Применение дизельных двигателей: Области применения дизельных двигателей

Содержание

Области применения дизельных двигателей

Использование дизельных двигателей

После изобретения Рудольфом Дизелем, его двигатель, претерпев некоторые изменения в течении ста лет, стал самым востребованным и практичным в использовании в разных областях деятельности. Главной его особенностью стала высокая эффективность и экономичность.

Сегодня дизельный двигатель используют:

  • на стационарных силовых агрегатах;

  • на грузовых и легковых машинах;

  • на тяжелых грузовиках;

  • на сельхоз/спец/строительной технике;

  • на тепловозах и судах.

Дизели могут иметь рядную и V-образную структуру. Без проблем работают с системой наддува воздуха.

Основные параметры

При эксплуатации двигателя, важны следующие параметры:

  • мощность двигателя;

  • удельная мощность;

  • экономичная, и в тоже время надежная эксплуатация;

  • практичная компоновка в силовом отсеке;

  • комфорт и совместимость с окружающей средой.

От того, в какой области деятельности применяется дизель, будет меняться его внутренняя конструкция.

Применение дизельного двигателя

  1. Стационарные силовые агрегаты

    Рабочие обороты, в стационарных агрегатах как правило фиксированные, поэтому двигатель и система питания должны работать вместе в постоянном режиме. В зависимости от интенсивности нагрузки, подача топлива контролируется регулятором частоты вращения коленчатого вала, для поддержания заданных оборотов. На стационарных силовых агрегатах чаще всего используют аппаратуру впрыска с механическим регулятором. Иногда как стационарные могут использоваться и двигатели для легковых авто и грузовиков, но только при правильно настроенном регуляторе.

  2. Легковые авто и легкие грузовики

    На легковых автомобилях используются быстроходные дизели, то есть способные развивать высокий крутящие момент в широком диапазоне частот вращения коленчатого вала.

    Система с электронным управлением впрыска Common Rail получила здесь своё широкое применение. Электроника отвечает за впрыск определенного количества топлива и этим достигается полное сгорание, повышение мощности и экономичность. В Европе дизельные легковые автомобили оснащаются системами впрыска топлива, так как расход топлива у них ниже, чем у двигателей с разделенными камерами сгорания (на 15-20%).

    Эффективной системой повышения мощности двигателя является турбонаддув. Для создания наддува во всех режимах работы двигателя используется турбонагнетатель.

    Ограничение по нормам токсичности отработанных газов (ОГ) и рост мощности обеспечили использование систем впрыска топлива с большим давлением. Ограничения содержания вредных веществ в ОГ обусловили постоянное совершенствование конструкции дизелей.

  3. Тяжелые грузовые автомобили

    Основным критерием здесь является экономичность, поэтому для грузовых автомобилей применяют дизельные двигатели с системой непосредственного впрыска топлива. Частота вращения коленчатого вала здесь достигает 3500 оборотов. К этим двигателям также применимы жесткие требования норм по отработанным газам, это говорит о контроле и высоких требованиям качества к существующей системе, а также к разработке новых.

  4. Строительная спец/сельхозтехника

    Самое широкое использование дизель получил именно здесь. Основными критериями здесь стали не только экономичность, но и надежность, простота и удобство в обслуживании. Мощности и шумности не придается такое значение, как например для легковых дизельных авто. На спец/сельхозтехнике используют дизели различной мощности. Чаще всего для таким машин применяется механическая система впрыска топлива, а также простая система воздушного охлаждения.

  5. Тепловозы

    Схожесть двигателей тепловозов с корабельными двигателями говорит об их надежности и длительной эксплуатации. Они могут работать на топливе худшего качества. Подобные двигатели распространяются от большегрузных авто до средних судов.

  6. Суда

    От области применения судового дизеля зависят требования к нему. Для морских и спортивных катеров используют дизели высокой мощности (здесь применяют четырехтактные двигатели с частотой вращения коленчатого вала до 1500 об/мин, имеющие до 24 цилиндров). Двухтактные двигатели экономичны и применяются при длительной эксплуатации. Эти низкооборотные двигатели имеют наивысший КПД до 55%, и работают на мазуте что требует специальной подготовки на судне. Мазут необходимо нагревать (примерно до 160 С) — тогда вязкость мазута уменьшается и его можно использовать для работы фильтров и насосов.

    На судах среднего размера используют дизельные двигатели, которые изначально были созданы для большегрузных авто. В конечном итоге это двигатель, настроенный и отрегулированный в зависимости от характера  его эксплуатации и не требующий дополнительных затрат на разработку.

  7. Многотопливные дизели

    Сегодня эти двигатели уже не актуальны, так как они не проходят контроль качество ОГ и не имеют необходимых характеристик (совершенности и мощности). Они были разработаны для специального применения для местностей с нерегулярной поставкой топлива и могли работать как на дизельном топливе, так и на бензине либо на других заменителях.

Сравнительные параметры

С помощью таблицы ниже, можно сравнить основные параметры дизельных и бензиновых двигателей.

Тип системы впрыска

Номинальная частота вращения коленвала (мин)

Степень сжатия

Среднее давление (бар)

Удельная мощность (кВт/л)

Удельная масса (кг/кВт)

Удельный расход топлива (г/кВтч)

Дизели

Для легковых автомобилей:

Без наддува воздуха(3)

3500…5000

20…24

7…9

20…35

3…5

240…320

С наддувом воздуха(3)

3500…4500

20…24

9…12

30…45

2…4

240…390

Без наддува воздуха(4)

3500…4200

19…21

7…9

20…35

3…5

220…240

С наддувом воздуха(4. 5)

3600…4400

16…20

8…22

30…60

2…4

195…210

Для грузовых автомобилей

Без наддува воздуха (4)

2000…3500

16…18

7…10

10…18

4…9

210…260

С наддувом воздуха (4)

2000…3200

15…18

15…20

15…25

3…8

205…230

С наддувом воздуха (4.5)

1800…2600

16…18

15…25

25…35

2…5

190…225

Для строительной и спец/сельхозтехники

1000…3600 16…20 7…23 6…28 1…10 190…280

Для тепловозов

750…1000

12…15

17…23

20…23

5…10

200…210

Судовые, 4-тактные

400…1500

13…17

18…26

10…26

13…16

190…210

Судовые, 2-тактные

50…250

6…8

14…18

3…8

16…32

160…180

Бензиновые двигатели

Для легковых автомобилей

Без наддува воздуха

4500…7500

10…11

12…15

50…75

1…2

250…350

С наддувом воздуха

5000…7000

7…9

11…15

85…105

1…2

250…380

Для грузовых автомобилей

2500…5000

7…9

8…10

20…30

3. .6

270…380

Преимущества и недостатки дизеля

Сегодня дизельные двигатели имеют КПД до 40-45%, крупные двигатели более 50%. Из-за своих особенностей, дизель не имеет жестких требований к топливу, это позволяет использовать тяжелые масла. Чем тяжелее топливо, тем выше эффективность двигателя и его теплотворность.

Дизель не может развить высокие обороты — топливо не успеет догореть в цилиндрах, и для возгорания требуется время. Здесь используются дорогие механические детали, что делает двигатель более тяжелым.

По мере впрыска топлива происходит его сгорание. При низких оборотах, двигатель дает высокий вращающий момент — это делает автомобиль более управляемым «отзывчивым» при движении, чем автомобиль с бензиновым двигателем. Поэтому на большее количество грузовых автомобилей ставят дизельный двигатель, плюс это более экономично.

В отличие от бензинового двигателя, дизель имеет меньше окиси углерода в выхлопе. Что благоприятно сказывается на окружающей среде. В России больше всего загрязняют атмосферу старые и не отрегулированные грузовики и автобусы.

Дизельное топливо нелетучее, то есть плохо испаряется, поэтому вероятность возгорания дизеля намного меньше, тем более в нем не используется искра зажигания, в отличие от бензина.

Области применения дизельных двигателей. Дизельный двигатель Применение и использование дизельных двигателей

Дизельные двигатели для грузовых автомобилей как никакие другие должны отвечать постоянно растущим экологическим требованиям. Основной диапазон мощностей двигателей, применяемых на тяжелых грузовых автомобилях, составляет от 250 до 500 л.с. и более. Все изготовители грузовых автомобилей предпочитают использовать серии двигателей, унифицированных по конструкции и размерам цилиндров. У фирмы Mersedes это шести- и восьмицилиндровые V-образные двигатели с цилиндрами объемом около 2 л каждый. V-образные шестицилиндровые двигатели развивают мощность от 320 до 456 л.с. в зависимости от модификации. У компании DAF диапазон двигателей еще шире – мощность рядных двигателей рабочим объемом 12,6 л – от 340 до 530 л.с. в зависимости от модификации.

Одним из факторов, от которых зависит мощность двигателя внутреннего сгорания, является расход воздуха. Турбонагнетатель – надежный, хорошо себя зарекомендовавший инструмент точного регулирования расхода воздуха. Для получения нужной мощности необходимо в определенное количество воздуха подать строго дозированное количество топлива. Чем выше давление в камере сгорания, тем больше мощность двигателя. Максимальное значение мощности при этом ограничивается только допустимым давлением в камере сгорания дизельного двигателя.

Звучит просто, да и на самом деле все было очень легко до момента, когда вступили в силу экологические нормы Euro 1 и другие нормативы по токсичности отработавших газов (ОГ). Дело в том, что с повышением значения давления в камере сгорания возрастает температура сгорания и повышается содержание окислов азота (NOx) в ОГ. И наоборот, чем меньше давление в камере сгорания, тем меньше температура и больше содержание углеводородов (СН) в ОГ. При этом увеличивается количество окиси углерода CO и сажи, содержание которой традиционно выражается в количестве частей на миллион (Parts per Million, PM) или в мг/м 3 . Чтобы снизить содержание токсичных составляющих в ОГ, конструкторы двигателей увеличивают количество воздуха в топливовоздушной смеси. Идеально низкая токсичность ОГ достигается, когда в камеру сгорания поступает воздуха на 20% больше, чем топлива. Учесть все эти факторы, а также уменьшить расход топлива сегодня возможно, используя электронный впрыск топлива при высоком давлении. Электронная система впрыска достаточно точно управляет его началом, продолжительностью и остальными параметрами.

Содержание NOx и CH в отработавших газах напрямую зависит от параметров рабочего процесса в двигателе. Примером здесь может служить хотя бы тот факт, что из-за увеличения начала впрыска на 1° по углу поворота коленчатого вала содержание NOx в отработавших газах может по выситься на 5%, а содержание СН увеличиться на 15%. (Кроме конструктивных методов снижения токсичности ОГ существуют различные методы последующей обработки ОГ – использование каталитических нейтрализаторов, сажевых фильтров, рециркуляция отработавших газов и понижение температуры воздуха на впуске, но в данной статье мы рассматривать это не будем.) Такие сложные зависимости конструкторы двигателей стремятся учитывать при их разработке: тщательно подбирается форма камеры сгорания, от чего в значительной степени зависят токсичность ОГ и расход топлива, подбирают оптимальные объем и размеры цилиндров.

От экскаваторов до шаттлов

Компания Cometto выпустила несколько новых полуприцепов для перевозки крупногабаритных грузов. Модель 61MS оснащена шестью рядами осей по 8 колес на каждом. Грузоподъемность этого полуприцепа 183 т. Он был разработан для транспортировки компонентов электростанций. Напомним, что ранее для транспортировки турбин компания выпускала модель X64DAH/2530, которая использовалась совместно с грузовиком 6×4. Платформа полуприцепа 61MS раздвижная и может увеличиваться с 14 до 29 м. Модель XA4TAH/36 – полуприцеп с одноуровневым полом также может увеличиваться с 13 до 36 м. Максимальная грузоподъемность модели 52 т, она предназначена для транспортировки лопастей турбин.

Две другие модели итальянской компании Cometto служат для перевозки строительной техники. R04 грузоподъемностью 48 т разработана специально для перевозки тяжелой землеройной техники. Модель ZS4EAH грузоподъемностью 81 т способна перевозить и крупные строительные конструкции.

Немецкая компания Doll Fahrzeugbau расширила свой модельный ряд тремя низкопольными прицепами со съемным гузнеком. T4H-S3 – это четырехосный полуприцеп для перевозки крупной дорожной техники, например камнедробилок. Модель T3H-S3 – трехосный полуприцеп со специальным соединением между грузовой платформой и ходовой частью. Такая конструкция позволяет приспосабливать полуприцеп для перевозки самых разных грузов. Двухосная модель D2P-O с четырехшарнирными осями и нагрузкой на ось 12 т оснащена системой рулевого поворота с углом поворота 60°. Все большегрузные прицепы оснащаются электронной системой гидравлических поворотных осей, пневматическими или гидравлическими подвесками.

Затем создается серия двигателей широкого диапазона мощностей, различающихся числом цилиндров. У двигателей Scania, например, объем такого цилиндра 1,95 л. Именно из таких цилиндров состоят выпускаемые в настоящее время рядные шестицилиндровые и V-образные восьмицилиндровые двигатели. Шведская компания считает такие цилиндры не только оптимальными, но и универсальными, а потому планирует выпуск пятицилиндрового двигателя рабочим объемом 9,75 л. Видимо, по этой причине Scania разработала цилиндр меньшего размера, чтобы получи ть шестиц илиндровый двигатель рабочим объемом почти 10 л. Чтобы удовлетворить потребность в двигателях мощностью от 250 до 500 л.с. и более, появилась необходимость создать три типоразмера двигателей с оптимальным расходом топлива, увеличенной мощностью и долговечностью, а также низкой токсичностью ОГ. Похоже, что у двигателей двух производителей (Merсedes и Scania), выпускающих модельные ряды двигателей с одинаковыми камерами сгорания, проблем с реализацией задуманного не возникнет.

Volvo и IVECO также ориентируются на создание серий двигателей в трех диапазонах мощности с возможно бо’льшим числом унифицированных деталей. В настоящее время существуют только два варианта расширить границы возможностей двигателей. Один предлагают Scania и Volvo в виде турбокомпаундного привода, другой – IVECO в виде турбонагнетателя с изменяемой геометрией. Турбокомпаундный привод представляет собой две турбины, установленные последовательно по направлению движения отработавших газов. Такая конструкция позволяет полнее использовать остаточную энергию ОГ. Турбины не только закачивают свежий заряд в камеру сгорания, но и имеют кинематическую связь с маховиком, подкручивая коленчатый вал двигателя. Это техническое решение позволяет, по данным Scania, повысить КПД и мощность двигателя без увеличения давления в камере сгорания до 30…40 л.с. Турбонагнетатель с изменяемой геометрией позволяет при относительно небольшом объеме двигателя получить большой крутящий момент.

Других приемов увеличения мощностных показателей современных двигателей без кардинального изменения конструкции пока не разработано.

Использование дизельных двигателей

После изобретения Дизеля, его двигатель, претерпев некоторые изменения в течении ста лет стал самым востребованным и практичным в использовании в разных областях деятельности. Главной его особенностью стала высокая эффективность и экономичность.
Сегодня дизельный двигатель используют:

Дизели могут иметь рядную и V-образную структуру. Без проблем работают с системой наддува воздуха.

Основные параметры

При эксплуатации двигателя, важны следующие параметры:

    мощность двигателя;

    удельная мощность;

    экономичная, и в тоже время надежная эксплуатация;

    практичная компоновка в силовом отсеке;

    комфорт и совместимость с окружающей средой.

От того, в какой области деятельности применяется дизель, будет меняться его внутренняя конструкция.

Применение дизельного двигателя

    Стационарные силовые агрегаты
    Рабочие обороты, в стационарных агрегатах как правило фиксированные, поэтому двигатель и система питания должны работать вместе в постоянном режиме. В зависимости от интенсивности нагрузки, подача топлива контролируется регулятором частоты вращения коленчатого вала, для поддержания заданных оборотов. На стационарных силовых агрегатах чаще всего используют аппаратуру впрыска с механическим регулятором. Иногда как стационарные могут использоваться и двигатели для легковых авто и грузовиков, но только при правильно настроенном регуляторе.

    Легковые авто и легкие грузовики

    На легковых автомобилях используются быстроходные дизели т. е. способные развивать высокий крутящие момент в широком диапазоне частот вращения коленчатого вала. Система с электронным управлением впрыска Common Rail получила здесь своё широкое применение. Электроника отвечает за впрыск определенного количества топлива и этим достигается полное сгорание, повышение мощности и экономичность. В Европе дизельные легковые автомобили оснащаются системами впрыска топлива, т. к. расход топлива у них ниже, чем у двигателей с разделенными камерами сгорания (на 15-20%).

    Эффективной системой повышения мощности двигателя является турбонаддув. Для создания наддува во всех режимах работы двигателя используется турбонагнетатель.

    Ограничение по нормам токсичности отработавших газов (ОГ) и рост мощности обеспечили использование систем впрыска топлива с большим давлением. Ограничения содержания вредных веществ в ОГ обусловили постоянное совершенствование конструкции дизелей.

    Тяжелые грузовые автомобили

    Основным критерием здесь является экономичность, поэтому для грузовых автомобилей применяют дизельные двигатели с системой непосредственного впрыска топлива. Частота вращения коленчатого вала здесь достигает 3500 оборотов. К этим двигателям также применимы жесткие требования норм по отработавшим газам, это говорит о контроле и высоких требованиям качества к существующей системы, а также к разработке новых.

    Строительная спец/сельскохозтехника

    Самое широкое использование дизель получил именно здесь. Основными критериями здесь стали не только экономичность, но и надежность, просто и удобство в обслуживании. Мощности и шумности не придается такое значение, как например для легковых дизельных авто. На спец/сельхозтехнике используют дизели различной мощности. Чаще всего для таким машин применяется механическая система впрыска топлива, а также простая система воздушного охлаждения.

    Тепловозы

    Схожесть двигателей тепловозов с корабельными двигателями говорит об их надежности и длительной эксплуатации. Они могут работать на топливе худшего качества. По размерам могут быть от двигателей для большегрузовых авто до средних судов.

    От области применения судового дизеля зависят требования к нему. Для морских и спортивных катеров используют дизели высокой мощности (здесь применяют четырехтактные двигатели с частотой вращения коленчатого вала до 1500 в мин, имеющие до 24 цилиндров). Двухтактные двигатели экономичныи применяются при длительной эксплуатации. Эти низкооборотные двигатели имеют наивысший КПД до 55%, и работают на мазуте и для этого нужна специальная подготовка на судне. Мазут необходимо нагревать (примерно до 160 С) — тогда вязкость мазута уменьшается и его можно использовать для работы фильтров и насосов.
    На судах среднего размера используют дизельные двигатели, которые изначально были созданы для большегрузных авто. В конечном итоге это двигатель, настроенный и отрегулированный в зависимости от его характера эксплуатации и не требующий дополнительных затрат на разработку.

    Многотопливные дизели

    Сегодня эти двигатели уже не актуальны, так как они не проходят контроль качество ОГ и не имеют необходимых характеристик (совершенности и мощности). Они были разработаны для специального применения для местностей с нерегулярной поставкой топлива и могли работать как на дизельном топливе, так и на бензине либо на других заменителях.

Сравнительные параметры

С помощью таблицы ниже, можно сравнить основные параметры дизельных и бензиновых двигателей.

Тип системы впрыска

Номинальн. частота вращения коленвала (мин)

Степень сжатия

Среднее давление (бар)

Удельная мощность (кВт/л)

Удельная масса (кг/кВт)

Удельный расход топлива (г/кВтч)

Для легковых автомобилей:

Без наддува воздуха(3)

С наддувом воздуха(3)

Без наддува воздуха(4)

С наддувом воздуха(4.5)

Для грузовых автомобилей

Без наддува воздуха (4)

С наддувом воздуха (4)

С наддувом воздуха (4. 5)

Для строительной и спец/сельхозтехники

1000…3600 16…20 7…23 6…28 1…10 190…280

Для тепловозов

Судовые, 4-тактные

Судовые, 2-тактные

Бензиновые двигатели

Для легковых автомобилей

Без наддува воздуха

С наддувом воздуха

Для грузовых автомобилей

Преимущества и недостатки дизеля

Сегодня дизельные двигатели имеют КПД до 40-45%, крупные двигатели более 50%. Из-за своих особенностей, дизель не имеет жестких требований к топливу, это позволяет использовать тяжелые масла. Чем тяжелее топливо, тем выше эффективность двигателя и его теплотворность.

Дизель не может развить высокие обороты — топливо не успеет догореть в цилиндрах, и для возгорания требуется время. Здесь используются дорогие механические детали, что делает двигатель более тяжелым.

По мере впрыска топлива происходит его сгорание. При низких оборотах, двигатель дает высокий вращающий момент — это делает автомобиль более управляемым «отзывчивым» при движении, чем автомобиль с бензиновым двигателем. Поэтому на большее количество грузовых автомобилей ставят дизельный двигатель, плюс это более экономично.
В отличие от бензинового двигателя, дизель имеет меньше окиси углерода в выхлопе. Что благоприятно сказывается на окружающей среде. В России больше всего загрязняют атмосферу старые и не отрегулированные грузовики и автобусы.

Дизельное топливо нелетучее, т. е. плохо испаряется, поэтому вероятность возгорания дизеля намного меньше, тем более в нем не используется искра зажигания, в отличие от бензина.

Весьма распространены на легковых автомобилях. Многие модели имеют хотя бы один вариант в моторной гамме. И это без учета грузовиков, автобусов и строительной техники, где их применяют повсеместно. Далее рассмотрено, что такое дизель, конструкция, принцип работы, особенности.

