Renewable liquid fuels, such as ethanol, are reacted with high-temperature steam to produce hydrogen near the point of end use.90005 90022 90013 90002 90015 Fermentation: 90016 Biomass is converted into sugar-rich feedstocks that can be fermented to produce hydrogen. 90005 90022 90041 90002 A number of hydrogen production methods are in development: 90005 90002 The major hydrogen-producing states are California, Louisiana, and Texas. Today, almost all of the hydrogen produced in the United States is used for refining petroleum, treating metals, producing fertilizer, and processing foods. 90005 90002 The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional transportation fuels.Government and industry research and development projects are reducing the cost as well as the environmental impacts of hydrogen production technologies. Learn more about hydrogen production from the Fuel Cell Technologies Office. 90005 90006 Distribution 90007 90002 Most hydrogen used in the United States is produced at or close to where it is used-typically at large industrial sites. The infrastructure needed for distributing hydrogen to the nationwide network of fueling stations required for the widespread use of fuel cell electric vehicles still needs to be developed.The initial rollout for vehicles and stations focuses on building out these distribution networks, primarily in southern and northern California. 90005 90002 Currently, hydrogen is distributed through three methods: 90005 90012 90013 90002 90015 Pipeline: 90016 This least-expensive way to deliver large volumes of hydrogen is limited-because there are only about 1,600 miles of U.S. pipelines for hydrogen delivery currently available. These pipelines are located near large petroleum refineries and chemical plants in Illinois, California, and the Gulf Coast.90005 90022 90013 90002 90015 High-Pressure Tube Trailers: 90016 Transporting compressed hydrogen gas by truck, railcar, ship, or barge in high-pressure tube trailers is expensive and used primarily for distances of 200 miles or less. 90005 90022 90013 90002 90015 Liquefied Hydrogen Tankers: 90016 Cryogenic liquefaction is a process that cools the hydrogen to a temperature where it becomes a liquid. Although the liquefaction process is expensive, it enables hydrogen to be transported more efficiently (when compared with using high-pressure tube trailers) over longer distances by truck, railcar, ship, or barge.If the liquefied hydrogen is not used at a sufficiently high rate at the point of consumption, it boils off (or evaporates) from its containment vessels. This fact requires that the hydrogen delivery and consumption rates are carefully matched. 90005 90022 90041 90002 Creating an infrastructure for hydrogen distribution and delivery to thousands of future individual fueling stations presents many challenges. Because hydrogen contains less energy per unit volume than all other fuels, transporting, storing, and delivering it to the point of end-use is more expensive on a per gasoline gallon equivalent (per-GGE) basis.Building a new hydrogen pipeline network involves high initial capital costs, and hydrogen’s properties present unique challenges to pipeline materials and compressor design. However, because hydrogen can be produced from a wide variety of resources, regional or even local hydrogen production can maximize use of local resources and minimize distribution challenges. 90005 90002 There are tradeoffs between centralized and distributed production to consider. Producing hydrogen centrally in large plants cuts production costs but boosts distribution costs.Producing hydrogen at the point of end-use-at fueling stations, for example-cuts distribution costs but increases production costs because of the cost to construct on-site production capabilities. 90005 90002 Government and industry research and development projects are overcoming the barriers to efficient hydrogen distribution. Learn more about hydrogen distribution from the Fuel Cell Technologies Office. 90005 .

Отправить ответ

avatar
  Подписаться  
Уведомление о