блок, цилиндр, поршень, поршневые кольца и шатун
Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения.Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.
Базовые части двигателя
Чтобы хорошо понимать устройство двигателя автомобиля, важно разбираться, что из себя представляет блок, цилиндр, поршень, поршневые кольца и шатун.
Блок
Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.
Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.
Цилиндр
Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:
- Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
- Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
- Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.
Цилиндр играет роль направляющего для поршня.
Поршень, поршневые кольца и шатун
Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.
В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.
Среди задач поршня:
- Оказание силового воздействия на шатун.
- Отвод тепла от камеры сгорания.
- Герметизация камеры сгорания.
Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.
Коленчатый вал
Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку.
Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.
На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).
Несколько важных терминов, касающихся устройства двигателя автомобиля
Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры).
Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.
На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии. Источник: Ford.
Автомобильные двигатели
Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.
Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности.
Циклы двигателя
Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом.Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания.
Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.
Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.
1. Такт впуска (всасывания). Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.
2. Такт сжатия. Шатун толкает поршень. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.
3. Такт рабочего хода. Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.
4. Такт выпуска отработавших газов. Поршень движется снизувверх. Отработавшие газы выходят из цилиндра через выпускной клапан.
Устройство двигателя автомобиля устроено так, что четыре такта повторяются циклично. Посредством маховика механическая энергия превращается во вращательное движение коленвала.
Модульное обучение автоосновам доступно при изучении электронных программ по профессиям. Удобный дистанционный формат обучения.
Клапаны двигателя: конструктивные особенности и назначение
Клапанный механизм – это основной исполнительный компонент ГРМ (газораспределительный механизм) современного двигателя внутреннего сгорания (ДВС). Именно этот узел отвечает за безупречно точную работу мотора и обеспечивает в процессе работы:
- своевременную подачу подготовленной топливовоздушной смеси в камеры сгорания цилиндров;
- последующий отвод выхлопных газов.
Клапаны – ключевые детали механизма, которые должны гарантировать полную герметизацию камеры сгорания при воспламенении в ней топлива. Во время работы мотора они испытывают постоянно высокую нагрузку. Вот почему к процессу их изготовления, а также особенностям конструкции, регулировкам и непосредственно самой работе клапанов ДВС предъявляются жесткие требования.
Общее устройство
Для нормальной работы двигателя в конструкции газораспределительного механизма предусмотрена установка двух типов клапанов: впускных и выпускных. Первые отвечают за пропуск в камеру сгорания топливовоздушной смеси, вторые – за отвод отработанных газов.
Клапанная группа (одновременно является оконечным элементом системы ГРМ) включает в себя основные детали:
- стальная пружина;
- устройство (механизм) для крепления возвратного механизма;
- втулка, направляющая движение;
- посадочное седло.
Эксперты MotorPage.Ru обращают внимание автовладельцев на тот факт, что именно сопряжение «седло-клапан» при работе мотора подвергается самой высокой степени воздействия экстремальных температур и разнонаправленным (вверх, вниз, в стороны) механическим нагрузкам.
Кроме того, из-за скоростной работы образуется недостаточное количество смазки. В результате – интенсивный износ и необходимость проведения ремонта двигателя, замены и установки новых деталей ГРМ с последующей регулировкой зазоров.
К каждой паре и группе клапанов предъявляются следующие требования:
- минимально возможный вес;
- антикоррозийная устойчивость;
- безупречная теплоотдача клапана;
- устойчивость к высоким температурам;
- герметичность работы при контакте с седлом;
- повышенная механическая прочность и жесткость одновременно;
- отличный показатель стойкости к механическим и ударным нагрузкам;
- максимальный уровень обтекаемости при поступлении рабочей смеси в камеру сгорания и выпуске отработанных газов.
Конструктивные особенности
Главное предназначение клапана – своевременное открывание и закрывание технологических отверстий в блоке цилиндров для выпуска отработанных газов и впуска очередной порции топливовоздушной смеси.