Определение

Данный агрегат представляет собой функционирование которого основано на самовоспламенении распыленного топлива от нагрева либо сжатия.

Особенности конструкции

Бензиновый двигатель имеет те же конструктивные элементы, что и дизель. Схема функционирования в целом также аналогична. Отличие состоит в процессах формирования топливовоздушной смеси и ее сгорания. К тому же дизельные моторы отличаются более прочными деталями. Это обусловлено примерно вдвое более высокой степенью сжатия, чем у бензиновых двигателей (19-24 против 9-11).

Классификация

По конструкции камеры сгорания дизели подразделяют на варианты с раздельной камерой сгорания и с непосредственным впрыском.

В первом случае камера сгорания отделена от цилиндра и соединена с ним каналом. При сжатии поступающий в камеру вихревого типа воздух закручивается, что улучшает смесеобразование и самовоспламенение, которое начинается там и продолжается в основной камере. Дизельные двигатели данного типа ранее были распространены на легковых автомобилях в связи с тем, что они отличались пониженным уровнем шума и большим диапазоном оборотов от рассмотренных далее вариантов.

В с непосредственным впрыском камера сгорания находится в поршне, а топливо подается в надпоршневое пространство. Такая конструкция изначально использовалась на низкооборотных моторах большого объема. Они отличались высоким уровнем шума и вибраций и низким расходом топлива. Позднее, с появлением с электронным управлением и оптимизацией процесса сгорания, конструкторы достигли стабильной работы при диапазоне до 4500 об./мин. К тому же возросла экономичность, снизилась шумность и уровень вибраций. Среди мер по уменьшению жесткости работы — многостадийный предвпрыск. Благодаря этому двигатели данного типа получили в последние два десятилетия обширное распространение.

По принципу функционирования дизели подразделяют на четырехтактные и двухтактные, как и бензиновые моторы. Их особенности рассмотрены далее.

Принцип функционирования

Чтобы понимать, что такое дизель и чем обусловлены его функциональные особенности, необходимо рассмотреть принцип работы. Приведенная выше классификация поршневых ДВС основана на количестве тактов, входящих в рабочий цикл, которые выделяют по величине угла поворота коленчатого вала.

Следовательно, включает 4 фазы.

  • Впуск. Происходит при повороте коленвала от 0 до 180°. При этом воздух проходит в цилиндр через открытый на 345-355° впускной клапан. Одновременно с ним во время поворота коленвала на 10-15° открыт выпускной клапан, что называют перекрытием.
  • Сжатие. Поршень, двигаясь вверх при 180-360°, сжимает воздух в 16-25 раз (степень сжатия), а впускной клапан закрывается в начале такта (при 190-210°).
  • Рабочий ход, расширение. Происходит при 360-540°. В начале такта до достижения поршнем верхней мертвой точки топливо подается в горячий воздух и воспламеняется. Это особенность дизельных двигателей, отличающая их от бензиновых, где происходит опережение зажигания. Выделяющиеся при этом продукты горения толкают поршень вниз. При этом время сгорания топлива равно времени его подачи форсункой и длится не дольше продолжительности рабочего хода. То есть при рабочем процессе давление газов постоянно, вследствие чего дизели развивают больший крутящий момент. Также важной особенностью таких моторов является необходимость обеспечения избытка воздуха в цилиндре, так как пламя занимает небольшую часть камеры сгорания. То есть отличается пропорция топливовоздушной смеси.
  • Выпуск. При 540-720° поворота коленвала открытый выпускной клапан поршень, двигаясь вверх, вытесняет выхлопные газы.

Двухтактный цикл отличается укороченными фазами и единым процессом газообмена в цилиндре (продувкой), происходящей между концом рабочего хода и началом сжатия. При движении поршня вниз продукты горения удаляются через выпускные клапаны или окна (в стенке цилиндра). Позже открываются впускные окна для поступления свежего воздуха. Когда поршень поднимается, все окна закрываются, и начинается сжатие. Чуть ранее достижения ВМТ впрыскивается и воспламеняется топливо, начинается расширение.

Из-за сложности обеспечения продувки вихревой камеры двухтактные моторы бывают только с непосредственным впрыском.

Производительность таких двигателей выше в 1,6-1,7 раз, чем характеристики дизеля четырехтактного типа. Ее прирост обеспечивается вдвое более частым осуществлением рабочих ходов, но частично сокращается из-за их меньшей величины и продувки. Вследствие удвоенного количества рабочих ходов двухтактный цикл особо актуален в случае невозможности увеличения частоты вращения.

Основной проблемой таких двигателей является продувка из-за ее непродолжительности, что невозможно компенсировать без снижения эффективности за счет укорочения рабочего хода. К тому же невозможно разделить выхлоп и свежий воздух, из-за чего часть последнего удаляется с отработанными газами. Данную проблему можно решить путем обеспечения опережения выпускных окон. В таком случае газы начинают удаляться до продувки, и после закрытия выпуска цилиндр дополняется свежим воздухом.

К тому же при использовании одного цилиндра возникают сложности с синхронностью открытия/закрытия окон, поэтому существуют двигатели (ПДП), в которых каждый цилиндр имеет два поршня, движущихся в одной плоскости. Один из них контролирует впуск, другой — выпуск.

По механизму осуществления продувку подразделяют на щелевую (оконную) и клапанно-щелевую. В первом случае окна служат и впускными и выпускными отверстиями. Второй вариант предполагает их использование в качестве впускных отверстий, а для выпуска служит клапан в головке цилиндра.

Обычно двухтактные дизели применяют на тяжелых транспортных средствах вроде кораблей, тепловозов, танков.

Топливная система

Топливная аппаратура дизельных двигателей существенно сложнее, чем у бензиновых. Это объясняется высокими требованиями к точности подачи топлива по времени, количеству и давлению. Основные компоненты топливной системы — ТНВД, форсунки, фильтр.

Широко применяется система подачи топлива с компьютерным управлением (Common-Rail). Она впрыскивает его двумя порциями. Первая из них маленькая, служащая для повышения температуры в камере сгорания (предвпрыск), что позволяет снизить шум и вибрации. К тому же данная система повышает на малых оборотах крутящий момент на 25%, снижает расход топлива на 20% и содержание сажи в выхлопных газах.

Турбонаддув

На дизельных двигателях очень широко применяют турбины. Это объясняется более высоким (в 1,5-2) раза давлением выхлопных газов, которые раскручивают турбину, что позволяет избежать турбоямы, обеспечив наддув с более низких оборотов.

Холодный запуск

Можно найти множество отзывов о том, что при отрицательных температурах Сложность запуска таких моторов в холодных условиях обусловлена тем, что для этого требуется больше энергии. Для облегчения процесса их оснащают предпусковым подогревателем. Данное устройство представлено свечами накаливания, размещенными в камерах сгорания, которые при включении зажигания подогревают воздух в них и работают еще в течение 15-25 секунд после запуска для обеспечения стабильности работы непрогретого мотора. Благодаря этому дизели заводятся при температурах -30…-25 °С.

Особенности обслуживания

Для обеспечения долговечности при эксплуатации необходимо знать, что такое дизель и как его обслуживать. Относительно невысокая распространенность рассматриваемых двигателей в сравнении с бензиновыми объясняется в том числе более сложным обслуживанием.

Прежде всего это касается топливной системы высокой сложности. Из-за этого дизели крайне чувствительны к содержанию в топливе воды и механических частиц, а ее ремонт дороже, как и двигателя в целом в сравнении с бензиновым того же уровня.

В случае наличия турбины также высоки требования к качеству моторного масла. Ее ресурс обычно составляет 150 тыс. км, а стоимость высока.

В любом случае на дизельных двигателях менять масло следует чаще, чем на бензиновых (в 2 раза по европейским нормам).

Как было отмечено, у данных моторов встречаются проблемы холодного запуска, когда при низких температурах В некоторых случаях это вызвано использованием неподходящего топлива (в зависимости от сезона на таких двигателях применяют различные сорта, так как летнее топливо при низких температурах застывает).

Эксплуатационные качества

К тому же многим не по душе такие качества дизельных моторов, как меньшие мощность и диапазон рабочих оборотов, более высокий уровень шума и вибраций.

Бензиновый двигатель действительно обычно превосходит в производительности, в том числе и литровой мощности, аналогичный дизель. Мотор рассматриваемого типа при этом имеет более высокий и ровный график крутящего момента. Повышенная степень сжатия, обеспечивающая больший крутящий момент, вынуждает применять более прочные детали. Так как они тяжелее, снижается мощность. К тому же это сказывается на массе двигателя, а следовательно, и автомобиля.

Небольшой диапазон рабочих оборотов объясняется более длительным возгоранием топлива, вследствие чего на высоких оборотах оно не успевает догореть.

Повышенный уровень шума и вибраций вызывает резкое нарастание давления в цилиндре при воспламенении.

Основными достоинствами дизелей считают более высокую тяговитость, экономичность и экологичность.

Тяговитость, то есть высокий крутящий момент на малых оборотах, объясняется сгоранием топлива по мере впрыска. Это обеспечивает большую отзывчивость и облегчает эффективное использование мощности.

Экономичность обусловлена как низким расходом, так и тем, что топливо для дизеля дешевле. К тому же возможно использовать в качестве него низкосортные тяжелые масла благодаря отсутствию строгих требований к испаряемости. А чем топливо тяжелее, тем выше эффективность мотора. Наконец, дизели работают на бедных смесях в сравнении с бензиновыми моторами и при высокой степени сжатия. Последнее обеспечивает меньшие потери тепла с отработанными газами, то есть большую эффективность. Все данные меры снижают расход топлива. Дизель, благодаря этому, тратит его на 30-40% меньше.

Экологичность дизелей объясняется тем, что в их выхлопных газах ниже содержание окиси углерода. Это достигается применением сложных систем очистки, благодаря чему сейчас бензиновый двигатель соответствует тем же экологическим нормам, что и дизель. Мотор такого типа ранее значительно уступал бензиновому в данном отношении.

Применение

Как понятно из того, что такое дизель и каковы его характеристики, такие моторы наиболее подходят для тех случаев, когда необходима высокая тяга на низких оборотах. Поэтому ими оснащают почти все автобусы, грузовики и строительную технику. Что касается частных транспортных средств, среди них такие параметры наиболее важны для внедорожников. Благодаря высокой экономичности данными моторами оснащают и городские модели. К тому же они удобнее в управлении в таких условиях. Тест-драйвы дизелей свидетельствуют об этом.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Топливо для дизелей, конструкция и работа системы питания дизеля топливом и воздухом, система выпуска отработавших газов, топливный насос высокого давления, форсунки. Топливо для газовых двигателей, конструкция и работа систем питания газовых двигателей.

    реферат , добавлен 29.01.2010

    Общие принципы работы тепловозных дизелей. Идеальный цикл Карно. Схемы устройства, принципов работы и индикаторные диаграммы четырехтактного дизеля. Дизельное топливо и варианты наддува цилиндров. Состав сырой нефти. Схема роторного нагнетателя воздуха.

    курсовая работа , добавлен 27.07.2013

    Характеристика основных вспомогательных систем тепловозных дизелей — топливной, водяной и масляной. Назначение фильтров предварительной, грубой и тонкой очистки топлива. Конструкция приборов для забора, очистки воздуха и выпуска отработавших газов.

    реферат , добавлен 27.07.2013

    Устройство и назначение системы питания двигателя КамАЗ–740. Основные механизмы, узлы и неисправности системы питания двигателя, ее техническое обслуживание и текущий ремонт. Система выпуска отработанных газов. Фильтры грубой и тонкой очистки топлива.

    реферат , добавлен 31.05.2015

    Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.

    курсовая работа , добавлен 11.04.2015

    Устройство системы питания дизельного двигателя. Фильтр тонкой очистки топлива и питание дизеля КамАЗ-740 воздухом. Основные возможные неисправности в системе, способы их устранения. Перечень работ при техническом обслуживании, технологическая карта.

    контрольная работа , добавлен 09.12.2012

    Основные размерения судна. Технические характеристики оборудования. Физико-химические показатели топлива. Анализ маслоиспользования и водоиспользования. Система пожаротушения углекислым газом. Диагностика дизелей. Автоматическая водораспыливающая система.

    отчет по практике , добавлен 17.03.2016

Тема 1.4. Изобретение автомобиля с ДВС

Создание первых транспортных поршневых ДВС. Газовый двигатель Этьена Ленуара (1860 г.): принцип действия и основы устройства; достоинства и недостатки.

Четырехтактный газовый двигатель Николая-Августа Отто и Евгения Лангена (1876 г. ). Рассмотрение четырехтактного цикла работы двигателя. Причины, воспрепятствовавшие применению двигателя Отто на автомобиле.

Двигатель Готлиба Даймлера на жидком топливе (1883 г.) ― первый автомобильный ДВС. Основные технические характеристики и особенности устройства. Создание Рудольфом Дизелем поршневого двигателя внутреннего сгорания с воспламенением от сжатия.

Готлиб Даймлер и Карл Бенц ― признанные миром изобретатели автомобиля (1885 г.). Первый (трехколесный) автомобиль К. Бенца. Первый (двухколесный) и второй (четырехколесный) автомобили Г. Даймлера. Превращение «безлошадного экипажа» в автомобиль. Совершенствование ДВС и рост его мощности как основные факторы формирования концепции автомобиля отличной от конной повозки. Новая компоновочная схема, предложенная Эмилем Левассором (1894 г.). Дополнительные штрихи к схеме, внесенные Луи Рено в 1898 г. (карданная передача, трехвальные коробки передач (КП) и рулевое колесо). Совершенствование автомобильного ДВС к началу XXвека: закрытый картер с системой смазки разбрызгиванием; управляемые клапаны системы газораспределения; жидкостная система охлаждения с сотовым радиатором и водяным насосом; увеличение количества цилиндров. Система зажигания с магнето высокого

напряжения Роберта Боша.

Первые автомобили Г. Даймлера и К. Бенца. Автомобилестроительные фирмы Германии «Даймлер», «Бенц». Начало промышленного производства автомобилей во Франции: «Панар – Левассор», «Де-Дион-Бутон», «Пежо » и др. Автомобилестроительные фирмы США: «Форд Мотор Компани», «Кадиллак », «Уайт», «Паккард».

Тема 1.5. Периоды развития автомобилестроения

Три периода истории развития автомобиля (по Ф. Пикару): изобретательский (до 1918 г.), инженерный (до 40-х гг.) и дизайнерский (или стилистический).

Характерные черты автомобиля «изобретательского» периода в США и Европе («Олдсмобил», «Де-Дион»). Применение глушителей выпуска отработанных газов, батарейного зажигания, системы запуска двигателя стартером. Дальнейшее развитие механизмов: сцепление, коробка передач, тормозные системы, подвеска, шины, колеса.

Рост спроса на автомобили. Повышение технической культуры в производстве автомобилей: использование высококачественных материалов, более совершенных технологий и оборудования. Первые успехи стандартизации и взаимозаменяемости («Кадиллак» Г. Лиленда, 1907 г.).

Начало крупносерийного и массового производства «Форд-Т» (1903 г.). Социальный, экономический, конструкторский и технологический аспекты массового производства. «Серебряный дух» (1907 г.) Чарлза Стюарта Роллса и Фредерика Генри Ройса ― пример нового подхода к задаче производства автомобилей.

Взаимовлияние автомобилестроения начала XX в. и других отраслей промышленности и техники. Расширение практической сферы применения автомобиля: появление автобусов, грузовых автомобилей, такси. Потребность армии в автомобиле, и его роль в Первой мировой войне.

«Инженерный» период развития автомобиля: новые производственные и материальные возможности автомобилестроения после Первой мировой войны (конверсия военного и авиационного производства). Концепция автомобиля данного периода ― хорошая транспортная машина.

Дальнейшее усовершенствование механизмов и систем: синхронизаторы КП, гипоидное зацепление в главной передаче, дисковое сцепление и др. Повышение интереса к вопросам конструктивной безопасности и системам сигнализации (электрогудок, стоп-фонарь, указатели поворота, стеклоочистители, буферы , установка тормозов на все колеса, стекло-триплекс).

Появление интереса к вопросам аэродинамики (П. Ярай, Э. Румплер). Обтекаемые автомобили «Крайслер -Эрфлоу», «Татра-77» и «Татра-87».

Привод на передние колеса ― важный момент в развитии компоновки легкового автомобиля («ДКВ» Й. Расмуссена, «Ситроен -7СУ» Ж. Соломона).

Повышение роли научных методов решения технических проблем автомобилестроения. Решение проблем устойчивости и управляемости в связи с ростом скорости.

Развитие грузовых автомобилей и автобусов. Грузовики с «передней» кабиной, достоинства и недостатки. Автобусы вагонного типа: повышение вместимости, улучшение условий работы водителей. Автобусы с несущим кузовом.

Применение дизелей на грузовых автомобилях и автобусах. Особенности устройства и рабочего процесса дизеля, достоинства и недостатки.

Итоги развития автомобилестроения в «инженерный» период: создание производственной базы, конструкторских и научных коллективов , испытательных лабораторий и полигонов. Компоновочные особенности американских и европейских автомобилей этого периода. Технические характеристики и уровень производства автомобилей к концу периода.

«Дизайнерский» период развития автомобиля. Особенности направлений американского и европейского автостроения в послевоенное время: «сухопутные дредноуты» и «народный автомобиль»(Фольксваген «Жук», ФИАТ-500, Ситроен-2СУ, «Изетта», «Мини», НАМИ-013, «Белка»).. Послевоенное автомобилестроение в Японии.

Концепция – дешевый «автомобиль для всех». Успех в борьбе за «автомобиль для всех» фирм «Ситроен» и «Пежо» во Франции, «Опель» и БМВ в Германии, «Остин» и «Моррис» в Англии, «Фиат» в Италии.

Разработка теории устойчивости автомобиля (Морис Олей). Новые имена в автомобилестроении: Винченцо Лянча — в Италии(«Лямбда»), Сенсо-де-Лаво, Коттен Дегут и братья Сизер -во Франции, Ледвинка -в Чехословакии(«Татра»).

Развитие теории обтекаемости автомобиля: немецкие авиаконструкторы Пауль Ярай и Эдмунд Румплер. Появление автомобилей с приводом на передние колеса: ДКВ, «Ситроен-Траксьон аван».

Развитие конструкций грузовых автомобилей. Особенности конструкции автомобиля конца 1930-х годов. Совершенствование приборов системы питания. Улучшение эксплуатационных показателей автомобиля: увеличение мощности двигателя, улучшение приемистости. Новые требования к автомагистралям. Наступление автомобильного транспорта на железнодорожный.

Единообразие требований рынка, международные стандарты безопасности, международные экономические и технические связи и кооперация ― главные факторы выработки общей концепции мирового автомобилестроения.

Развитие компоновки и конструкции грузовых автомобилей. Распространение прицепных и полуприцепных автопоездов. Разделение грузовых автомобилей на городские и магистральные (различия требований по грузоподъемности, скорости, типу двигателя и пр.). Специализированный подвижной состав .

Тема 1.6. История отечественного автомобилестроения

Первые отечественные автомобили и мотоциклы. Автомобили фирм «ДУКС» , «Психо», «Кузьмин», «Пузанов», «Аксонт» и др.

Яковлева, электрические и бензиновые автомобили П. Фрезе (1986 г.), Б. Луцкого и И. Пузырева, автомобили «Руссо-Балт» (1909 г.), их двигатели и конструкции. Контракты 1916 г. Главного военно-технического управления на строительство в России шести автозаводов. Бронеавтомобили Путиловского завода.

Первый советский легковой автомобиль «Промбронь» (1922 г.). Грузовики АМО-Ф-15 (1924 г.), ЯЗ (1925 г.), НАМИ-1 (1926 г.).

Первые электромобили

Организация массового производства автомобилей «АМО-3» (1931 г.), ГАЗ-АА и ГАЗ-А (1932 г.). Отечественное автомобилестроение к 1941 г.

Отечественные автомобили в Великой Отечественной войне.

Автомобили повышенной проходимости.

Послевоенный период отечественного автомобилестроения. Производство автомобилей в СССР в 1945–1986 гг. Увеличение количества автомобильных заводов. «Победа М-20» ― новое слово в автомобилестроении.

Достоинства конструкции автомобилей «ЗИМ ГАЗ-12» и «ЗИС-110». Грузовые автомобили ГАЗ-51, ЗИС-150, МАЗ-200 и др. Автобусы вагонного типа ЗИС-155, ЗИС-154 (с электротрансмиссией).

Изменения в автомобилестроении, вызванные новым экономическим курсом России (1986–1991 гг.). Поиск направлений выхода из кризиса. Первые достижения автомобилестроительной отрасли (1991 – 2000 гг.) Изменения в структуре управления, вызванные новым экономическим курсом России (1986–2000 гг.). Обострение проблемы безопасности дорожного движения. Поиск направлений выхода из кризиса.

Модуль 2. Современное состояние мирового автомобилестроения

Тема 2.1. Автомобилестроение США

США — мировой лидер автомобилестроения. Влияние процессов глобализации мирового рынка на процессы концентрации производства . Перенос производства в страны третьего мира.

Влияние на автомобилизацию страны импорта автомобилей. Ведущие автомобильные концерны Америки: «Форд Моторс», «Дженерал Моторс» и «Даймлер-Крайслер», их состояние и перспективы развития.

Влияние экономического кризиса на перераспределение структуры

производства в пользу грузовых автомобилей. Ведущие компании по производству

средних и тяжелых грузовиков: «Фрейтлайнер» (дочерняя «Даймлер-Бенц»), «Нэвистар» и «Форд». Состояние фирм: «Мэк», «Вольво /Дженерал Моторс», «Кенворс», «Питербилт». Автобусы компании «Нэвистар».

Основные рынки сбыта американских автомобилей. Причины «не слишком благоприятных» перспектив для дальнейшего расширения американского экспорта.

Тема 2.2. Автомобилестроение Европы

Стратегия концерна «Фольксваген», интеграция в Европу, Южную Америку и Африку.

Перспективные разработки концерна БМВ, расширение выпускаемой гаммы автомобилей.

Новые автомобили фирмы «Даймлер-Крайслер», работы по созданию электромобиля.

Спортивные автомобили «Порше».Фирма «Опель».

Развитие производства автомобилей в Польше.

Тема 2.3. Автомобилестроение Азии

Япония — один из признанных мировых лидеров в автомобилестроении. Пять автомобильных фирм –лидеров: «Тойота », «Ниссан», «Хонда», «Мицубиси », «Судзуки», «Мазда ». Отличительная черта деятельности японских автомобилестроительных концернов. Стратегия ведущих автофирм Японии.

Применение дизельных двигателей

Применение дизельных двигателей на минитракторной технике обеспечивает экономичность, мощность, также надежность и долговечность. Несмотря на то, что разность в стоимости дизельного топлива и бензина составляет лишь 1-5% по цене одного литра топлива, экономичность дизельных двигателей обусловлена их более низким расходом. В среднем, на той же мощности, современный дизель должен расходовать топлива до 20-30 % меньше, чем бензиновый. Срок службы двигателя дизельного также гораздо больше, и может достигать 10—12 тысяч часов. Дизель не имеет так называемой дроссельной заслонки, а регулирование мощности осуществляется только регулированием количества впрыскиваемого за секунду топлива, что в частности приводит к отсутствию понижения на низких оборотах давления в цилиндрах. Вот почему дизель обеспечивает высокий вращающий момент именно на низких оборотах, что позволяет использовать мощность более эффективно и в тяжелых условиях эксплуатации.

 

Любой двигатель представляет собой основной источник механической энергии, которая в мини-тракторе используется для передвижения и для привода активных рабочих органов навесных или прицепных орудий. На современных минитракторах, также как на мотоблоках, могут устанавливать двух- или четырехтактные карбюраторные либо дизельные двигатели внутреннего сгорания, паспортной мощностью от 1,5 до 12,0 кВт (или выше, только в отдельных случаях).
Выбор и применение двигателей на различной мини-технике и тракторах зависит от соответствия характеристик агрегата предъявляемым к нему требованиям, таким, как топливная экономичность, стоимость и сложность конструкции, также токсичность, шумность, и материалоемкость. Различаются и пусковые качества, сложность технического обслуживания и т. д.
Дизели двухтактные по своей экономичности превосходят карбюраторные двигатели, как двух, так и четырехтактные. Например, удельный расход топлива для двигателя модели 1Д90ТА микротрактора марки TZ-4K-14 составляет только 285 грамм/(кВт*ч). Однако, дизель имеет и большую материалоемкость, стоимость, также потребуют более высокой квалификации в обслуживании и ремонте. Запуск двухтактного дизельного силового агрегата является более сложным, часто его осуществление требует применения и знания некоторых приемов. Используют двухтактные дизели на минитехнике сравнительно редко, хотя двигатели не очень большой мощности действительно устанавливают на микротрактора, работающие как с активной, так и с пассивной нагрузкой (минитрактор TZ-4K-14).
Двигатели четырехтактные карбюраторные, жидкостного или воздушного охлаждения, в сравнению с дизелем имеют небольшую материалоемкость (4,0—6,8 кг/кВт), да и габаритные размеры их меньше, поэтому, занимают промежуточное положение между двухтактными карбюраторными и дизельными двигателями. Экономичность меньше дизельного, но превосходит двухтактные карбюраторные двигатели.

 

Применение для мини сельхозтехники получают маломощные четырехтактные дизеля, особенно, если  использоваться будут с пассивными орудиями. Такой двигатель наименее токсичен, будет иметь хорошие динамические качества, а высокая топливная экономичность — главное их преимущество [это 272—287 г/(кВт*ч)]. В это же время, дизельный четырехтактный двигатель имеют еще более высокую материалоемкость, уступая еще четырехтактным карбюраторным по пусковым качествам, по шумности. Такой силовой агрегат – дорогой, также, и наиболее сложен, поэтому их эксплуатация и обслуживание требуют высокой квалификации. Сегодня большое распространение получают дизельные двигатели не только на тракторах, а на мотоблоках производства японских фирм «Yanmar» и «Iseki».
Раз уж речь идет здесь о дизельной технике, нельзя не сказать о технике китайского производства. Наверно, все знают, что есть Китай как хороший, так и плохой (похоже, подделывают и себя). Но если Вы можете отличить одно от другого… ) В-общем, предлагается продукция в виде готовой сельхоз минитехники, с мощностью 18-20 л.с. без вала отбора мощности (и 2х4 приводом), или, большей мощности (с 4х4 приводом).

Оцените статью: Поделитесь с друзьями!

Дизельные двигатели авто — устройство и как работают, из чего состоят, типы дизелей

Всё про устройство и принцип работы современного дизельного двигателя автомобиля — какая конструкция и строение, из чего состоит. Подходит для начинающих автолюбителей и чайников.

Конструкция и строение

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали усилены, чтобы воспринимать высокие нагрузки — ведь степень сжатия дизеля намного выше (19-24 единиц против 9-11 у бензинового мотора). Этим объясняется большой вес и габариты дизельного мотора в сравнении с бензиновым. Принципиально отличие в способах формирования смеси топлива и воздуха, её воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает воздух. В конце такта сжатия, когда он нагревается до температуры 700-800оС, в камеру сгорания форсунками, под большим давлением впрыскивается солярка и почти мгновенно самовоспламеняется.

Смесеобразование в дизелях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы, и каждая частица имела достаточное для полного сгорания количество воздуха. С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания.

В дизелях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление 1, выполненное в днище поршня, способствует созданию вихревого движения воздуха.

Мелко распыленное топливо впрыскивается из форсунки 2 через несколько отверстий, направленных в определенные места углубления. Чтобы топливо полностью сгорало и дизель обладал наилучшими мощностями и экономическими показателями, топливо нужно впрыскивать в цилиндр до прихода поршня в ВМТ.

Самовоспламенение сопровождается резким нарастанием давления — отсюда повышенная шумность и жесткость работы. Такая организация рабочего процесса позволяет работать на очень бедных смесях, что определяет высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность, трудности холодного пуска, проблемы с зимней соляркой. У современных дизелей эти проблемы не столь очевидны.


Дизельное топливо должно отвечать определенным требованиям. Главные показатели качества топлива — чистота, малая вязкость, низкая температура самовоспламенения, высокое цетановое число (не ниже 40). Чем больше цетановое число, тем меньше период задержки самовоспламенения после момента впрыска его в цилиндр и двигатель работает мягче (без стуков).

Типы дизельных двигателей

Существует несколько типов дизельных моторов. Различие в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применяется на низкооборотных двигателях большого рабочего объема. Это связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией. Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить экономичность, снизить шум и вибрацию.

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Такие двигатели составляют большинство среди устанавливаемых на современные автомобили.

Устройство топливной системы

Важнейшей системой является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД

Предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.

На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.

Форсунки

Они вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе. Тип распылителя определяет форму факела топлива, которая важна для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливный фильтр

Является важнейшим элементом дизельного мотора. Его параметры, такие как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск

Холодный пуск дизеля обеспечивает система предпускового подогрева. В камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900оС, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув и Common-Rail

Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, его ресурс существенно меньше ресурса самого двигателя и не превышает 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


Система Common-Rail. Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи, и снижается шумность работы мотора.

Дизельный двигатель – плюсы и минусы

Двигатель внутреннего сгорания, в котором топливо самовоспламеняется под воздействием горячего воздуха (до 800 градусов Цельсия), предварительно сжатого до определенной величины давления (10-30 мегапаскалей) – это дизельный силовой агрегат (дизель). Его изобретение относится к более позднему сроку, по отношению к бензиновым силовым установкам. Возникла потребность в дизельных двигательных агрегатах в качестве альтернативы бензиновым аналогам, которые обладают низким коэффициентом полезного действия. У дизельных двигателей (ДД) КПД в полтора раза выше, чем у ДВС на бензине. Если использовать технологию турбонаддува, то КПД может достигнуть 50-ти процентов.

Области применения дизельных моторов

Дизельные силовые установки используются в качестве двигателей грузовиков, тракторов, легковых автомобилей, морских, речных судов, железнодорожных локомотивов, электростанций. Применяются ДД в составе установок для выполнения различных технологических процессов.

Классификация дизельных силовых агрегатов

В зависимости от конструктивных особенностей камер сгорания дизельные силовые агрегаты подразделяются на виды. Их три:

  1. Разделенная камера сгорания, когда топливо подается предварительно во вспомогательную, вихревую камеру, где и происходит сжатие воздушной массы до оптимальной величины давления. Эта процедура значительно облегчает процесс самовозгорания топлива. Таким образом, воспламененная смесь подается в основную камеру.
  2. Неразделенная камера, которая располагается в непосредственной близости к поршню. Такая конструкция обеспечивает экономное расходование топлива, но характеризуется высоким уровням шума при работе агрегата.
  3. Предкамера, когда вставная форкамера соединяется тонкими каналами с цилиндрами. Конфигурация и размеры каналов влияют на величину скорости подачи газов, образованных при сгорании дизтоплива. При этом уровень шума и токсичности уменьшается, а рабочий ресурс мотора увеличивается.

В зависимости от числа тактов ДД выпускаются двух и четырехтактные. 4-хтактным силовым установкам отдается предпочтение благодаря большей эффективности.

Дизели в составе системы подачи топлива могут иметь топливный насос высокого давления (ТНВД) или аккумуляторное устройство (блок). При наличии ТНВД секция насоса соединяется с одной форсункой. Когда используется аккумуляторный блок, то форсунки наполняются топливом напрямую, без дополнительных приспособлений.

Дизели могут оборудоваться системой холодного запуска – механизмом предпускового подогрева, который позволяет обеспечить безопасный плавный запуск мотора при низких температурах окружающей среды.

Внедрение технологии турбонаддува позволяет в значительной степени повысить эффективность работы и его мощность. Устанавливается специальное устройство – турбонагнетатель, который обеспечивает требуемый уровень давления для эффективного и более полного сгорания смеси топлива.

Плюсы дизельных двигателей

К преимуществам дизелей относится:

  1. Экономичность, которая характеризуется низким расходом топлива, что связана с конструктивными особенностями преобразования дизтоплива в кинетическую энергию. Способствует экономичности дизельных моторов и высокий уровень сжатия топлива, потому что снижается время воспламенения. Тем самым повышается КПД.
  2. Надежность. Ее высокий уровень объясняется отсутствием высоковольтной системы зажигания.
  3. Возможность сжигания топлива автоматически, не затрачивая при этом дополнительной энергии. Благодаря такой технологии в составе системы зажигания отсутствуют свечи, высоковольтные провода.
  4. Низкая стоимость дизтоплива, по сравнению с бензином.
  5. Небольшие материальные затраты на техническое обслуживание и ремонт двигательных установок.
  6. Безопасность, которая объясняется физико-химическим составом дизельного топлива.
  7. Экологичность, поскольку выброс вредных веществ (окиси углерода) незначительный. Это особенно актуально для дизель-генераторов, установленных в закрытых помещениях.
  8. Возможность работать на синтетическом топливе (сырая нефть, отработанное, рапсовое, пальмовое масло).
  9. Меньшая степень нагрева мотора при работе, что способствует меньшей отдачи тепла в окружающую среду.
  10. Продолжительный эксплуатационный срок.

Минусы дизельных двигателей

К недостаткам дизелей относится:

  • низкий уровень морозоустойчивости, поскольку при минусовых температурах дизтопливо густеет;
  • большой вес мотора из-за массивности некоторых деталей;
  • необходимость использования высококачественного топлива, поскольку топливный насос высокого давления весьма чувствителен к составу дизтоплива.

Плюсы значительно превышают недостатки, поэтому дизельные двигатели востребованы во многих отраслях.

Источник – koneks-oil.ru – доставка дизельного топлива по Москве и Московской области

Дизельный двигатель — принцип работы

                                                                                                          Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

 

 

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлы турбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Дизельные двигатели с технологией i-ART

Технологии впрыска топлива самых экологичных, бесшумных и эффективных дизельных двигателей в мире постоянно развиваются. Технология i-ART, разработанная DENSO, применяется в дизельных двигателях нового поколения, и впервые в мире датчики давления устанавливаются в каждой форсунке.

Настоящий прорыв спустя 120 лет после изобретения дизельного двигателя

В 1893 году в Германии Рудольф Дизель (Rudolf Diesel) изобрел двигатель, названный в его честь. Вскоре это изобретение вытеснило паровые машины во всем мире. Позднее стали применяться двигатели Clean Diesel, уровень выбросов CO2 которых ниже. Теперь принципиально новая технология i-ART знаменует очередной этап эволюции дизельного двигателя.

Как можно оптимизировать впрыск топлива?

Воспламенение топлива в дизельных двигателях происходит при его впрыске в сжатый в камере сгорания воздух, поэтому момент впрыска и количество топлива оказывают значительное влияние на характеристики двигателя. Таким образом, высокая точность управления впрыском топлива является ключом к достижению максимальной производительности двигателя.

Впервые в мире: технология i-ART

Миниатюрные датчики давления, встроенные в каждую из форсунок, отслеживают процесс впрыска. Так как впрыск топлива происходит до 1000 раз в секунду, технология i-ART с высокой точностью фиксирует изменения давления и температуры топлива во всех форсунках для обеспечения оптимального управления количеством топлива и моментом его впрыска. В результате двигатель работает тише, снижается уровень выбросов вредных газов и увеличивается топливная экономичность. Силовые агрегаты, оснащенные данной технологией, по своим характеристикам принадлежат к числу самых современных в мире.

Интеллектуальная система впрыска корректирует отклонения с точностью 1/100000 секунды

Технология i-ART оптимизирует количество впрыскиваемого топлива и момент впрыска с точностью 1/100000 секунды. За такое время болид Формулы-1, движущийся со скоростью 300 км/ч, проезжает расстояние в 1 мм. Инновационная технология i-ART позволила создать действительно умные дизельные двигатели.

i-ART: возможность использования биотоплива

Технология i-ART также может применяться в двигателях, работающих на биотопливе или других видах топлива, использующих обедненную смесь. Эта выдающаяся технология привлекла внимание всего мира.

Даже в Европе, где дизельные двигатели пользуются большой популярностью, технология i-ART является настоящим прорывом

Технология i-ART позиционируется как главный аргумент при продаже нового экологичного двигателя Drive-E компании Volvo, который имеет наибольшую удельную мощность и лучшую топливную экономичность в своем классе.

Более чистое и светлое будущее с интеллектуальным дизельным двигателем

i-ART знаменует собой прорыв в проектировании экологичных дизельных двигателей, которые внесут свой вклад в создание прогрессивного автомобильного общества. Деятельность корпорации DENSO направлена на совершенствование не только дизельных двигателей, но и бензиновых силовых агрегатов, электрических систем и решений в других областях техники. Для сохранения нашей планеты и обеспечения светлого будущего последующих поколений корпорация DENSO всегда будет ставить перед собой сложные задачи и разрабатывать новые инновационные продукты.

i-ART: основные факты

  • Аббревиатура i-ART используется для обозначения интеллектуальной технологии контроля впрыска топлива (intelligent-Accuracy Refinement Technology).
  • i-ART — это революционная технология, разработанная компанией DENSO и не имеющая аналогов.
  • Позволяет контролировать точность впрыска топлива, что является ключевым фактором достижения максимальной производительности, минимального расхода топлива и уровня выброса вредных веществ дизельных двигателей.
  • Топливо впрыскивается с удивительно высокой скоростью и частотой сто тысяч раз в секунду.

Узнать больше

Более подробную информацию о технологии i-ART можно получить у представителей компании DENSO.

Зачем нужно дизельное топливо? Достоинства и преимущества

Как работает дизельный двигатель? В сегодняшнем мире, где цены на топливо растут в результате стремительного роста спроса и сокращения предложения, вам необходимо выбрать экономичное топливо, отвечающее вашим потребностям. Благодаря изобретению Рудольфа Дизеля дизельный двигатель оказался чрезвычайно эффективным и экономичным.

Цена на дизельное топливо умеренно выше, чем на бензин, но дизельное топливо имеет более высокую удельную энергию, т.е.е. Из дизельного топлива можно извлечь больше энергии по сравнению с тем же объемом бензина. Таким образом, дизельные двигатели в автомобилях обеспечивают больший пробег, что делает их очевидным выбором для перевозки тяжелых грузов и оборудования. Дизель тяжелее и жирнее бензина, а его температура кипения выше, чем у воды. А дизельные двигатели привлекают все большее внимание из-за более высокого КПД и экономической эффективности.

Различие заключается в типе зажигания. В то время как бензиновые двигатели работают с искровым зажиганием, дизельные двигатели используют воспламенение от сжатия для воспламенения топлива.В последнем случае воздух втягивается в двигатель и подвергается сильному сжатию, которое нагревает его.

Это приводит к очень высокой температуре в двигателе, намного превышающей температуру, достигаемую в бензиновом двигателе. При пиковой температуре и давлении дизельное топливо, попадающее в двигатель, воспламеняется из-за экстремальной температуры.

В дизельном двигателе воздух и топливо вводятся в двигатель на разных стадиях, в отличие от газового двигателя, где вводится смесь воздуха и газа.Топливо впрыскивается в дизельный двигатель с помощью инжектора, тогда как в бензиновом двигателе для этой цели используется карбюратор. В бензиновом двигателе топливо и воздух вместе направляются в двигатель, а затем сжимаются. Воздушно-топливная смесь ограничивает сжатие топлива и, следовательно, общую эффективность.

Дизельный двигатель сжимает только воздух, и коэффициент может быть намного выше. В дизельном двигателе степень сжатия составляет от 14: 1 до 25: 1, тогда как в бензиновом двигателе степень сжатия составляет от 8: 1 до 12: 1.После сгорания побочные продукты сгорания удаляются из двигателя через выхлоп.

Для запуска в холодное время года дополнительное тепло обеспечивается «свечами накаливания». Дизельные двигатели могут быть двухтактными или четырехтактными и выбираются в зависимости от режима работы. Двигатели с воздушным и жидкостным охлаждением — это варианты, которые следует выбирать соответственно. Предпочтительно использовать генератор с жидкостным охлаждением, так как он тих в работе и имеет равномерно регулируемую температуру.

Преимущества дизельного двигателя Дизельный двигатель намного эффективнее и предпочтительнее бензинового по следующим причинам:
  • В современных дизельных двигателях устранены недостатки более ранних моделей — более высокий уровень шума и затраты на техническое обслуживание. Теперь они работают тихо и требуют меньшего обслуживания по сравнению с газовыми двигателями аналогичного размера
  • .
  • Они более прочные и надежные
  • Нет искры, так как топливо самовоспламеняется. Отсутствие свечей зажигания или искровых проводов снижает затраты на техническое обслуживание.
  • Стоимость топлива на произведенный киловатт на 30-50% ниже, чем у газовых двигателей
  • Дизельный агрегат с водяным охлаждением со скоростью 1800 об / мин проработает от 12 000 до 30 000 часов, прежде чем потребуется какое-либо капитальное обслуживание.Газовая установка с водяным охлаждением на 1800 об / мин обычно работает в течение 6000-10 000 часов, прежде чем потребуется обслуживание
  • Газовые агрегаты горят сильнее, чем дизельные агрегаты, и, следовательно, они имеют значительно меньший срок службы по сравнению с дизельными агрегатами

Области применения и использование дизельных двигателей Дизельные двигатели обычно используются в качестве механических двигателей, генераторов энергии и в мобильных приводах. Они находят широкое применение в локомотивах, строительном оборудовании, автомобилях и в бесчисленных промышленных применениях.Их сфера распространяется практически на все отрасли, и их можно наблюдать ежедневно, если вы загляните под капот всего, что вы проходите мимо.

Промышленные дизельные двигатели и дизельные генераторы используются в строительстве, судостроении, горнодобывающей промышленности, больницах, лесном хозяйстве, телекоммуникациях, под землей и в сельском хозяйстве, и это лишь некоторые из них. Производство электроэнергии для основного или резервного резервного питания является основным применением сегодняшних дизельных генераторов. Ознакомьтесь с нашей статьей о различных типах двигателей и генераторов и их общих применениях, чтобы увидеть больше примеров.

Электрогенераторы Дизельные генераторы или электрические генераторные установки используются в бесчисленном количестве промышленных и коммерческих предприятий. Генераторы могут использоваться для небольших нагрузок, например, в домах, а также для больших нагрузок, например, на промышленных предприятиях, больницах и коммерческих зданиях. Они могут быть либо основными источниками питания, либо резервными / резервными источниками питания.

Доступны в различных спецификациях и размерах. Дизель-генераторные установки мощностью 5–30 кВт обычно используются в простых домашних и личных применениях, например, в транспортных средствах для отдыха.Промышленные приложения охватывают более широкий спектр номинальных мощностей (от 30 кВт до 6 МВт) и используются во многих отраслях промышленности по всему миру. Для домашнего использования достаточно однофазных электрогенераторов. Трехфазные генераторы в основном используются в промышленных целях.

>> Вернуться к статьям и информации <<

Использование дизельного топлива — Управление энергетической информации США (EIA)

Изобретатель дизельного двигателя, Рудольф Дизель, изначально проектировал свой двигатель для использования угольной пыли в качестве топлива.Он также экспериментировал с растительным маслом до того, как нефтяная промышленность начала производить дизельное топливо. Большая часть дизельного топлива, которое мы используем в Соединенных Штатах, перерабатывается из сырой нефти. Использование биодизеля из растительных масел и других материалов в настоящее время также является обычным явлением.

Первое путешествие на автомобиле с дизельным двигателем было совершено 6 января 1930 года. Поездка протяженностью почти 800 миль проходила из Индианаполиса, штат Индиана, в Нью-Йорк. Поездка продемонстрировала потенциальную ценность конструкции дизельного двигателя, которая с момента первой поездки использовалась в миллионах автомобилей.

Грузовой автомобиль с дизельным двигателем

Источник: стоковая фотография (защищена авторским правом)

Дизельное топливо важно для экономики США

Большинство используемых нами продуктов перевозятся грузовиками и поездами с дизельными двигателями, а большая часть строительных, сельскохозяйственных и военных машин и оборудования также оснащена дизельными двигателями. В качестве транспортного топлива дизельное топливо предлагает широкий спектр характеристик, эффективности и безопасности. Дизельное топливо также имеет более высокую плотность энергии, чем другие жидкие топлива, поэтому оно обеспечивает больше полезной энергии на единицу объема.

В 2019 году потребление дистиллятного топлива (в основном дизельного топлива) транспортным сектором США составило около 47,2 миллиарда галлонов (1,1 миллиарда баррелей). На эту сумму приходилось 15% от общего потребления нефти в США и, с точки зрения содержания энергии, около 23% от общего потребления энергии транспортным сектором.

Дизельное топливо используется для многих задач

Дизельные двигатели грузовиков, поездов, лодок и барж помогают транспортировать почти все продукты, которые потребляются людьми.Дизельное топливо обычно используется в общественных и школьных автобусах.

Дизельное топливо используется для большей части сельскохозяйственной и строительной техники в США. Строительная отрасль также зависит от мощности дизельного топлива. Дизельные двигатели могут выполнять сложные строительные работы, такие как подъем стальных балок, рытье фундаментов и траншей, бурение скважин, мощение дорог и безопасное и эффективное перемещение почвы.

Военные США используют дизельное топливо в цистернах и грузовиках, поскольку дизельное топливо менее горючее и менее взрывоопасно, чем другие виды топлива.Дизельные двигатели также реже глохнут, чем двигатели, работающие на бензине.

Дизельное топливо также используется в генераторах дизельных двигателей для выработки электроэнергии. Многие промышленные предприятия, большие здания, учреждения, больницы и электроэнергетические компании имеют дизельные генераторы для резервного и аварийного электроснабжения. В большинстве отдаленных деревень на Аляске дизельные генераторы используются в качестве основного источника электроэнергии.

Самосвал и погрузчик для погрузки грязи в самосвал

Источник: стоковая фотография (защищена авторским правом)

Дизель-генераторы в Тулаксаке, Аляска

Источник: Центр энергетики и энергетики Аляски

Последнее обновление: 24 июня 2020 г.

Где используются дизельные двигатели?

Когда большинство людей думают о дизельных двигателях, они представляют себе большой грузовик, едущий по шоссе. Однако грузовики — не единственное место, где используются дизельные двигатели. Многие типы транспортных средств используют дизельные двигатели из-за их эффективности и долговечности, и многие отрасли промышленности полагаются на них при выполнении важных задач. Помимо транспортных средств, важные инструменты, такие как генераторы, также управляются дизельными двигателями, поскольку они лучше не выходят из строя, чем бензиновые генераторы.

Применение и применение дизельных двигателей

:
  • Легковые автомобили: В Европе и Индии очень распространены легковые автомобили с дизельными двигателями.На городских скоростях дизельные двигатели обычно более экономичны, чем бензиновые. Кроме того, они служат дольше, что делает их более надежными. Автомобили с дизельным двигателем обычно считаются вариантом с низким уровнем выбросов CO2, что делает их популярными и среди экологически сознательных людей в Европе. Хотя это не так распространено в Соединенных Штатах, они могут стать популярнее, поскольку водители по-прежнему хотят снизить выбросы углерода от транспортного средства, которым они управляют.
  • Железнодорожные локомотивы: Тепловозы популярны во всем мире в регионах, где электрификация путей невозможна.Это тип двигателя, который выбирают для грузовых поездов, перевозящих более тяжелые грузы и требующих мощного двигателя.
  • Морские транспортные средства: Многие различные типы морских транспортных средств, от круизных и грузовых судов до частных прогулочных судов, используют дизельные двигатели. Поршневые дизельные двигатели используются во многих морских транспортных средствах из-за их экономии топлива и простоты эксплуатации по сравнению с другими типами двигателей. Их способность приводить в действие более крупные транспортные средства делает их популярным выбором для кораблей и лодок.
  • Строительное и сельскохозяйственное оборудование: Надежность и мощность дизельных двигателей делают их предпочтительным двигателем для крупной строительной техники, такой как фронтальные погрузчики и бульдозеры. Дизельные двигатели также используются во многих типах сельскохозяйственной техники, например в тракторах, благодаря своей долговечности и эффективности.

В Central Diesel мы предлагаем множество различных дизельных двигателей для различного применения. Посетите наш веб-сайт, чтобы увидеть нашу полную линейку продуктов, и подпишитесь на нас в Twitter и LinkedIn, чтобы быть в курсе последних новостей и обновлений компании.

Как работают дизельные автомобили?

Автомобили с дизельным двигателем похожи на автомобили с бензиновым двигателем, поскольку оба используют двигатели внутреннего сгорания. Одно отличие состоит в том, что дизельные двигатели имеют систему впрыска с воспламенением от сжатия, а не систему с искровым зажиганием, используемую в большинстве бензиновых автомобилей. В системе с воспламенением от сжатия дизельное топливо впрыскивается в камеру сгорания двигателя и воспламеняется за счет высоких температур, достигаемых при сжатии газа поршнем двигателя.В отличие от систем контроля выбросов на автомобилях с бензиновым двигателем, многие автомобили с дизельным двигателем имеют дополнительные компоненты доочистки, которые уменьшают выброс твердых частиц и разлагают выбросы опасных оксидов азота (NO x ) на безвредные азот и воду. Дизельное топливо является обычным транспортным топливом, и в некоторых других вариантах топлива используются аналогичные системы и компоненты двигателя. Узнайте об альтернативных вариантах топлива.

Изображение в высоком разрешении

Ключевые компоненты легкового дизельного автомобиля

Система доочистки: Эта система состоит из нескольких компонентов, которые отвечают за фильтрацию выхлопных газов двигателя в соответствии с требованиями по выбросам выхлопных газов.После того, как выхлопные газы двигателя фильтруются через сажевый фильтр (DPF) и катализатор окисления дизельного топлива для уменьшения твердых частиц, жидкость для выхлопных газов дизельного двигателя (DEF) впрыскивается в смесь выхлопных газов, затем восстанавливается до азота и воды путем химического преобразования. в селективном каталитическом восстановителе (SCR) перед выбросом в атмосферу через выхлопную трубу автомобиля.

Батарея: Батарея обеспечивает электричеством для запуска двигателя и электроники / аксессуаров силового транспортного средства.

Заливная горловина для выхлопных газов дизельного двигателя: Этот порт предназначен для заполнения бака для отработанных газов дизельного двигателя.

Бак с жидкостью для выхлопных газов дизельного двигателя (DEF): В этом баке содержится жидкость для выхлопных газов дизельного двигателя, водный раствор мочевины, который впрыскивается в поток выхлопных газов во время избирательного каталитического восстановления.

Электронный блок управления (ЕСМ): ЕСМ контролирует топливную смесь, угол опережения зажигания и систему выбросов; следит за работой автомобиля; предохраняет двигатель от злоупотреблений; а также обнаруживает и устраняет проблемы.

Заливная горловина: Форсунка топливораздаточной колонки присоединяется к резервуару на транспортном средстве для заправки топливного бака.

Топливопровод: Металлическая трубка или гибкий шланг (или их комбинация) подает топливо из бака в систему впрыска топлива двигателя.

Топливный насос: Насос, перекачивающий топливо из бака в систему впрыска топлива двигателя по топливопроводу.

Топливный бак (дизель): Хранит топливо на борту транспортного средства до тех пор, пока оно не понадобится для работы двигателя.

Двигатель внутреннего сгорания (с воспламенением от сжатия): В этой конфигурации топливо впрыскивается в камеру сгорания и воспламеняется за счет высокой температуры, достигаемой при сильном сжатии газа.

Трансмиссия: Трансмиссия передает механическую мощность от двигателя и / или электрического тягового двигателя для привода колес.

Области применения и применения промышленных дизельных двигателей-генераторов

С момента своего открытия дизельный двигатель был заново изобретен и значительно усовершенствован, чтобы улучшить его характеристики и эффективность, одновременно расширив диапазон его применения.Одно из наиболее распространенных его применений сегодня — это дизельные генераторы, используемые для обеспечения резервного или резервного питания объектов и систем в случае сбоя питания. Современные дизельные генераторы предназначены для непрерывного контроля электрического тока, они автоматически запускаются при перебоях в подаче электроэнергии и выключаются при возобновлении работы коммунальных служб.

Рынок дизельных генераторов растет, и, согласно исследованию консалтинговой фирмы Grand View Research, ожидается, что в ближайшем будущем он продолжит расти.

Следующие отрасли в значительной степени полагаются на мощность дизельных генераторов и внесли свой вклад в растущий спрос.

Горное дело

Дизель-генераторы широко используются в горнодобывающей промышленности во всем мире. Они обеспечивают более 70% всей мощности, необходимой для горных работ для тяжелого оборудования, такого как землеройные машины, бурильщики, конвейерные ленты и краны. Будь то добыча газа, угля, железа или драгоценных металлов, дизельные генераторы всегда являются выбором номер один, потому что они портативны и могут легко использоваться в надуманных зонах добычи с экстремальными условиями.

Низкая летучесть

Diesel также делает его более безопасным, чем бензин, при использовании в горнодобывающих отраслях. Известно, что дизельные генераторы обеспечивают максимальную мощность, долговечность и мощность при добыче полезных ископаемых, что делает их идеальным источником энергии и резервным / резервным вариантом для всех тяжелых работ на горных полях.

Здравоохранение

Это одна из самых чувствительных отраслей во многих отношениях. Без дизельных генераторов, обеспечивающих резервное питание в случае сбоя или перебоев в электроснабжении, многие пациенты в медицинских учреждениях погибли бы.Серьезно больные и травмированные пациенты, такие как пациенты в отделении интенсивной терапии (ОИТ), будут подвержены риску, потому что устройства жизнеобеспечения, такие как кислородные насосы, не смогут работать при малейшем отключении электроэнергии.

Дизель-генераторы — самый надежный резервный источник питания для больниц, потому что их легче обслуживать, чем генераторы природного газа, и они обеспечивают бесперебойное электроснабжение при выходе из строя энергосистемы (до тех пор, пока не закончится запас топлива). Полного бака дизельного топлива на всю больницу может хватить на 8 часов, в зависимости от его размера.При достаточном запасе топлива на месте дизельные генераторы могут обеспечивать резервное питание более 48 часов.

Коммерческий

Никто в коммерческой отрасли не хочет терять деньги, но сбой питания без плана резервного копирования может сделать это занозой в плоти. Отключение электроэнергии в коммерческих помещениях означает огромные потери доходов кассовых аппаратов, проблемы с безопасностью как для людей, так и для финансов, проблемы для ИТ и любого другого автоматизированного оборудования, а также полное прекращение работы.Все эти неудобства и потери нельзя сравнить со стоимостью вложения в резервный дизель-генератор.

Дизель-генератор позволяет защитить ваши бизнес-интересы, доходы, обеспечить бесперебойную работу, избежать потери бизнеса из-за конкурентов, обеспечить безопасность и защитить вашу прибыль.

Нефть и газ

В нефтегазовой отрасли время — деньги. Каждая минута простоя, будь то из-за отказа машины или отключения электроэнергии, стоит денег.Дизельные генераторы являются неотъемлемой частью этой отрасли, поскольку они используются для обеспечения энергией всех видов деятельности на нефтяных и газовых месторождениях, включая бурение, перекачку и погрузку.

В большинстве случаев разведка нефти и газа проводится в удаленных местах с тяжелыми условиями. Без локальных дизель-генераторов работа на этих участках была бы невозможна, поскольку они в основном находятся далеко от электрических сетей. Современным буровым станкам также требуются мощные, эффективные и надежные генераторы на месте, когда они работают; И только дизельные генераторы подходят под это требование.

Строительство

Дизель-генераторы незаменимы в строительной отрасли. Строительные проекты часто останавливаются из-за перебоев в электроснабжении или отсутствия электроснабжения на некоторых строительных площадках. Постоянные перебои в подаче электроэнергии могут привести к задержке завершения проекта, а также к дорогостоящим расходам из-за отставания от графика.

Генераторы

обеспечивают столь необходимую мощность для освещения строительства, которое ведется круглосуточно, без выходных, машин для кондиционирования воздуха, систем электросвязи и работы строительного оборудования, такого как краны.Они также обеспечивают резервное питание основной сети в случае отключения электроэнергии из-за внешних сил или аварий / помех со стороны строительной площадки. Кроме того, переносные генераторы можно перемещать с одного объекта на другой за считанные минуты или часы.

Производство

Незначительный сбой в обрабатывающей промышленности может означать не только низкие объемы производства, но и производство низкого качества. Для получения оптимальных доходов любая производственная линия в производственной линии должна постоянно работать в соответствии с требованиями.Когда на производственных предприятиях случаются отключения электроэнергии, они влияют на все процессы — от поиска сырья до продажи продукции. Обычные графики прерываются, цели не достигаются, сырье портится, безопасность ставится под угрозу, а в некоторых случаях ухудшается качество продукта, что может привести к потере клиентов.

Резервные дизельные генераторы обеспечивают аварийное электроснабжение в случае таких отключений электроэнергии и, следовательно, защищают обрабатывающую промышленность от огромных потерь продукции, финансовых потерь и репутации.

Телекоммуникации и центры обработки данных

Компьютеры и центры обработки данных сегодня являются сердцем каждой отрасли. Во многих отраслях сейчас данные хранятся на серверах, как ручных, так и облачных, и им необходим постоянный доступ к этим данным, чтобы их бизнес мог работать без сбоев. Из-за перебоев в подаче электроэнергии эти серверы становятся недоступными, и предприятиям приходится останавливать свою работу; потеря бизнеса и денег в процессе. Перебои в подаче электроэнергии также делают серверы уязвимыми для атак хакеров с целью кражи и манипулирования этими данными в личных целях.

Дизельные генераторы

зарекомендовали себя в этой отрасли как очень надежные, поскольку они обеспечивают постоянное и немедленное резервное питание при выходе из строя электросети. Они следят за тем, чтобы центры обработки данных всегда были в сети даже во время стихийных бедствий.

Утилиты

Коммунальные предприятия могут быть поставщиками энергии, от которых мы все зависим в снабжении наших сетей, но они также сталкиваются с чрезвычайными ситуациями на своих электростанциях и обращаются к дизельным генераторам. У компаний есть огромные дизельные генераторы, готовые на случай, если на их основной линии электроснабжения возникнет авария.Они используют генераторы для производства электроэнергии, достаточной для снабжения энергией тысяч домов, пока они не смогут снова подключить основное энергоснабжение.

Дизель-генераторы в этой отрасли позволяют бригаде электростанции иметь достаточно времени для работы с основным источником питания. Они также помогают предотвратить подачу иска разгневанными покупателями на коммунальную компанию или ее потерю в пользу конкурентов с устойчивым планом резервного копирования.

Образование

Школы, колледжи и другие высшие учебные заведения не возглавят ни один список отраслей, требующих резервного генератора, но на самом деле в образовательных учреждениях есть несколько систем, которые полагаются на электричество.Перебои в подаче электроэнергии означают гораздо больше, чем у студентов, получающих оставшуюся часть дня. Конечно, существуют неурядицы в классе, которые требуют изменения расписания, что может стать серьезной проблемой, особенно в университетах. Отключение питания может поставить под угрозу школьные центры обработки данных, в которых хранятся конфиденциальные данные, и если системы ИТ-безопасности выйдут из строя, они окажутся под угрозой. Детекторы дыма, разбрызгиватели воды, аварийное освещение, сигнализация и звонки, а также электронные дверные системы — все это находится под угрозой при отключении электроэнергии. В целом, потеря мощности оставляет школы, учащихся и сотрудников уязвимыми перед несколькими опасностями.Школа без электричества не может обеспечить необходимую безопасность.

Военный

Это еще одна отрасль, которая сильно зависит от дизель-генераторов. Солдатам в бою нужен хороший и стабильный источник энергии, который можно переносить даже в самые суровые условия и при этом эффективно функционировать. Они используют дизельные генераторы для широкого спектра применений, включая питание своего оборудования, больниц, освещение своих лагерей и управление своим ИТ-оборудованием и многое другое.

границ | Преимущества и недостатки дизельных одно- и двухтопливных двигателей

Введение

Обедненная смесь с воспламенением от сжатия (CI) и прямым впрыском (DI) является наиболее эффективным двигателем внутреннего сгорания (ДВС) (Zhao, 2009; Mollenhauer and Tschöke, 2010). Он производит выбросы оксидов азота и твердых частиц (ТЧ) из двигателя, которые нуждаются в последующей обработке, чтобы соответствовать чрезвычайно низким пределам, установленным для транспортных средств (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), несмотря на то, что качество воздуха невысокое. не только под влиянием транспортных выбросов, но и из многих других источников.Одних только стратегий сжигания (Khair and Majewski, 2006) было недостаточно для достижения пороговых значений выбросов, и требовались специальные катализаторы сжигания обедненной смеси, особенно для NOx в дополнение к фильтрам твердых частиц в выхлопных газах. Несмотря на свой экономический успех, дизельные двигатели во всем мире сталкивались со все более строгими законами о выбросах (Knecht, 2008; Zhao, 2009) ценой постепенного отказа от технологии, нацеленной на нереалистичные минимальные дополнительные улучшения.

У дизеля есть как все плюсы, так и минусы.Его эффективность преобразования топлива при полной и частичной нагрузке превышает эффективность стехиометрических ДВС с искровым зажиганием (SI), как с прямым впрыском, так и с впрыском топлива в порт (PFI). CIDI ICE имеют пиковый КПД около 50% и КПД выше 40% на большинстве скоростей и нагрузок. Напротив, у SI ICE пиковый КПД составляет около 30%, и этот КПД резко снижается за счет снижения нагрузки. CI ICE поставляют механическую энергию по запросу с эффективностью преобразования топлива, которая также выше, чем эффективность электростанций на сжигании топлива, вырабатывающих электроэнергию.По данным EIA (2018), в 2017 году в США угольные парогенераторы работали со средней эффективностью 33,98%. Парогенераторы на нефтяном и природном газе работают примерно с одинаковым КПД — 33,45 и 32,96%. Газотурбинные генераторы работают с пониженным КПД 25,29% для нефти и 30,53% для природного газа. КПД генераторов с двигателями внутреннего сгорания выше, чем у газовых турбин и парогенераторов: 33,12% для нефти и 37,41% для природного газа. Только парогазовые генераторы, не работающие на нефти, имеют КПД 34.78%, но с природным газом, который имеет КПД 44,61%, превосходят генераторы внутреннего сгорания.

При сравнении электрической мобильности двигатели CIDI ICE по-прежнему имеют неоспоримые преимущества для транспортных приложений (Boretti, 2018). Однако у CIDI ICE плохая репутация, что ставит под угрозу его потенциал. Дизельные двигатели CIDI ICE в недавнем прошлом не смогли обеспечить удельные выбросы NOx для сертификационных циклов холодного пуска во время прогретых реальных графиков вождения, которые сильно отличались от сертификационных циклов (Boretti, 2017; Boretti and Lappas, 2019).Этот досадный случай был разыграен против CIDI ICE, чтобы создать впечатление, что этот двигатель экологически вреден для выбросов загрязняющих веществ, хотя это не так.

Значительные выбросы NOx двигателей CIDI ICE являются результатом большого образования NOx в цилиндрах, работающих в условиях избыточного обедненного воздуха стехиометрии, в сочетании с неправильной работой системы последующей обработки. Катализатор обедненного сжигания ДВС CIDI менее развит, чем трехкомпонентный каталитический преобразователь (TWC) стехиометрических ДВС SI (Heywood, 1988; Zhao, 2009; Mollenhauer and Tschöke, 2010; Reşitoglu et al., 2015). Кроме того, не учитывалась длительная разминка при эксплуатации (Boretti and Lappas, 2019). Кроме того, некоторые производители, применяющие впрыскивание мочевины в доочистку, решили вводить меньше мочевины, чем необходимо, когда это не строго требуется сертификацией выбросов. Точно так же некоторые производители также сосредоточились на вопросах управляемости и экономии топлива, а не на выбросах, когда их строго не спрашивали, вдали от условий эксплуатации, вызывающих озабоченность при сертификации выбросов. Таким образом, несоблюдение требований по выбросам NOx в случайно выбранных условиях не было фундаментальным недостатком двигателей CIDI ICE в целом, а только конкретных продуктов, разработанных с учетом требований по выбросам и рыночных требований того времени.Противники CIDI ICE не считают, что эти двигатели оснащены уловителями твердых частиц с почти идеальной эффективностью, циркуляция автомобилей, оснащенных этими двигателями, в сильно загрязненных районах приводит к лучшим условиям для выхлопной трубы, чем условия впуска, для твердых частиц, что способствует для очистки воздуха.

Настоящая статья представляет собой объективный обзор плюсов и минусов экономичного сжигания, CIDI ICE, которые намного лучше, чем предполагалось. Поскольку ДВС, безусловно, потребуется в ближайшие десятилетия, дальнейшие улучшения сжигания обедненной смеси CIDI ICE будут полезны для экономики и окружающей среды.Помимо дизельных двигателей CIDI ICE, в этой работе также рассматриваются двухтопливные двигатели, работающие на дизельном СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизель-CNG (Maji et al. , 2008; Shah et al., 2011; Ryu, 2013) или дизель-СНГ (Jian et al., 2001; Ashok et al., 2015). Работа с небольшим количеством дизельного топлива и гораздо большим (с точки зрения энергии) количеством гораздо более легкого углеводородного топлива с пониженным содержанием углерода до водорода позволяет дополнительно снизить выбросы ТЧ из двигателя вне двигателя, а также CO . 2 , и освобождаясь от компромисса PM-NOx, который влияет на стратегии впрыска только дизельного топлива, также снижает выбросы NOx при выходе из двигателя.Также рассмотрены тенденции развития двухтопливных двигателей CIDI ICE.

Использование биодизеля для производства низкоуглеродного дизельного топлива с использованием однотопливного подхода, безусловно, является еще одним вариантом сокращения выбросов CO 2 . Хотя эта возможность не влияет на выбросы загрязняющих веществ, производство биотоплива в целом растет, но не ожидаемыми темпами (IEA, 2019), и вопрос о соотношении продуктов питания и топлива (Ayre, 2007; Kingsbury, 2007; Inderwildi and King, 2009) также может иметь негативный вес в мире с прогнозируемым неизбежным водным и продовольственным кризисом (United Nations, 2019).Кроме того, преимущества биотоплива перед LCA — давняя и противоречивая дискуссия в литературе (McKone et al., 2011).

Существует возможность выбросов метана из двухтопливных дизельных двигателей, работающих на природном газе (Camuzeaux et al., 2015). Поскольку метан является мощным парниковым газом, этот аспект следует должным образом учитывать при сокращении выбросов парниковых газов. Существует не только возможность утечки метана из транспортных средств, оснащенных двухтопливными дизельными двигателями, работающими на СПГ. Также существуют выбросы метана при добыче нефти и газа.Помимо выбросов метана при добыче природного газа, существуют выбросы электроэнергии, связанные с эксплуатацией завода по производству СПГ. Хотя СПГ (и КПГ), безусловно, будет иметь преимущества по сравнению с дизельным топливом, это преимущество может быть меньше, чем то, что можно было бы вывести из отношения C-H в топливе. Безусловно, существует проблема сокращения выбросов метана, связанных с производством, транспортировкой и сжижением природного газа (Ravikumar, 2018).

Наконец, хотя фумигация природного газа для двухтопливных дизельных двигателей широко используется, поскольку она намного проще и может быть достигнута за счет низкотехнологичных преобразований, и, таким образом, большинство транспортных средств используют этот подход, дизельные двигатели переведены на дизельное топливо и фумигационный природный газ. страдают от значительного снижения эффективности преобразования топлива по сравнению соригинальный дизель, как при полной, так и при частичной нагрузке, с пониженной мощностью и плотностью крутящего момента. Если природный газ смешивается (окуривается) с всасываемым воздухом перед впуском в цилиндр, а дизельное топливо используется в качестве источника воспламенения, количество вводимого природного газа ограничивается возможностью детонации предварительно смешанной смеси. Кроме того, нагрузка обычно регулируется дросселированием впуска, как в обычных бензиновых двигателях, а не количеством впрыскиваемого топлива, как в дизельном двигателе.Поскольку цель состоит в том, чтобы обеспечить равные или лучшие характеристики (мощность, крутящий момент, переходный режим) и выбросы новейшего дизельного топлива с двухтопливной конструкцией, эта двухтопливная конструкция должна предусматривать прямой впрыск дизельного и газообразного топлива.

Происхождение плохой репутации дизеля

Плохая репутация дизеля и двигателя внутреннего сгорания (ДВС) в целом является результатом действий Совета по воздушным ресурсам Калифорнии (CARB), а также Агентства по охране окружающей среды США (EPA) (Parker , 2019), с « Diesel-gate » только один шаг.

В те времена водородная экономика была более вероятной моделью будущего для транспорта, лучше, чем любая другая альтернатива, учитывая непостоянство производства энергии ветра и солнца (Crabtree et al., 2004; Muradov and Veziroglu, 2005; Marbán and Valdés- Солис, 2007). Предполагалось, что в транспортных средствах будут использоваться ДВС, работающие на возобновляемом водороде (H 2 -ICE), со всем, кроме кардинальных изменений, которые требовались в технологии двигателей, но усилия в основном были направлены на хранение и распространение.Примерно в те же дни была популярна идея экономики метанола, когда метанол, полученный с использованием возобновляемого водорода и CO 2 , улавливаемый угольными электростанциями, был прямой заменой традиционного бензинового топлива (Olah, 2004 , 2005). H 2 -ICE стал историей после того, как CARB рассмотрел BMW Hydrogen 7, первое транспортное средство с двигателем внутреннего сгорания, которое было поставлено на рынок, не квалифицировалось как автомобиль с нулевым уровнем выбросов (CO 2 ). В 2005 году BMW предложила автомобиль Hydrogen 7 как автомобиль с нулевым уровнем выбросов.При сжигании водорода в выхлопной трубе был в основном водяной пар и абсолютно не выделялся CO 2 , но Агентство по охране окружающей среды США не согласилось с нулевым уровнем выбросов CO 2 (Nica, 2016). Агентство по охране окружающей среды США заявило, что у транспортного средства все еще был ДВС, с возможностью того, что масло, используемое для смазки, могло попасть в цилиндр, образуя CO 2 . Тот факт, что общий расход масла составлял ничтожно малые 0,04 л масла на 1000 км, не учитывался. Из-за неофициальных обсуждений BMW отказалась от исследования водородных ДВС.Все остальные производители оригинального оборудования впоследствии прекратили свои исследования и разработки.

Что касается негативного отношения CARB и Агентства по охране окружающей среды США к ДВС в целом, в 2011 году BMW предложила в качестве концепт-кара аккумуляторно-электрический i3 с возможностью расширения запаса хода (Ramsbrock et al., 2013; Scott and Burton, 2013). . Расширителем запаса хода был небольшой бензиновый ДВС, приводивший в действие генератор для подзарядки аккумулятора. Внедрение расширителя диапазона позволило увеличить запас хода автомобиля и снизить стоимость, вес и объем аккумуляторной батареи, что является серьезной проблемой для экономики и окружающей среды.Поскольку производство планируется начать только в 2013 году, CARB сразу же поспешил установить правила, предотвращающие оптимизацию этой концепции, выпустив в 2012 году (CARB, 2012) чрезмерно долгое постановление, предписывающее, что расширитель диапазона должен использоваться только для достижения ближайшей подзарядки. точка. В промежутке между другими требованиями CARB запросил у транспортного средства с расширителем запаса хода номинальный запас хода на полностью электрической основе не менее 75 миль, диапазон меньше или равный диапазону заряда батареи от вспомогательной силовой установки, и, наконец, чтобы Вспомогательная силовая установка не должна включаться до тех пор, пока не разрядится аккумулятор.В результате всех этих ограничений BMW изо всех сил пыталась сделать расширитель диапазона конкурентоспособным, и в конечном итоге они недавно прекратили производство i3 с расширителем диапазона (Autocar, 2018).

Эти два события помогают объяснить 2015 « diesel-gate » и последующий « дизель-фобию ». Дизельный двигатель был популярен (для легковых автомобилей) в основном в Европе, и ЕС продвигал дизельные автомобили для решения проблем изменения климата. В то время было ясно, что преждевременный переход к электромобильности мог привести к экономической и экологической катастрофе.Таким образом, концерн Volkswagen стал мишенью скандала « дизельные ворота ». Дизельные ДВС обеспечивали низкие выбросы CO 2 , конкурируя с аккумуляторными электромобилями в анализе жизненного цикла, при этом выделяя меньше, чем предписано, загрязняющих веществ в ходе испытаний, предписанных в то время. Легковые автомобили тестировались на соответствие правилам выбросов в течение заданного цикла, в лаборатории, в повторяемых условиях с правильным оборудованием. Международный совет по чистому транспорту (ICCT) организовал случайную езду по дорогам на различных дизельных транспортных средствах и измерения загрязняющих веществ с помощью PEM.Они обнаружили, что транспортные средства, оптимизированные для производства низких удельных (на км) выбросов CO 2 и выбросов загрязняющих веществ в определенных условиях, не могут обеспечить такие же удельные выбросы при всех других условиях, как это было логично. EPA выпустило уведомление о нарушении в отношении Volkswagen, что привело к огромному штрафу в следующих судебных исках. « Diesel-gate » обошлась VW более чем в 29 миллиардов долларов в виде штрафов, компенсаций и обратных закупок, в основном в США (физ.орг, 2018). Часть миллиарда долларов Volkswagen была направлена ​​на поддержку мобильности аккумуляторных электромобилей, финансирование инфраструктуры подзарядки электромобилей в Соединенных Штатах отдельными поставщиками (O’Boyle, 2018). Затем « Diesel-gate » использовался для определения конца мобильности на базе ICE (Raftery, 2018; Taylor, 2018).

Предполагаемый избыточный выброс NOx автомобилями, оснащенными дизельными ДВС CIDI, которые начинались с « diesel gate », все еще популярны, хотя и не соответствуют действительности (Chossière et al., 2018) утверждает, что дизельные автомобили вызвали в 2015 году 2700 преждевременных смертей только в Европе из-за их выбросов NOx «на превышающих ». Эта работа не является объективной при анализе выбросов дизельного двигателя. Неверно утверждать, что дизельные автомобили в ЕС выбрасывают на дороге гораздо больше NOx, чем нормативные ограничения. Как было написано ранее, правила выбросов регулируют выбросы загрязняющих веществ в конкретных условиях лабораторных испытаний, а не во всех других возможных условиях.Неразумно ожидать определенной экономии топлива и выбросов регулируемых загрязнителей и углекислого газа, которые не зависят от конкретного испытания. Чтобы иметь выбросы «, превышение », сначала необходимо установить предел для конкретного применения, а затем — величину «, превышающую » при определенных условиях. Утверждение о преждевременной смертности, вызванной чрезмерными выбросами NOx от дизельных транспортных средств, основано на завышенной разнице выбросов NOx, предполагая, что выбросы намного хуже, чем фактические, и сравнивая этот выброс с невероятной эталонной ситуацией, близкой к нулю.Требование также основано на завышении количества смертей на счет этого дифференциального выброса. Эти два предположения не подтверждаются проверенными данными.

Поскольку более современные дизельные автомобили заменили еще больше загрязняющих окружающую среду автомобилей, единственное возможное объективное заявление о выбросах старых и новых дизельных автомобилей в Европе, основанное на неоспоримых доказательствах, основано только на правилах рассмотрения жалоб на выбросы время их регистрации. Поскольку правила выбросов стали все более ограничительными, хотя и подтверждено только лабораторными сертификационными испытаниями, как показано в таблице 1, неверно предполагать, что дизельные ДВС CIDI выбрасывают больше NOx, чем раньше.В то время как дизельные пассажирские автомобили, соответствующие стандарту Евро 6, должны были выделять менее 0,08 г / км NOx при выполнении лабораторных испытаний NEDC, дизельные автомобили, соответствующие стандартам Евро 5–3, в противном случае могли выделять 0,18, 0,25 и 0,50 г / км на тот же тест, а дизельные автомобили, соответствующие стандартам Euro 1 и 2, должны были подтвердить только пороговые значения выбросов 0,7-0,9 и 0,97 г / км в одном и том же тесте. Нет никаких измерений, подтверждающих, что старые дизельные автомобили, соответствующие предыдущим правилам Евро, были более экологически чистыми по всем критериям загрязнения, включая NOx, во время реального вождения, чем новейшие дизельные автомобили.Кроме того, характеристики выбросов обычно ухудшаются с возрастом, а отсутствие технического обслуживания может еще больше усугубить ситуацию. Это делает заявление Chossière et al. (2018) непоследовательно.

Таблица 1 . Нормы выбросов Евросоюза для легковых автомобилей (категория M) положительного (бензин) и компрессионного (дизельного) исполнения.

Преимущества и недостатки экономичного двигателя CIDI

Основным преимуществом сжигания обедненной смеси, CIDI ICE является эффективность преобразования топлива, которая намного выше, чем у стехиометрических, SI ICE, как при полной нагрузке, так и, более того, при частичной нагрузке (Heywood, 1988; Zhao, 2009; Mollenhauer and Чёке, 2010).В то время как у легковых автомобилей с обедненной топливной смесью CIDI ICE на дизельном топливе пиковая эффективность преобразования топлива составляет около 45%, пиковая эффективность легковых автомобилей со стехиометрическими двигателями SI ICE, работающими на бензине, составляет всего около 35%. Уменьшение нагрузки за счет количества впрыскиваемого топлива, эффективности преобразования топлива при сжигании обедненной смеси, CIDI ICE является высоким в большей части диапазона нагрузок. И наоборот, при уменьшении нагрузки, дросселируя впуск, эффективность преобразования топлива стехиометрического, SI ICE резко ухудшается при уменьшении нагрузки.Это дает возможность легковым автомобилям, оснащенным системой сжигания обедненной смеси CIDI ICE, потреблять гораздо меньше топлива и, следовательно, выделять гораздо меньше CO 2 во время ездовых циклов (Schipper et al., 2002; Zervas et al., 2006; Johnson , 2009; Zhao, 2009; Mollenhauer, Tschöke, 2010; Boretti, 2017, 2018; Boretti, Lappas, 2019).

Бедная смесь после обработки в целом (дизельные ДВС CIDI изначально работают на обедненной смеси, за исключением случаев экстремального использования рециркуляции выхлопных газов, EGR), однако, намного менее эффективна, чем стехиометрическая после обработки преобразователями TWC бензиновых ДВС SI (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007).Следовательно, выбросы регулируемых загрязняющих веществ, в частности NOx, в течение рабочих циклов, которые в значительной степени отклоняются от сертификационных циклов, являются гораздо более продолжительными и требуют, чтобы двигатель работал в значительной степени полностью прогретым, намного больше в ДВС, работающем на обедненной смеси, чем стехиометрические ДВС. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, содержат твердые частицы, что является обычным недостатком, даже в меньшей степени, двигателей с прямым впрыском, включая SI DI ICE. ТЧ возникают, когда закачиваемая жидкость, еще жидкая, взаимодействует с пламенем, образуя сажу.Сажа образуется в богатых топливом областях камеры сгорания (Hiroyasu and Kadota, 1976; Smith, 1981; Neeft et al., 1997). Постное сжигание, CIDI ICE, таким образом, нуждаются в ловушках для частиц (Neeft et al., 1996; Saracco et al., 2000; Ambrogio et al., 2001; Mohr et al., 2006). Однако это также есть возможность, поскольку циркуляция в областях с фоновыми частицами может обеспечить лучшее качество воздуха в выхлопной трубе, чем во впускной. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, обычно имеют турбонаддув и стоят дороже.Двухтопливная работа с LPG, CNG или LNG не имеет никаких недостатков с точки зрения регулируемых загрязняющих веществ или CO 2 , а дает только преимущества.

Эффективность преобразования топлива

Без нацеливания на рекуперацию отработанного тепла (WHR) дизельные двигатели CIDI ICE доказали свою способность достигать максимальной эффективности преобразования топлива около 50%, обеспечивая при этом чрезвычайно высокое среднее эффективное давление при торможении в гонках на выносливость (Boretti and Ordys, 2018). Благодаря высокому давлению, высокой степени распыления, высокой скорости потока и быстродействию форсунок, несколько стратегий впрыска позволяют контролировать процессы сгорания, происходящие в объеме камеры сгорания, для наилучшего компромисса между работой давления, повышением давления и пиковое давление.

В то время как системы рекуперации отработанного тепла (WHR), безусловно, могут улучшить стационарную эффективность преобразования топлива в дизельных двигателях (Teng et al., 2007, 2011; Teng and Regner, 2009; Park et al., 2011; Wang et al., 2014; Yu et al., 2016; Shi et al., 2018), переходные процессы при холодном пуске являются ахилловой пятой традиционных WHR. Кроме того, WHR увеличивают вес, тепловую инерцию, проблемы с упаковкой и сложность. Инновационные концепции для WHR, использующие контур охлаждающей жидкости в качестве подогревателя модифицированного «турбокомпрессора » (Freymann et al., 2008, 2012) без необходимости использования двойного контура, требуют значительных усилий в области исследований и разработок.

Результаты, достигнутые Audi в гонках на выносливость (Audi, 2014) менее чем за десятилетие разработки, очень важны. С 2006 по 2008 год Audi использовала двигатель V12 TDI в Audi R10 TDI. Двигатель объемом 5,5 л развивал крутящий момент 1100 Нм. На номинальной скорости очень тихий твин-турбо выдавал около 480 кВт. В 2009 и 2010 годах Audi перешла на V10 TDI в Audi R15 TDI. Он был короче и легче двенадцатицилиндрового.Рабочий объем 5,5 л был распределен на два цилиндра меньше. Двигатель имел примерно 440 кВт и крутящий момент более 1050 Нм. Верхний BMEP превышал 24 бара. Затем, с 2011 по 2013 год, Audi перешла на V6 TDI в Audi R18 TDI, R18 ultra и R18 e-Tron Quattro. Уменьшение объема двигателя позволило довести рабочий объем двигателя до 3,7 л. Легкий и компактный двигатель V6 TDI развивал более 397 кВт и крутящий момент более 900 Нм. Система Common Rail создавала давление до 2600 бар. Верхний BMEP превышал 30 бар.

Когда основное внимание уделялось экономии топлива, в 2014 году двигатель V6 TDI в Audi R18 e-Tron Quattro был оснащен модернизированным двигателем V6 TDI с рабочим объемом 4,0 л. Максимальная мощность составляла 395 кВт, а максимальный крутящий момент — более 800 Нм. Давление закачки составило более 2800 бар. Расход топлива снизился более чем на 25% по сравнению с 3,7-литровым двигателем. Последняя (2016 г.) выходная мощность 4-литрового двигателя составляла 410 кВт, что соответствовало 870 Нм крутящего момента при максимальной скорости 4500 об / мин.Это преобразовалось в BMEP 27,3 бар в рабочей точке максимальной скорости / максимальной мощности. Последние двигатели имели ограниченный расход топлива, так что для системы рекуперации энергии 6 МДж (ERS) для торможения максимальный расход топлива составлял 71,4 кг / ч. Для дизельного топлива с низшей теплотворной способностью (НТС) 43,4 МДж / кг мощность потока топлива составила 860,8 кВт. Таким образом, максимальная мощность была получена при пиковом КПД торможения η = 0,475, что намного больше, чем максимальный КПД многих серийных высокоскоростных дизельных двигателей, которые могут работать, вплоть до максимального КПД η = 0.45 на более низких оборотах двигателя.

Из расчетов максимальный крутящий момент, а также максимальная эффективность торможения были получены при скоростях <4500 об / мин, что является технологическим пределом диффузионного горения (Boretti and Ordys, 2018). Из-за постоянного времени, необходимого для испарения топлива и смешивания с воздухом, фаза диффузионного сгорания имеет продолжительность в градусах угла поворота коленчатого вала, которая увеличивается с частотой вращения двигателя. Таким образом, на скоростях выше 4500 об / мин продолжительность фазы сгорания обычно становится чрезмерной, и гораздо лучшая мощность получается на более низких скоростях.Максимальный крутящий момент, скорее всего, превышал 916 Нм, что соответствует BMEP 29 бар. Пиковая эффективность преобразования топлива с большой вероятностью приближалась к η = 0,50. Дальнейшие разработки для гонок были в пределах легкой досягаемости, в то время как деятельность была остановлена ​​после « diesel-gate ». Более высокое давление впрыска и более совершенный турбонаддув, такой как современный F1 e-turbo или супер турбонаддув (Boretti and Castelletto, 2018; Boretti and Ordys, 2018), могли бы быть полезны для серийных дизельных двигателей для легковых автомобилей.

Лабораторные испытания выбросов

Прошлая сертификация выбросов, которая проводилась производителями оригинального оборудования (OEM) и не подвергалась независимым испытаниям, была связана с неточностями в тестах и ​​несоответствием цикла сертификации (Boretti, 2017; Boretti and Lappas, 2019). Короткий, сильно стилизованный новый европейский ездовой цикл (NEDC) был чрезвычайно далек от реальных условий вождения, с которыми сталкиваются европейские пассажиры. Поскольку более двух десятилетий OEM-производители были вынуждены сосредоточить свои RandD на производстве двигателей, соответствующих требованиям и экономичных во время этого цикла, из-за ухудшения состояния из-за холодного запуска, другие возможные применения не регулировались и оставались на усмотрение OEM.Неточности (и осторожность) в способе проведения испытаний привели к множеству несоответствий, начиная с большого разброса выбросов углекислого газа (CO 2 ) при потреблении теоретически одного и того же литра топлива (Boretti and Lappas, 2019). Новый согласованный во всем мире цикл испытаний легких транспортных средств (WLTC), который недавно заменил NEDC, из-за « diesel gate » (Chossière et al., 2018), лучше, поскольку он немного длиннее. Тем не менее, это по-прежнему связано с условиями вождения, отличными от тех, которые наблюдаются в часы пик в густонаселенных районах (Boretti and Lappas, 2019).

С исторической точки зрения, правила выбросов становились все жестче и жестче год за годом, но заявлено, что они измеряются только в ходе предписанных лабораторных испытаний. В таблице 1 представлены нормы выбросов Европейского Союза (ЕС) для легковых автомобилей (категория M) с принудительным (бензин) и компрессионным (дизельным) зажиганием. Несгоревшие углеводороды (HC) + NOx были предписаны для бензина и дизельного топлива только стандартами Euro 1 и 2. Выбросы были проверены через NEDC с использованием лабораторной процедуры динамометрического стенда.На протяжении многих лет от OEM-производителя требовалось производить автомобили, выбрасывающие меньше, чем регулируемый загрязнитель, в течение определенного цикла сертификации во время лабораторных испытаний. Реальное вождение было нематериальным понятием, не переведенным ни в одно конкретное законодательное требование. Снижение предельных значений выбросов NOx и PM в стандартах Euro 5 и 6 привело к резкому увеличению затрат на последующую обработку и к увеличению, а не снижению расхода топлива, иногда с проблемами управляемости.Еще раз важно понимать компромисс между экономией топлива и выбросами загрязняющих веществ и понимать, что чрезмерные запросы по одному критерию могут привести к невозможности удовлетворить другие критерии.

Выбросы от вождения в реальном мире

Только недавно Европейский Союз (ЕС) ввел тесты на выбросы выхлопных газов в реальных условиях движения (RDE). Выбросы от дорожных транспортных средств теперь измеряются с помощью портативных анализаторов выбросов (PEM). Тест RDE должен длиться 90–120 минут и включать один городской (<60 км / ч), один сельский (60–90 км / ч) и один автомагистральный (> 90 км / ч) сегмент равного веса, покрывающий расстояние. не менее 16 км.Затем в пределах выбросов RDE используются коэффициенты соответствия, относящиеся к лабораторным испытаниям на динамометрическом стенде. Что касается NOx, коэффициент соответствия составляет 2,1 с сентября 2017 года для новых моделей и с сентября 2019 года для всех новых автомобилей. Другие факторы соответствия еще предстоит определить. Хотя тест RDE по-прежнему не является репрезентативным для реального вождения в густонаселенных районах, он неточный, субъективный, невоспроизводимый и еще не определяющий (Boretti and Lappas, 2019), это, безусловно, шаг вперед.

Реальные данные по австралийским выбросам от вождения автомобилей до введения новых правил предложены ABMARC (ABMARC, 2017). В отчете, подготовленном для Австралийской автомобильной ассоциации, представлены результаты испытаний на выбросы и расход топлива 30 различных легковых и легких коммерческих автомобилей, измеренные с помощью PEMS на австралийских дорогах. Большинство автомобилей соответствовали стандартам Евро 4, 5 и 6, а один из них соответствовал стандартам Евро 2. Реальный расход топлива протестированных автомобилей по сравнению с результатами цикла сертификации был в среднем на 23% выше, на 21% выше для автомобилей с дизельным двигателем, с 4% ниже до 59% выше и на 24% выше для автомобилей с бензиновым двигателем, начиная с 3% ниже до 55% выше.У одного транспортного средства, работающего на сжиженном нефтяном газе, реальный расход топлива на 27% выше, чем результат цикла сертификации. У одного подключаемого гибридного автомобиля реальный расход топлива на 166% выше, чем в результате цикла сертификации с полным состоянием заряда, и на 337% выше при испытании с низким уровнем заряда. Данные о расходе топлива для автомобилей с дизельными сажевыми фильтрами включают поправочный коэффициент для учета регенерации фильтра.

Таким образом, расхождения между лабораторными испытаниями и реальным вождением были разными не только для автомобилей, оснащенных дизельными ДВС CIDI, но и для автомобилей с бензиновыми ДВС SI, а также с традиционными и гибридными силовыми агрегатами.Однако основным отличием были выбросы NOx дизельных двигателей CIDI. В последних правилах ЕВРО автомобили должны соответствовать все более строгим стандартам выбросов регулируемых загрязняющих веществ, а также сокращать выбросы CO 2 . Поскольку эти требования противоречили друг другу и их трудно было удовлетворить, несоответствие между реальным расходом топлива и результатами цикла сертификации увеличивается с увеличением стандарта. Автомобили, соответствующие стандарту Euro 6, имеют наибольшее расхождение между реальными результатами и результатами цикла сертификации.

Что касается выбросов, то у 13 транспортных средств превышены удельные выбросы NOx, предписанные для цикла сертификации. Из этих 13 автомобилей 11 были дизельными. Только 1 из 12 автомобилей с дизельным двигателем произвел выброс NOx в пределах цикла сертификации. Пять автомобилей с бензиновым двигателем превысили лимит CO, установленный в сертификационном цикле. Только 1 автомобиль с дизельным двигателем превысил лимит PM цикла сертификации. В среднем выбросы NOx и PM у автомобилей с дизельным двигателем были в 24 и 26 раз выше, чем у автомобилей с бензиновым двигателем, а выбросы CO у автомобилей с дизельным двигателем были в 10 раз ниже, чем у автомобилей с бензиновым двигателем.Транспортные средства с дизельным двигателем превысили предел NOx сертификационного цикла на 370%, а автомобили с бензиновым двигателем выбросили 43% от предельного значения NOx сертификационного цикла. Автомобили с бензиновым двигателем выбрасывают 95% предельного количества CO, установленного в сертификационном цикле. Автомобили с дизельным двигателем выбрасывают 20% от предельного количества CO, установленного в сертификационном цикле. Что касается ТЧ, то выбросы дизельных автомобилей составили 43% от предельного количества ТЧ сертификационного цикла, а от автомобилей с прямым впрыском 2-х бензинового бензина (GDI) выбрасывается 26% от предельного количества ТЧ сертификационного цикла.Что касается выбросов NOx от двигателей с обедненной горючей смесью, измеренные результаты были лучше, чем заявленные во время «, дизельный затвор » или заявленные в таких работах, как (Chossière et al., 2018).

Новые правила были введены после « дизельный затвор », а дизельные двигатели CIDI были улучшены. Реальные европейские данные о выбросах транспортных средств, выпущенных после введения новых правил, представлены ACEA (2018a). В ходе правильно проведенной экспериментальной кампании, в повторяемых условиях, с соответствующим оборудованием и с применением научного метода, Европейская ассоциация автопроизводителей (ACEA) недавно показала, что все 270 протестированных автомобилей с дизельным двигателем были ниже пределов выбросов, установленных недавно. тесты по вождению в реальных условиях (RDE), как общие, так и городские.Ни один из транспортных средств не превышал установленный в настоящее время удельный выброс NOx в 165 мг / км (ACEA, 2018a), рис. 1. Подробные результаты утверждения типа для 270 типов дизельных транспортных средств, соответствующих требованиям RDE, доступны в ACEA (2018b). . Результаты RDE для отдельных автомобилей можно найти на сайте (ACEA, 2018c).

Новые данные, опубликованные ACEA, недвусмысленно свидетельствуют о том, что дизельные автомобили последнего поколения выделяют низкие выбросы загрязняющих веществ на дорогах и являются экономичными. Испытания проводились в реальных условиях вождения водителями различных национальных органов по официальному утверждению типа.270 новых типов дизельных автомобилей, сертифицированных по последнему стандарту Euro 6d-TEMP, были представлены на европейском рынке в течение предыдущего года. Все эти дизельные автомобили показали очень хорошие результаты ниже порогового значения NOx теста RDE, которое теперь применяется ко всем новым типам автомобилей с сентября 2017 года. Большинство этих автомобилей имеют выбросы NOx значительно ниже более строгого порога, который будет обязательным с января 2020 года. test гарантирует, что уровни выбросов загрязняющих веществ, измеренные во время нового лабораторного испытания WLTP, будут подтверждены на дороге.Каждый протестированный автомобиль представляет собой « семейство », состоящее из похожих автомобилей различных вариантов. Эта деятельность доказывает, что автомобили с дизельным двигателем, которые сейчас доступны на рынке, имеют низкий уровень выбросов в любом приемлемом состоянии. Немецкий автомобильный клуб (ADAC) недавно подсчитал, что на 30 октября 2018 года было доступно 1206 различных автомобилей, совместимых с RDE, как с бензиновым, так и с дизельным двигателем (ADAC, 2018a). Следовательно, дизельные ДВС CIDI не заслуживают плохой репутации, которую они получили из-за «дизельного затвора », что является скорее политическим, чем технологическим вопросом.

Современные дизельные автомобили, поддерживаемые политикой обновления парка и в сочетании с альтернативными силовыми агрегатами, могут сыграть важную роль в содействии городам в достижении целей по качеству воздуха при одновременном повышении эффективности использования топлива и сокращении выбросов CO . Недавние дорожные испытания, проведенные ADAC (2018b), показали, что новейшие автомобили с дизельным двигателем выбрасывают в среднем на 85% меньше NOx, чем автомобили стандарта Euro 5, а самые эффективные дизельные автомобили стандарта Euro 6, соответствующие требованиям RDE, выделяют на 95–99% меньше NOx по сравнению с автомобилями Euro 5.Каждый протестированный автомобиль выделяет меньше лимитов для каждого регулируемого загрязнителя. Эти автомобили также обеспечивают исключительную экономию топлива. Кроме того, существует возможность производить еще меньше CO 2 и менее регулируемых загрязнителей, переходя на двухтопливное дизельное топливо — СПГ, КПГ или СНГ.

PM Преимущества дизельных автомобилей

Дизельные двигатели не являются мишенью из-за того, что транспортный сектор вносит свой вклад в общее качество воздуха. Однако, поскольку качество воздуха во многих частях мира оставляет желать лучшего, а дизельные фильтры твердых частиц могут помочь улучшить качество воздуха, аргумент PM может фактически быть использован в пользу мобильности на основе дизельного топлива, а также против альтернатив, таких как электрические. мобильность.Хотя неверно утверждать, что более современные автомобили с дизельным двигателем выбрасывают « излишков » NOx и ухудшают качество воздуха, более современные автомобили с дизельным двигателем способствуют очистке воздуха загрязненных территорий, например, от ТЧ. Из Таблицы 1 видно, что старые дизельные автомобили были произведены в соответствии с гораздо менее строгими правилами PM. Загрязнители воздуха выбрасываются из многих естественных и антропогенных источников, последние включают сжигание ископаемого топлива в электроэнергетике, промышленности, домашнем хозяйстве, транспорте, промышленных процессах, использовании растворителей, сельском хозяйстве и переработке отходов.Следовательно, наличие транспортных средств с выбросами ТЧ из выхлопной трубы потенциально ниже, чем на впуске, — это возможность очистить воздух.

Экологический табачный дым (ETS) вызывает загрязнение помещений мелкими ТЧ, превышающее допустимые пределы для транспортных средств. Данные, сравнивающие выбросы ТЧ от ETS и автомобиля с дизельным двигателем Euro 3, показывают, что концентрации ТЧ в помещении в 10 раз превышают те, которые выбрасываются от двигателя с дизельным двигателем Euro 3 на холостом ходу (Invernizzi et al., 2004). Пределы PM были значительно улучшены для Euro 4, 5 и 6, а если быть точным, то в 10 раз.Исследование Всемирной организации здравоохранения (ВОЗ) (Martuzzi et al., 2006) показывает значительное воздействие PM 10 на здоровье городского населения 13 крупных итальянских городов, которое, по оценкам, составляет 8220 смертей в год, что связано с концентрациями PM 10 выше 20 мкг / м. Это 9% смертности от всех причин (без учета несчастных случаев) среди населения старше 30 лет. Эти уровни PM 10 не являются результатом использования новейших автомобилей с чистым дизельным двигателем.

Эффективность дизельных сажевых фильтров (DPF) относительно сложна (Fiebig et al., 2014). Новейшие технологии DPF более эффективны для больших размеров, в то время как менее эффективны или даже отрицательны для меньших нанометрических размеров. Мониторинг часто ограничивается PM 10 — частицами диаметром 10 микрометров — или PM 2,5 — частицами диаметром 2,5 микрометра. DPF может улавливать от 30% до более 95% микрометрических ТЧ (Barone et al., 2010). При оптимальном сажевом фильтре выбросы ТЧ могут быть снижены до 0,001 г / км или менее (Fiebig et al., 2014), что в 5 раз меньше, чем в настоящее время 0.005 of Euro 6. Хотя эта мера массы не учитывает загрязнение субмикрометрическими и нанометрическими частицами, в настоящее время нет контроля над этим типом загрязнителя из любого источника.

Если новые автомобили с дизельным двигателем не выбрасывают больше NOx, чем старые автомобили с дизельным двигателем, они, безусловно, выбрасывают гораздо меньше ТЧ и, возможно, при некоторых обстоятельствах способны очищать воздух от ТЧ, производимых из других источников, которые не являются адекватным направлением деятельности директивных органов. . Случай Гонконга, который не является худшим на Земле, описан в Haas (2017).Помимо местных выбросов из различных источников, в том числе от легковых автомобилей, в Гонконг есть значительное количество загрязняющих веществ, занесенных из материкового Китая. Хотя данные о загрязнителях в Китае ограничены, хорошо известно, что Гонконг сталкивается с серьезными проблемами со здоровьем, связанными с загрязнением воздуха, в основном импортируемым с материка. Загрязнение воздуха в Гонконге не так плохо, как в Китае или Индии, где токсичное облако, получившее название « airpocalypse », часто покрывает значительную часть этих стран, но это все еще один хороший пример того, что более современные дизельные автомобили заменяют дорога старые автомобили оказывают положительное влияние.

Из многих типов аэрозольных частиц, циркулирующих в атмосфере, одним из самых разрушительных является PM 2,5 . Во многих областях Китая и Индии уровни PM 2,5 и PM 10 намного превышают рекомендованные ВОЗ, рис. 2. Руководящие принципы ВОЗ (среднегодовые): PM 2,5 из 10 мкг / м 3 и PM 10 из 20 мкг / м 3 . Во всем мире средний уровень загрязнения окружающего воздуха колеблется от <10 до более 100 мкг / м 3 для PM 2.5 , и от <10 до более 200 мкг / м 3 , для PM 10 . Случаи плохого качества воздуха широко распространены не только в Китае и Индии. Однако промышленный центр южного побережья Китая является одним из районов с наиболее высоким уровнем загрязнения, как Пекин и Дели. В то время как Пекинский « airpocalypse » подавляется решительными мерами, в основном направленными на использование угля, но также ограничивающими движение любого транспортного средства (South China Morning Post, 2018), « airpocalypse » Дели достигает нового чрезвычайно высокий, также благодаря « выжиганию стерни, » из окрестностей (Indiatimes, 2018).

Рисунок 2 . Карта PM 2.5 для Азии осенью 2018 года почти в реальном времени. Показаны только области, покрытые станциями. Изображение с Земли Беркли, www.berkeleyearth.org.

Качество воздуха в Гонконге не самое лучшее (Haas, 2017). Уровни загрязняющих веществ превышают стандарты ВОЗ более 15 лет. На пиках они более чем в пять раз превышают допустимые уровни. Выбросы от транспортных средств и судов являются одними из крупнейших местных источников загрязнения.Свою роль играют и электростанции, которые почти полностью зависят от ископаемого топлива, в основном угля. Однако около 60-70% PM поступает из материкового Китая. Этот поток чрезвычайно актуален, особенно зимой, когда импортируемый PM составляет около 77% от общего количества. В последние годы резко возросли масштабы астмы и бронхиальных инфекций. Только в Гонконге было зарегистрировано более 1600 фактов, а не гипотетических, как у Chossière et al. (2018), преждевременная смерть в 2016 году только из-за загрязнения воздуха (Haas, 2017).

В дополнение к улучшенным стандартам топлива и расширению использования электромобилей, значительное распространение последних дизельных транспортных средств, оборудованных уловителями твердых частиц, может внести дополнительный вклад в улучшение качества воздуха в городе, которое по-прежнему не соответствует ни одному руководству ВОЗ.Что касается возможности использовать электромобили, подзаряжаемые электростанциями на горючем топливе, электромобили могут фактически способствовать загрязнению ТЧ. Согласно Hodan and Barnard (2004), крупнейшим источником PM 2,5 из антропогенных источников является износ шин и дорожного покрытия. Поскольку электромобили тяжелее и имеют более высокий крутящий момент, чем автомобили на базе ДВС, они производят намного больше PM 2,5 . Следовательно, увеличение количества электромобилей сделает Гонконг еще более грязным из-за PM 2.5 , и они не могут сжигать ТЧ, произведенные из других источников, например дизельный ДВС CIDI, оснащенный уловителем твердых частиц.

Как показано на Рисунке 1 и в Таблице 1, автомобили, оснащенные новейшими двигателями ХИ, не производят избыточных NOx, а из Рисунков 2, 3 видно, что во многих регионах мира концентрация ТЧ в воздухе намного выше, чем можно найти. в выхлопной трубе автомобилей, оснащенных новейшими дизельными двигателями CIDI, таблица 1 и NO 2 концентрации также довольно велики. Двухтопливный режим работы на СПГ, КПГ или СНГ с неизменным в остальном транспортным средством, в котором установлен сажевый фильтр, может еще больше способствовать очистке окружающего воздуха от твердых частиц.

Рисунок 3 . Среднемесячные концентрации для Китая в январе 2015 г.: PM 2,5 , вверху, и NO 2 , внизу. Изображения с Земли Беркли, www.berkeleyearth.org.

Преимущества двухтопливного дизельного топлива — СПГ / СНГ / КПГ

Современные технологии

Diesel-LNG (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизельное топливо-CNG (Maji et al., 2008; Shah et al., 2011; Ryu, 2013) или дизельное топливо сжиженный нефтяной газ (Jian et al., 2001; Ashok et al., 2015) двигатели обеспечивают, например, эффективность преобразования дизельного топлива и удельную мощность, улучшая при этом выбросы как регулируемых загрязняющих веществ (PM, NOx), так и CO 2 . СПГ может использоваться для большегрузных автомобилей благодаря криогенному хранению. LPG (и CNG) может быть предпочтительнее в легковых и легких транспортных средствах.

Дизельные двигатели по-прежнему выделяют значительное количество углекислого газа (CO 2 ) и выбросы твердых частиц (ТЧ) из двигателя из-за диффузионного сгорания тяжелых углеводородов, высокого отношения C / H и жидкого дизельного топлива.Выбросы оксидов азота (NOx) из двигателя также являются неотъемлемой частью процесса сжигания обедненной смеси в избыточном воздухе (Heywood, 1988). Как PM, так и NOx могут быть уменьшены посредством дополнительной обработки, хотя стратегии сжигания дизельного топлива часто определяются для наилучшего компромисса между NOx и PM.

Использование газообразного топлива с пониженным содержанием углерода, такого как природный газ, который в основном представляет собой метан CH 4 , в жидкой форме, как СПГ, или в газовой форме, как СПГ, или сжиженный нефтяной газ (СНГ), в основном пропан C 3 H 8 , имеет интуитивно понятные основные преимущества в выбросах CO 2 по сравнению сдизельное топливо переменного состава, но примерно C 13,5 H 23,6 . Поскольку испарение намного проще, существуют также преимущества для выбросов ТЧ из двигателя и, следовательно, косвенно также и для выбросов NOx из двигателя по сравнению с дизельным топливом (Kathuria, 2004; Chelani and Devotta, 2007; Yeh, 2007; Engerer and Horn, 2010; Lin et al., 2010; Kumar et al., 2011).

СПГ, КПГ и СНГ имеют меньшее соотношение углерода и водорода. Следовательно, гораздо меньше CO 2 выбрасывается для получения такой же выходной мощности с примерно такой же эффективностью преобразования топлива.CNG — это нагнетаемый газ. СПГ также является газом в нормальных условиях. LPG в нормальных условиях жидкий, но испаряется гораздо быстрее, чем дизельное топливо. Это практически сводит к нулю выбросы твердых частиц (кроме выбросов пилотного дизеля). Поскольку СПГ, КПГ и СНГ представляют собой высокооктановое топливо с низким цетановым числом, их трудно использовать отдельно в двигателе с воспламенением от сжатия. Проблема решена при работе на двух видах топлива (westport.com, 2019a, b). Воспламенение вызывает небольшое количество дизельного топлива. СПГ, КПГ или СНГ, впрыснутые до или после зажигания впрыска дизельного топлива, могут затем сгореть в смеси с предварительным смешиванием или диффузией.Первая фаза сгорания вызывает быстрое повышение давления. Скорость сгорания второй фазы определяется скоростью впрыска СПГ, КПГ или СНГ, нацеленной на поддержание давления во время первой части такта расширения.

Одной из основных проблем, связанных с использованием СПГ или КПГ, является удельный объем топлива, так как плотность газа в нормальных условиях низкая. Это создает проблемы для системы впрыска, которой требуются форсунки с гораздо большей площадью поперечного сечения дизельного топлива, и значительно затрудняет быстрое срабатывание и возможности многократного впрыска, характерные для новейших дизельных форсунок.Это также проблема для хранения, поскольку объем топлива, необходимый для данного количества энергии на борту транспортного средства, намного больше, чем у дизельного топлива. СПГ имеет лучшую объемную плотность, но для поддержания низкой температуры требуется криогенная система. КПГ имеет меньшую объемную плотность и дополнительно требует резервуаров под давлением.

Система Westport HPDI для дизельного топлива и КПГ / СПГ — это технология, хорошо зарекомендовавшая себя десятилетиями (Li et al., 1999; westport.com, 2015). Вначале HPDI представлял собой простой основной впрыск природного газа после пилотного / предварительного впрыска дизельного топлива.В последнее время HPDI развивается в сторону более сложных стратегий, регулирующих предварительно смешанное и диффузионное сжигание природного газа, как было предложено Боретти (2013).

Традиционный HPDI в сверхмощных ДВС позволяет ДВС, работающему на природном газе, сохранять рабочие характеристики, аналогичные дизельным, при этом большая часть энергии обеспечивается за счет природного газа. Небольшой пилотный впрыск дизельного топлива (5–10% энергии топлива) используется для зажигания непосредственно впрыскиваемой газовой струи. Природный газ горит в режиме диффузионного горения с контролируемым смешением (Li et al., 1999; westport.com, 2015).

Технологии будущего

В нескольких работах описаны тенденции развития технологии HPDI. McTaggart-Cowan et al. (2015) отчет о двухтопливных форсунках 600 бар для СПГ. Событие сгорания СПГ ограничено давлением впрыска, которое определяет скорость смешения и сгорания. Значительное повышение эффективности и снижение PM достигаются при высоких нагрузках, и особенно на более высоких скоростях, за счет увеличения давления впрыска с традиционных 300 бар до последних 600 бар.Скорость горения ограничена. McTaggart-Cowan et al. (2015) сообщают о выгодах эффективности от более высоких давлений около 3%, добавленных к сокращению выбросов твердых частиц на 40–60%.

Различные формы сопла были рассмотрены Mabson et al. (2016). Инжектор « сопла с парными отверстиями » был разработан для уменьшения образования твердых частиц за счет увеличения уноса воздуха из-за взаимодействия струи. Выбросы CO и PM были наоборот в 3–10 раз выше при использовании сопел с парными отверстиями. Сопло с парными отверстиями давало более крупные агрегаты сажи и большее количество частиц.

Mumford et al. сообщают об улучшениях Westport HPDI 2.0 (Mumford et al., 2017). HPDI 2.0 обеспечивает лучшие характеристики и уровень выбросов по сравнению с HPDI первого поколения, а также только с базовым дизельным двигателем. Мамфорд и др. (2017) также обсуждают потенциал и проблемы более высокого давления нагнетания.

Стратегии сжигания с контролируемой диффузией и с частичным предварительным смешиванием рассматриваются Florea et al. (2016) с помощью Westport HPDI. Сгорание с частичным предварительным смешиванием, называемое DI 2 , является многообещающим, повышая эффективность двигателя более чем на 2 пункта по сравнению со стратегией сгорания с контролируемой диффузией.Модуляция двух фаз горения, потенциально более полезная, в работе не исследуется.

Режим горения DI 2 также исследован в Neely et al. (2017). Природный газ впрыскивается во время такта сжатия перед зажиганием впрыска дизельного топлива. Показано, что такое сгорание природного газа с частичной предварительной смесью улучшает как термическую эффективность, так и эффективность сгорания по сравнению с традиционным режимом двухтопливного сгорания с фумигацией. Сгорание природного газа с частичной предварительной смесью также обеспечивает повышение теплового КПД по сравнению со сгоранием с регулируемой диффузией по базовой линии, когда впрыск природного газа происходит после впрыска дизельного топлива.

Влияние стратегий впрыска на выбросы и характеристики двигателя HPDI изучено Faghani et al. (2017а, б). Они исследуют влияние позднего последующего впрыска (LPI), а также сгорания с небольшим предварительным смешиванием (SPC) на выбросы и характеристики двигателя. При использовании SPC впрыск дизельного топлива задерживается. Работа SPC при высокой нагрузке снижает PM более чем на 90% с улучшением топливной эффективности на 2% при почти таком же уровне NOx. Однако SPC имеет большие вариации от цикла к циклу и чрезмерную скорость нарастания давления.ТЧ не увеличивается для SPC с более высоким уровнем рециркуляции отработавших газов, более высоким глобальным коэффициентом эквивалентности на основе кислорода (EQR) или более высокой контрольной массой, что обычно увеличивает количество ТЧ при сгорании HPDI с регулируемым смешиванием. LPI, последующий впрыск 10–25% от общего количества топлива, происходящий после основного сгорания, приводит к значительному сокращению выбросов твердых частиц с незначительным влиянием на другие выбросы и характеристики двигателя. Основное сокращение PM от LPI связано с уменьшением количества топлива при первом впрыске. Вторая закачка вносит незначительный чистый вклад в общее количество ТЧ.

Двухтопливный инжектор дизель-СПГ Westport HPDI дает отличные результаты. Однако у этого подхода есть фундаментальный недостаток. Он не обладает такими же характеристиками, как дизельные форсунки последнего поколения, как по расходу, так и по скорости срабатывания и распылению дизельного топлива. Таким образом, может быть предпочтительным соединение с одним дизельным инжектором последнего поколения со специальным инжектором для второго топлива, чтобы обеспечить лучшие характеристики впрыска как для дизельного, так и для второго топлива.Более высокое давление впрыска и более быстрое срабатывание являются движущими силами улучшенных режимов сгорания.

Двухтопливные дизель-водородные ДВС CIDI с возможностью установки двух прямых форсунок на цилиндр были исследованы, например, в (Boretti, 2011b, c). Один инжектор использовался для дизельного топлива, а другой — для водорода. Смоделированный дизельный двигатель, преобразованный в двухтопливный дизель-водород после этого подхода, продемонстрировал КПД при полной нагрузке до 40–45% и снижение потерь в КПД, снижая нагрузку, работающую немного лучше, чем базовое дизельное топливо в каждой рабочей точке.Хотя использование двух форсунок на цилиндр не представляет проблемы для новых двигателей, сложно установить две форсунки при модернизации существующих дизельных двигателей. Специальные форсунки прямого действия для СПГ, СНГ или КПГ требуют дальнейшего развития для конкретного применения.

Использование двух специализированных форсунок, а не одной двухтопливной форсунки с более высоким давлением впрыска, более быстрым срабатыванием и полной независимостью от впрыска отдельных видов топлива, обеспечивает гораздо большую гибкость в формировании впрыска.Двухтопливный режим обычно характеризуется предварительным / предварительным впрыском дизельного топлива, за которым следует основной второй впрыск топлива. Предпочтительно, чтобы второе топливо не впрыскивалось полностью после зажигания впрыска дизельного топлива. Его можно впрыскивать до или одновременно с дизельным топливом или после дизельного топлива, причем не только за один впрыск, но и за несколько впрысков. Таким образом, второе топливо может гореть частично предварительно смешанным и частично диффузионным.

Возможны разные режимы горения. « Controlled » HCCI является одним из таких режимов.В управляемом HCCI второе топливо впрыскивается первым, и воспламенение дизельного топлива происходит до ожидаемого начала самовоспламенения HCCI (Boretti, 2011a, b). HCCI не имеет преимуществ с точки зрения эффективности преобразования топлива по сравнению с объемным сгоранием в центре камеры, окруженной воздушной подушкой. Однородное горение всегда страдает большими потерями тепла на стенках и неполным сгоранием на гашение пламени. HCCI также не создает пикового давления во время такта расширения, обеспечивая пиковое давление точно в верхней мертвой точке.Однако HCCI может иметь преимущества для выбросов из двигателя, поскольку это чрезвычайно низкотемпературный процесс, и это событие сгорания намного ближе к теоретически лучшему изохорному сгоранию из анализов цикла давления.

Наиболее интересные режимы — это предварительное смешение, диффузия или модулированное предварительное смешение и диффузия в центре камеры. При предварительно смешанном, но стратифицированном сгорании второе топливо впрыскивается в центр камеры и сжигается за счет впрыска дизельного топлива до однородного заполнения всей камеры.При диффузионном сгорании второе топливо впрыскивается в центр камеры после того, как воспламенение впрыска дизельного топлива создает подходящие условия для того, чтобы следующее сгорание проходило под контролем диффузии, и там оно сгорает. Существует возможность для предварительного впрыска второго топлива, а также для современного или последующего впрыска второго топлива в отношении пилотного / предварительного впрыска дизельного топлива, которые должны быть тщательно сформированы для обеспечения наилучшей эффективности преобразования топлива. в пределах ограничений по выбросам из двигателя, скорости нарастания давления и пиковому давлению.

Альтернатива электрической мобильности все еще преждевременна

Экологичность и экономичность дизельной мобильности не признается многими странами, которые в противном случае задумывались о преждевременном переходе на электрическую мобильность, не решив сначала многие проблемы электромобилей, т. Е. Высокую экономичность и экономичность. экологические затраты на строительство, эксплуатацию и утилизацию автомобилей, ограниченные характеристики этих тяжелых транспортных средств из-за все еще неадекватных технологий аккумуляторов, отсутствие инфраструктуры для подзарядки только за счет возобновляемых источников энергии.

Номинально для решения проблемы глобального потепления, а не загрязнения воздуха, Великобритания, Франция и Китай обсудили прекращение мобильности на базе ДВС к 2040 году. Однако данные МЭА (IEA, 2018) показывают, что производство геотермальной электроэнергии, Солнце, ветер, приливы, волны и океан по-прежнему составляли около 1% от общего количества в 2015 году, при этом общее предложение первичной энергии (ОППЭ) значительно превышает производство электроэнергии. Поскольку доля солнечной и ветровой энергии в TPES все еще невелика, не имеет смысла предлагать только электромобили, даже забывая о других ключевых моментах, связанных с поиском электрической мобильности.

В настоящее время анализ жизненного цикла выбросов CO 2 (LCA) не показывает явного преимущества электрической мобильности по сравнению с мобильностью на базе ДВС (Boretti, 2018). Пример LCA для электрической мобильности критически зависит от того, как вырабатывается электричество, которое без огромного увеличения накопления энергии, а не просто увеличение зарегистрированной мощности ветра и солнца, нуждается в поддержке ископаемым топливом. С 1990-х годов в аккумуляторных технологиях произошел прогресс, но пока еще не произошло необходимого прорыва.Производство, использование и утилизация электромобилей по-прежнему слишком дорого с экономической и экологической точек зрения, а также возникают дополнительные проблемы, связанные с материалами, необходимыми для производства батарей, которые подвержены большему риску истощения, чем ископаемое топливо (Boretti, 2018). . Кроме того, эти материалы добываются неэтично в очень немногих местах.

Amnesty International (Onstad, 2019) недавно отметила, что индустрия электромобилей (EV) продает себя как экологически чистые, но при этом многие из своих аккумуляторов производят на ископаемом топливе и минералах, полученных из неэтичных источников, зараженных нарушениями прав человека.Маловероятно, что имеется достаточно сырья для удовлетворения ожидаемого резкого спроса на литий-ионные батареи электромобилей и подключенных к сети аккумуляторных систем для хранения периодически возобновляемой энергии ветра и солнца (Jaffe, 2017). Более того, без четкого пути для рециркуляции и отрицательных прошлых (и настоящих) примеров рециркуляции промышленно развитыми странами за счет экологического ущерба в развивающихся странах (Minter, 2016), электрическая мобильность может привести к значительному ущербу для экономики. и окружающая среда.

Хотя электрическая мобильность, безусловно, может решить некоторые проблемы, связанные с загрязнением воздуха транспортом, маловероятно, что это может произойти в ближайшее время, она не решает проблемы загрязнения из других источников, и в целом это еще не так. , где все включено. Потребление топлива для сжигания все еще резко увеличивается, и существует очень мало примеров технологических возможностей для преобразования химической энергии топлива в механическую или электрическую энергию с более высокой эффективностью преобразования энергии топлива и снижением выбросов загрязняющих веществ дизельных ДВС CIDI.Переход на электрическую мобильность в транспортном секторе потребует огромных затрат, в том числе с точки зрения выбросов парниковых газов.

Обсуждение и выводы

Хотя ICCT, Агентство по охране окружающей среды США и CARB описывают автомобили с дизельным двигателем как вредные для окружающей среды, последние испытания вождения в реальных условиях, проведенные ACEA, показывают, что это неверно. Современные дизельные автомобили имеют относительно низкие выбросы CO 2 и загрязняющих веществ, включая NOx и PM. Как бы то ни было, движение дизельных автомобилей в сильно загрязненных районах может улучшить качество воздуха, загрязненного другими источниками, а не только старыми дизельными автомобилями.

Дизельные ДВС

CIDI могут быть улучшены и более экологичны благодаря дальнейшим усовершенствованиям в системе впрыска, а также в системе последующей обработки. ДВС CIDI также можно улучшить, просто приняв двухтопливную конструкцию со сжиженным нефтяным газом, КПГ или СПГ в качестве второго топлива. Эти альтернативные виды топлива обеспечивают такие же или лучшие характеристики ДВС, работающего только на дизельном топливе, в том, что касается установившегося крутящего момента, мощности и эффективности преобразования топлива, а также переходных процессов, при этом значительно улучшая выбросы CO 2 , а также Выбросы ТЧ и NOx из двигателя.

В дополнение к лучшему соотношению CH для выбросов CO 2 , преимущества двухтопливных двигателей CIDI ICE с СПГ, КПГ или СНГ также проистекают из возможности регулирования фаз предварительного смешивания и диффузии сгорания с впрыском топливо, которое намного легче испаряется и менее склонно к самовоспламенению до, после или после предварительного / пилотного дизельного топлива. Также особенно важен для СПГ охлаждающий эффект за счет криогенного впрыска. Дальнейшие разработки в системе впрыска являются предметом особого внимания при разработке этих новинок двухтопливных ДВС CIDI.

Преимущества дизельных или двухтопливных двигателей CIDI ICE по сравнению с любыми другими альтернативными решениями для транспортных приложений в настоящее время не признаются ни одним директивным органом. Европейские автопроизводители уже приостановили свои планы исследований и разработок своих ДВС, чтобы сосредоточиться только на электромобилях. Учитывая нерешенные проблемы, связанные с электромобильностью, это может вскоре оказаться неправильным для экономики и окружающей среды. Использование более современных дизельных транспортных средств и транспортных средств, работающих на двухтопливном дизельном топливе, может только спасти жизни, но не привести к смертности, улучшая качество воздуха, ограничивая при этом истощение природных ресурсов и выбросы CO 2 , не требуя непозволительных усилий и кардинальные изменения.

Взносы авторов

Автор подтверждает, что является единственным соавтором данной работы, и одобрил ее к публикации.

Конфликт интересов

Автор заявляет, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Список литературы

Амброджио М., Саракко Г. и Спеккиа В. (2001). Сочетание фильтрации и каталитического сжигания в уловителях твердых частиц для обработки выхлопных газов дизельных двигателей. Chem. Англ. Sci. 56, 1613–1621. DOI: 10.1016 / S0009-2509 (00) 00389-4

CrossRef Полный текст | Google Scholar

Ашок Б., Ашок С. Д. и Кумар К. Р. (2015). Дизельный двухтопливный двигатель LPG — критический обзор. Александр. Англ. J. 54, 105–126. DOI: 10.1016 / j.aej.2015.03.002

CrossRef Полный текст | Google Scholar

Бароне Т. Л., Стори Дж. М. и Доминго Н. (2010). Анализ характеристик отработанного в полевых условиях сажевого фильтра: выбросы твердых частиц до, во время и после регенерации. J. Управление отходами воздуха. Доц. 60, 968–976. DOI: 10.3155 / 1047-3289.60.8.968

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Боретти А. (2011a). Дизельный и HCCI-подобный режим работы двигателя грузовика, преобразованного на водород. Внутр. J. Hydr. Energy 36, 15382–15391. DOI: 10.1016 / j.ijhydene.2011.09.005

CrossRef Полный текст | Google Scholar

Боретти А. (2011b). Достижения в двигателях внутреннего сгорания с воспламенением от сжатия водорода. Внутр. J. Hydr. Энергия 36, 12601–12606. DOI: 10.1016 / j.ijhydene.2011.06.148

CrossRef Полный текст | Google Scholar

Боретти А. (2011c). Преимущества прямого впрыска дизельного топлива и водорода в двухтопливном h3ICE. Внутр. J. Hydr. Energy 36, 9312–9317. DOI: 10.1016 / j.ijhydene.2011.05.037

CrossRef Полный текст | Google Scholar

Боретти А. (2013). Рассматриваются новейшие концепции систем сжигания и утилизации отработанного тепла для водородных двигателей. Внутр. J. Hydr. Энергия 38, 3802–3807. DOI: 10.1016 / j.ijhydene.2013.01.112

CrossRef Полный текст | Google Scholar

Боретти А. (2017). Будущее двигателей внутреннего сгорания после «Diesel-Gate. Warrendale, PA: SAE Technical Paper 2017-28-1933. DOI: 10.4271 / 2017-28-1933

CrossRef Полный текст | Google Scholar

Боретти А. (2018). Анализ жизненного цикла Сравнение мобильности на основе электрических двигателей и двигателей внутреннего сгорания .Warrendale, PA: SAE Technical Paper 2018-28-0037. DOI: 10.4271 / 2018-28-0037

CrossRef Полный текст | Google Scholar

Боретти, А., Кастеллетто, С. (2018). «Бензиновый двигатель с непосредственным впрыском и супер-турбонаддувом» в Труды Всемирной автомобильной конференции FISITA, 2–5> ОКТЯБРЬ 2018 (Ченнаи).

Google Scholar

Боретти, А., Лаппас, П. (2019). Комплексные независимые лабораторные испытания, подтверждающие экономию топлива и выбросы в реальных условиях вождения. Adv. Technol. Innovat. 4, 59–72.

Google Scholar

Боретти А., Ордис А. (2018). Супер-турбонаддув двухтопливного дизельного двигателя с системой зажигания . Технический документ SAE 2018-28-0036. DOI: 10.4271 / 2018-28-0036

CrossRef Полный текст | Google Scholar

Burtscher, Х. (2005). Физические характеристики выбросов твердых частиц из дизельных двигателей: обзор. J. Aerosol. Sci. 36, 896–932. DOI: 10.1016 / j.jaerosci.2004.12.001

CrossRef Полный текст | Google Scholar

Камузо, Дж. Р., Альварес, Р. А., Брукс, С. А., Браун, Дж. Б., и Стернер, Т. (2015). Влияние выбросов метана и эффективности транспортных средств на воздействие большегрузных грузовиков, работающих на природном газе, на климат. Environ. Sci. Technol. 49, 6402–6410. DOI: 10.1021 / acs.est.5b00412

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Шоссьер, Г. П., Малина, Р., Аллрогген, Ф., Истхэм, С. Д., Спет, Р. Л., и Барретт, С. Р. (2018). Атрибуция на уровне страны и производителя воздействия на качество воздуха из-за чрезмерных выбросов NOx от дизельных легковых автомобилей в Европе. Atmos. Environ. 189, 89–97. DOI: 10.1016 / j.atmosenv.2018.06.047

CrossRef Полный текст | Google Scholar

Крэбтри, Г. В., Дрессельхаус, М. С., Бьюкенен, М. В. (2004). Водородная экономика. Phys. Сегодня 57, 39–44. DOI: 10.1063 / 1.1878333

CrossRef Полный текст | Google Scholar

Энджерер, Х., и Хорн, М. (2010). Автомобили, работающие на природном газе: вариант для Европы. Энергетическая политика 38, 1017–1029. DOI: 10.1016 / j.enpol.2009.10.054

CrossRef Полный текст | Google Scholar

Faghani, E., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017a). Влияние стратегий закачки на выбросы от экспериментального газового двигателя с прямым впрыском — Часть I: Поздняя последующая закачка . Warrendale, PA: SAE Paper 2017-01-0774. DOI: 10.4271 / 2017-01-0774

CrossRef Полный текст | Google Scholar

Фагани, Э., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017b). Влияние стратегий впрыска на выбросы от пилотного двигателя прямого впрыска природного газа — Часть II: Горение с небольшим предварительным смешиванием . Варрендейл, Пенсильвания: Технический документ SAE 2017-01-0763. DOI: 10.4271 / 2017-01-0763

CrossRef Полный текст | Google Scholar

Фибиг М., Виарталла А., Холдербаум Б. и Кисоу С. (2014). Выбросы твердых частиц из дизельных двигателей: взаимосвязь между технологией двигателя и выбросами. J. Occup. Med. Toxicol. 9: 6. DOI: 10.1186 / 1745-6673-9-6

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Флореа Р., Нили Г., Абидин З. и Мива Дж. (2016). КПД и характеристики выбросов при сжигании двух видов топлива с частичной предварительной смесью путем совместного впрыска природного газа и дизельного топлива (DI2) . Warrendale, PA: SAE Paper 2016-01-0779. DOI: 10.4271 / 2016-01-0779

CrossRef Полный текст | Google Scholar

Фрейманн, Р., Ринглер, Дж., Зайферт, М., и Хорст, Т. (2012). Турбопарогонщик второго поколения. MTZ Worldwide 73, 18–23. DOI: 10.1365 / s38313-012-0138-1

CrossRef Полный текст | Google Scholar

Фрейманн Р., Штробл В. и Обьегло А. (2008). Турбопарогенератор: система, внедряющая принцип когенерации в автомобильную промышленность. MTZ Worldwide 69, 20–27. DOI: 10.1007 / BF03226909

CrossRef Полный текст | Google Scholar

Гоуди, Д., Данн, М., Мунши, С. Р., Лайфорд-Пайк, Э., Райт, Дж., Дуггал, В. и др. (2004). Разработка сверхмощного экспериментального двигателя с воспламенением от сжатия, работающего на природном газе, с низким уровнем выбросов NOx (№ 2004-01-2954) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2004-01-2954

CrossRef Полный текст | Google Scholar

Хейвуд, Дж. Б. (1988). «Сжигание в двигателях с воспламенением от сжатия», в Internal Combustion Engine Fundamentals (New York, NY: McGraw-Hill), 522–562.

Google Scholar

Хироясу, Х., и Кадота, Т. (1976). Модели сгорания и образования оксида азота и сажи в дизельных двигателях с прямым впрыском. SAE Trans. 85, 513–526. DOI: 10.4271 / 760129

CrossRef Полный текст | Google Scholar

Invernizzi, G., Ruprecht, A., Mazza, R., Rossetti, E., Sasco, A., Nardini, S., et al. (2004). Твердые частицы табака по сравнению с выхлопными газами дизельных автомобилей: образовательная перспектива. Tobacco Control 13, 219–221.DOI: 10.1136 / tc.2003.005975

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Джаффе, С. (2017). Уязвимые звенья в цепочке поставок литий-ионных аккумуляторов. Джоуль 1, 225–228. DOI: 10.1016 / j.joule.2017.09.021

CrossRef Полный текст | Google Scholar

Цзянь Д., Сяохун Г., Гешэн Л. и Синьтан З. (2001). Исследование двухтопливных двигателей дизель-СНГ (№ 2001-01-3679) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2001-01-3679

CrossRef Полный текст | Google Scholar

Джонсон, Т.В. (2009). Обзор дизельных выбросов и контроль. Внутр. J. Eng. Res. 10, 275–285. DOI: 10.1243 / 14680874JER04009

CrossRef Полный текст | Google Scholar

Катурия В. (2004). Воздействие КПГ на загрязнение автотранспортом в Дели: примечание. Транспорт. Res. Часть Д. 9, 409–417. DOI: 10.1016 / j.trd.2004.05.003

CrossRef Полный текст | Google Scholar

Хайр, М. К., Маевски, В. А. (2006). Выбросы дизельного топлива и их контроль (Vol.303). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / R-303

CrossRef Полный текст | Google Scholar

Кнехт, В. (2008). Разработка дизельного двигателя с учетом пониженных стандартов выбросов. Energy 33, 264–271. DOI: 10.1016 / j.energy.2007.10.003

CrossRef Полный текст | Google Scholar

Кумар, С., Квон, Х. Т., Чой, К. Х., Лим, В., Чо, Дж. Х., Так, К. и др. (2011). СПГ: экологически чистое криогенное топливо для устойчивого развития. Заявл. Энергия 88, 4264–4273. DOI: 10.1016 / j.apenergy.2011.06.035

CrossRef Полный текст | Google Scholar

Лафлин, М., и Бернхэм, А. (2016). Пример : региональные грузовые автомобили для перевозки природного газа (№ DOE / CHO-AC02-06Ch21357-1603). Аргонн, Иллинойс; Колумбия, Мэриленд: Энергетика; Аргоннская национальная лаборатория.

Google Scholar

Ли Г., Уэллетт П., Думитреску С. и Хилл П. Г. (1999). Исследование оптимизации прямого впрыска природного газа с пилотным зажиганием в дизельные двигатели .Warrendale, PA: SAE Paper 1999-01-3556. DOI: 10.4271 / 1999-01-3556

CrossRef Полный текст | Google Scholar

Линь В., Чжан Н. и Гу А. (2010). СПГ (сжиженный природный газ): необходимая часть будущей энергетической инфраструктуры Китая. Energy 35, 4383–4391. DOI: 10.1016 / j.energy.2009.04.036

CrossRef Полный текст | Google Scholar

Mabson, C., Faghani, E., Kheirkhah, P., Kirchen, P., et al. (2016). Горение и выбросы парных сопел в газовом двигателе прямого впрыска с пилотным зажиганием .Warrendale, PA: SAE Paper 2016-01-0807. DOI: 10.4271 / 2016-01-0807

CrossRef Полный текст | Google Scholar

Маджи С., Пал А. и Арора Б. Б. (2008). Использование КПГ и дизельного топлива в двигателях CI в двухтопливном режиме (№ 2008-28-0072). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2008-28-0072

CrossRef Полный текст | Google Scholar

Марбан, Г., и Вальдес-Солис, Т. (2007). К водородной экономике? Внутр. J. Hydr. Энергия 32, 1625–1637.DOI: 10.1016 / j.ijhydene.2006.12.017

CrossRef Полный текст | Google Scholar

Марик, М. М. (2007). Химическая характеристика выбросов твердых частиц из дизельных двигателей: обзор. J. Aerosol. Sci. 38, 1079–1118. DOI: 10.1016 / j.jaerosci.2007.08.001

CrossRef Полный текст | Google Scholar

Мартуцци М., Митис Ф., Явароне И. и Серинелли М. (2006). Воздействие PM10 и озона на здоровье в 13 городах Италии . Европейское региональное бюро ВОЗ.

Google Scholar

McKone, T. E., Nazaroff, W. W., Berck, P., Auffhammer, M., Lipman, T., Torn, M. S., et al. (2011). Основные задачи оценки жизненного цикла биотоплива. Environ. Sci. Technol. 45, 1751–1756. DOI: 10.1021 / es103579c

PubMed Аннотация | CrossRef Полный текст | Google Scholar

McTaggart-Cowan, G., Mann, K., Huang, J., Singh, A., et al. (2015). Прямой впрыск природного газа под давлением до 600 бар в двигатель большой мощности с пилотным зажиганием. SAE Int. J. Eng. 8, 981–996. DOI: 10.4271 / 2015-01-0865

CrossRef Полный текст | Google Scholar

Мор М., Форсс А. М. и Леманн У. (2006). Выбросы твердых частиц от дизельных легковых автомобилей, оборудованных уловителем твердых частиц, по сравнению с другими технологиями. Environ. Sci. Technol. 40, 2375–2383. DOI: 10.1021 / es051440z

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Молленхауэр К. и Чёке Х. (ред.). (2010). Справочник по дизельным двигателям, Vol. 1. Берлин: Springer. DOI: 10.1007 / 978-3-540-89083-6

CrossRef Полный текст | Google Scholar

Мамфорд Д., Гоуди Д. и Сондерс Дж. (2017). Возможности и проблемы HPDI . Warrendale, PA: SAE Paper 2017-01-1928. DOI: 10.4271 / 2017-01-1928

CrossRef Полный текст | Google Scholar

Мурадов Н. З., Везироглу Т. Н. (2005). От углеводородной к водородно-углеродной к водородной экономике. Внутр.J. Hydr. Энергия 30, 225–237. DOI: 10.1016 / j.ijhydene.2004.03.033

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Макки, М., и Мулиджн, Дж. А. (1996). Контроль выбросов твердых частиц из дизельного топлива. Топливный процесс. Technol. 47, 1–69. DOI: 10.1016 / 0378-3820 (96) 01002-8

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Нийхейс, Т. X., Смакман, Э., Макки, М., и Мулиджн, Дж. А. (1997). Кинетика окисления дизельной сажи. Топливо 76, 1129–1136. DOI: 10.1016 / S0016-2361 (97) 00119-1

CrossRef Полный текст | Google Scholar

Нили Г., Флореа Р., Мива Дж. И Абидин З. (2017). КПД и характеристики выбросов при сжигании с частичным смешиванием двух видов топлива путем совместного прямого впрыска ПГ и дизельного топлива (DI2) — Часть 2 . Warrendale, PA: SAE Paper 2017-01-0766. DOI: 10.4271 / 2017-01-0766

CrossRef Полный текст | Google Scholar

Осорио-Техада, Дж., Ллера, Э., и Скарпеллини, С. (2015). СПГ: альтернативное топливо для грузовых автомобильных перевозок в Европе. WIT Trans. Встроенная среда. 168, 235–246. DOI: 10.2495 / SD150211

CrossRef Полный текст | Google Scholar

Парк Т., Тенг Х., Хантер Г. Л., ван дер Вельде Б. и Клавер Дж. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей HD — экспериментальные результаты (№ 2011-01-1337). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-01-1337

CrossRef Полный текст | Google Scholar

Рэмсброк, Дж., Вилимек, Р., Вебер, Дж. (2013). «Изучение удовольствия от вождения на электромобиле — пилотные проекты BMW EV», Международная конференция по взаимодействию человека и компьютера, (Берлин; Гейдельберг: Springer), 621–630. DOI: 10.1007 / 978-3-642-39262-7_70

CrossRef Полный текст | Google Scholar

Решитоглу И. А., Алтинишик К. и Кескин А. (2015). Выбросы загрязняющих веществ от автомобилей с дизельными двигателями и систем нейтрализации выхлопных газов. Clean Technol. Environm. Политика 17, 15–27.DOI: 10.1007 / s10098-014-0793-9

CrossRef Полный текст | Google Scholar

Рю, К. (2013). Влияние времени предварительного впрыска на характеристики сгорания и выбросов в дизельном двигателе, использующем биодизель-КПГ. Заявл. Энергия 111, 721–730. DOI: 10.1016 / j.apenergy.2013.05.046

CrossRef Полный текст | Google Scholar

Саракко, Г., Руссо, Н., Амброджио, М., Бадини, К., и Спеккиа, В. (2000). Снижение выбросов твердых частиц дизельного топлива с помощью каталитических ловушек. Catal. Сегодня , 60, 33–41. DOI: 10.1016 / S0920-5861 (00) 00314-X

CrossRef Полный текст | Google Scholar

Шиппер Л., Мари-Лиллиу К. и Фултон Л. (2002). Дизели в Европе: анализ характеристик, моделей использования, экономии энергии и последствий выбросов CO2. J. Transp. Экон. Политика 36, 305–340.

Google Scholar

Шах, А., Типсе, С. С., Тьяги, А., Райрикар, С. Д., Кавтекар, К. П., Марате, Н. В. и др. (2011). Обзор литературы и моделирование двухтопливных дизельных двигателей, работающих на КПГ (№ 2011-26-0001). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-26-0001

CrossRef Полный текст | Google Scholar

Ши Л., Шу Г., Тиан Х. и Дэн С. (2018). Обзор модифицированных органических циклов Ренкина (ORC) для рекуперации отработанного тепла двигателей внутреннего сгорания (ICE-WHR). Обновить. Поддерживать. Energy Rev. 92, 95–110. DOI: 10.1016 / j.rser.2018.04.023

CrossRef Полный текст | Google Scholar

Смит, О.I. (1981). Основы образования сажи в пламени применительно к выбросам твердых частиц дизельных двигателей. Прог. Энергия сгорания. Sci. 7, 275–291. DOI: 10.1016 / 0360-1285 (81)

-2

CrossRef Полный текст | Google Scholar

Teng, H., Klaver, J., Park, T., Hunter, G. L., and van der Velde, B. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей высокого давления — разработка системы WHR (№ 2011-01-0311) . Warrendale, PA: SAE Technical Paper.DOI: 10.4271 / 2011-01-0311

CrossRef Полный текст | Google Scholar

Teng, H., and Regner, G. (2009). Повышение экономии топлива для дизельных двигателей HD с циклом Ренкина, управляемым за счет отвода тепла охладителя EGR (№ 2009-01-2913). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2009-01-2913

CrossRef Полный текст | Google Scholar

Teng, H., Regner, G., and Cowland, C. (2007). Рекуперация отходящего тепла дизельных двигателей большой мощности с помощью органического цикла Ренкина, часть I: гибридная энергетическая система дизельного двигателя и двигателя Ренкина (No.2007-01-0537). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2007-01-0537

CrossRef Полный текст | Google Scholar

Ван Т., Чжан Ю., Чжан Дж., Пэн З. и Шу Г. (2014). Сравнение преимуществ системы и термоэкономики для рекуперации энергии выхлопных газов, применяемых в тяжелых дизельных двигателях и бензиновых двигателях легких транспортных средств. Energy Conv. Управлять. 84, 97–107. DOI: 10.1016 / j.enconman.2014.04.022

CrossRef Полный текст | Google Scholar

Ага, С.(2007). Эмпирический анализ внедрения транспортных средств, работающих на альтернативном топливе: на примере транспортных средств, работающих на природном газе. Энергетическая политика 35, 5865–5875. DOI: 10.1016 / j.enpol.2007.06.012

CrossRef Полный текст | Google Scholar

Ю., Г., Шу, Г., Тиан, Х., Хо, Ю., и Чжу, В. (2016). Экспериментальные исследования каскадной системы парового / органического цикла Ренкина (RC / ORC) для рекуперации отработанного тепла (WHR) дизельного двигателя. Energy Conv. Управлять. 129, 43–51. DOI: 10.1016 / j.enconman.2016.10.010

CrossRef Полный текст | Google Scholar

Зервас Э., Пулопулос С. и Филиппопулос К. (2006). CO 2 изменение выбросов в результате внедрения дизельных легковых автомобилей: пример Греции. Energy 31, 2915–2925. DOI: 10.1016 / j.energy.2005.11.005

CrossRef Полный текст | Google Scholar

Чжао, Х. (ред.). (2009). Передовые технологии и разработки двигателей внутреннего сгорания с прямым впрыском топлива: дизельные двигатели .Кембридж: издательство Woodhead Publishing.

Google Scholar

ВИДЫ И ПРИМЕНЕНИЕ ПРОМЫШЛЕННЫХ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Что такое дизельный двигатель?
Дизельный двигатель — разновидность двигателя внутреннего сгорания; более конкретно, это двигатель с воспламенением от сжатия. Топливо в дизельном двигателе воспламеняется путем внезапного воздействия на него высокой температуры и давления сжатого газа, содержащего кислород (обычно атмосферного воздуха), а не от отдельного источника энергии зажигания (например, свечи зажигания).Этот процесс известен как дизельный цикл по имени Рудольфа Дизеля, который изобрел его в 1892 году. Хотя традиционные генераторы с дизельными двигателями могут не вписываться в наше определение «альтернативных источников энергии», они по-прежнему являются ценным дополнением к удаленным источникам энергии или сети. вверх по системе.

Типы дизельных двигателей
Есть два класса дизельных двигателей: двухтактные и четырехтактные. Большинство дизельных двигателей обычно используют четырехтактный цикл, а некоторые более крупные двигатели работают по двухтактному циклу.Обычно ряды цилиндров используются в количестве, кратном двум, хотя можно использовать любое количество цилиндров, если нагрузка на коленчатый вал уравновешивается для предотвращения чрезмерной вибрации.
Генераторные установки вырабатывают одно- или трехфазное питание. Большинству домовладельцев требуется однофазное питание, тогда как для промышленных или коммерческих приложений обычно требуется трехфазное питание. Дизельные двигатели-генераторы рекомендуются из-за их долговечности и более низких эксплуатационных расходов. Современные дизельные двигатели работают бесшумно и, как правило, требуют гораздо меньшего обслуживания, чем газовые (природный газ или пропан) аналогичного размера.

Дизельные двигатели-генераторы — коммерческое / промышленное применение
Дизель-генераторы предназначены для удовлетворения потребностей малого и среднего бизнеса, помимо интенсивного использования в промышленности. Генератор — это революционный продукт, который обеспечивает доступ к чистой и доступной резервной энергии для миллионов предприятий, домов и малых предприятий. В наши дни снижение стоимости резервного питания и упрощение установки генераторов становится нормой.

Предприятия теряют деньги, когда закрываются во время отключения электроэнергии.Учитывая влияние значительной потери доходов, экономия от инвестиций в резервное питание является убедительной. Чтобы проиллюстрировать эту мысль: если розничный бизнес в среднем составляет 1000 долларов в час на кассе, потеря дохода во время длительного простоя будет очень высокой, не говоря уже о стоимости простоя сотрудников в течение этого времени. Однако дизельные генераторы исключают риск отключения электроэнергии. Добавьте к этому преимущества открытости, в то время как конкуренты без резервного питания отключены, и анализ затрат и выгод выглядит еще лучше.Инвестиции в генераторы — это простой способ сохранить доходы, обеспечить безопасность, избежать потерь и защитить прибыль.

Большинство современных генераторов спроектированы для удовлетворения потребностей в аварийном питании. Эти агрегаты непрерывно контролируют электрический ток и автоматически запускаются в случае прерывания подачи электроэнергии и отключаются при возврате коммунального обслуживания. В отраслях промышленности во время критических процессов генераторы могут по желанию обеспечивать аварийным питанием все жизненно важные и выбранные нагрузки. Это качество приводит к широкому использованию дизельных генераторов в развлекательных, жилых, коммерческих, коммуникационных и промышленных целях.Сегодня большинству современных больниц, пятизвездочных отелей, центров аутсорсинга бизнес-процессов, производственных предприятий, телекоммуникационных организаций, коммерческих зданий, центров обработки данных, аварийных служб, крупных промышленных предприятий и горнодобывающих компаний требуется бесперебойное электроснабжение и резервное дизельное топливо. двигатели-генераторы.

В дороге:
Подавляющее большинство современных тяжелых дорожных транспортных средств, таких как грузовики и автобусы, корабли, поезда дальнего следования, крупномасштабные переносные электрогенераторы, а также большинство сельскохозяйственных и горнодобывающих машин имеют дизельные двигатели.Однако в некоторых странах они не так популярны в легковых автомобилях, поскольку они тяжелее, шумнее, имеют рабочие характеристики, которые замедляют ускорение. В целом они также дороже бензиновых автомобилей. Современные дизельные двигатели прошли долгий путь, и теперь, когда в транспортных средствах используются системы прямого впрыска с турбонаддувом, трудно заметить разницу между дизельными и бензиновыми двигателями.

В некоторых странах, где налоговые ставки делают дизельное топливо намного дешевле бензина, очень популярны дизельные автомобили.Новые конструкции значительно сократили различия между бензиновыми и дизельными автомобилями в этих областях. Дизельная лаборатория BMW в Австрии считается мировым лидером в разработке автомобильных дизельных двигателей. После долгого периода, когда в модельном ряду было относительно мало дизельных автомобилей, Mercedes Benz вернулся к дизельным автомобилям в 21 веке с упором на высокую производительность.

В сельскохозяйственной сфере тракторы, ирригационные насосы, молотилки и другое оборудование работают преимущественно на дизельном топливе.Строительство — еще один сектор, который сильно зависит от дизельной энергии. Все бетоноукладчики, скреперы, катки, траншеекопатели и экскаваторы работают на дизельном топливе.

В небе:
Некоторые самолеты использовали дизельные двигатели с конца 1930-х годов. Новые автомобильные дизельные двигатели имеют соотношение мощности и веса, сравнимое с древними конструкциями с искровым зажиганием, и имеют гораздо более высокую топливную экономичность. Использование в них электронного зажигания, впрыска топлива и сложных систем управления двигателем также делает их намного проще в эксплуатации, чем массовые авиационные двигатели с искровым зажиганием.Стоимость дизельного топлива по сравнению с бензином вызвала значительный интерес к малым самолетам авиации общего назначения с дизельными двигателями, и несколько производителей недавно начали продавать дизельные двигатели для этой цели.

На воде:
Высокоскоростные двигатели используются в тракторах, грузовиках, яхтах, автобусах, легковых автомобилях, компрессорах, генераторах и насосах. Самые большие дизельные двигатели используются для питания кораблей и лайнеров в открытом море. Эти огромные двигатели имеют выходную мощность до 90 000 кВт, вращаются со скоростью от 60 до 100 об / мин и имеют высоту 15 метров.

Под землей:
Горнодобывающая промышленность и добыча полезных ископаемых во всем мире в значительной степени полагаются на дизельную энергию для использования природных ресурсов, таких как заполнители, драгоценные металлы, железная руда, нефть, газ и уголь. Экскаваторы и буровые установки с дизельным двигателем выкапывают эти продукты и загружают их в огромные карьерные самосвалы или на конвейерные ленты, которые также работают на том же топливе. В целом на дизельное топливо приходится 72 процента энергии, потребляемой горнодобывающим сектором.

Как на открытых, так и на подземных горных работах используется дизельное оборудование для извлечения материалов и погрузки грузовиков.Самым крупным дизельным оборудованием с резиновыми колесами, используемым в горнодобывающей промышленности, являются огромные внедорожники с двигателями мощностью более 2500 лошадиных сил, способными перевозить более 300 тонн груза. Эти гигантские грузовики, катящиеся по земле, просто зрелище.

В больницах
Аварийные резервные генераторы необходимы в любом крупном медицинском учреждении. Из-за критического характера работы, которую выполняют эти учреждения, и положения, в котором находятся их пациенты, перебои в подаче электроэнергии просто недопустимы.В течение многих лет как военные, так и государственные больницы полагались на промышленные генераторные установки, которые брали на себя работу всякий раз, когда отключалось электричество, будь то локальный сбой или крупное стихийное бедствие, такое как ураган или наводнение.

За центрами обработки данных
Компьютеры — это сердце современной отрасли. Когда серверы и системы выходят из строя, связь может быть потеряна, бизнес прекращается, данные теряются, рабочие сидят без дела, и почти все останавливается. По этой причине почти все коммуникационные и телекоммуникационные компании любого профиля обращаются к дизельным генераторам в качестве основного варианта резервного питания.Поскольку надежность их услуг затрагивает очень многих людей, у них действительно нет другого выбора, кроме как иметь надежный вариант резервного питания как для своего бизнеса, так и для клиентов, которых они обслуживают.

Резюме
Дизельное топливо используется в подавляющем большинстве промышленных секторов, поскольку оно обеспечивает большую мощность на единицу топлива, а его низкая летучесть делает его более безопасным в обращении. Одна действительно захватывающая перспектива замены дизельного топлива бензином — это возможность полностью исключить потребление бензина.

Добавить комментарий

Ваш адрес email не будет опубликован.