В процессе работы двигателя основание выпускного клапана нагревается до высоких температур. У бензиновых моторов этот параметр достигает 800 — 900°С, у дизельных силовых агрегатов – 500 — 700°С. Впускные работают при температуре порядка 300°С.
Чтобы обеспечить необходимый уровень устойчивости к таким нагрузкам, для изготовления выпускных клапанов используют специальные жаропрочные сплавы и материалы, содержащие большое количество легирующих присадок.
Конструктивно деталь состоит из двух частей:
- головка, изготавливаемая из материала, устойчивого к экстремальным нагревам;
- стержень из высококачественной легированной углеродистой стали.
Для защиты от коррозии поверхность выпускных клапанов в местах контакта с цилиндром покрывается специальным сплавом толщиной 1,5 – 2,5 мм.
К впускным клапанам требования не столь жесткие, поскольку в процессе работы двигателя они охлаждаются свежей топливовоздушной смесью. Для изготовления стержней используются низколегированные марки сплавов с повышенными параметрами прочности, а тарелки делают из жаропрочных сталей.
Требования к изготовлению пружин и втулок
Пружины. В системе ГРМ эта деталь работает в условиях экстремально высоких температурных и механических нагрузок. Задача – обеспечить плотный и надежный контакт между клапаном и седлом в момент их стыковки.
Нередко в процессе работы пружины ломаются, испытывая повышенные нагрузки, зачастую это происходит по причине вхождения ее в резонанс. Как отмечают эксперты Моторпейдж, риск подобных неисправностей гораздо ниже при использовании пружин с переменным шагом витков. Также достаточно эффективны конические или двойные (усиленные) модели.
Пружины для клапанов изготавливают из специальной легированной стальной проволоки. Ее закаляют и подвергают отпуску (технологические операции, используемые в металлургическом производстве). Защиту от коррозии обеспечивает дополнительная обработка оксидом цинка или кадмия.
Втулки. Обеспечивают отвод излишков тепловой энергии от стержня клапана, а также его перемещение в заданной (возвратно-поступательной) плоскости. Эти направляющие элементы системы постоянно омываются раскаленными парами и отработанными выхлопными газами. Функционируют также в условиях экстремальных температур.
Потому к материалу изготовления втулок тоже предъявляются высокие требования – хорошая износоустойчивость, стойкость к максимально допустимым температурам и трению. Данным запросам соответствуют некоторые виды чугуна, алюминиевая бронза, высокопрочная керамика. Именно эти материалы и используются для производства втулок.
каталог деталей для ТО и ремонта мотора
Устройство автомобильного двигателя и принцип его работы
Двигатель автомобиля преобразует энергию любого топлива в механическую. За счет смешения топлива с воздухом получается топливно-воздушная смесь, которая сгорает и создает тем самым нужное давление для вращения коленвала. Данная энергия вращения переходит к трансмиссии транспортного средства.
- Виду топлива
- Количеству и месторасположению цилиндров
- Методу создания топливной смеси
- Числу тактов
- Способу охлаждения
- Степени сжатия
Самыми распространенными считаются бензиновые моторы, в которых бензин поступает во впускной коллектор или карбюратор. Карбюраторная система практически не используется на современных авто, чаще применяется механическая или электронная инжекторная система.
В дизельных моторах получившаяся воздушная смесь проходит в цилиндры через форсунки.
Газовые применяют в качестве топлива сжиженный, генераторный или сжатый природный газ. Он находится под давлением в специальных баллонах, откуда проникает в газовый редуктор через систему испарителя.
В автомобилестроении используются следующие подвиды ДВС:
- Поршневой. Находящийся в цилиндре поршень запускается благодаря тепловой энергии сгоревшего топлива
- Роторно-поршневой или роторный. Применяется трехгранный ротор, который вращается внутри цилиндра. Он соединяется с зубчатым колесом, в результате чего вращается стартер
Современные автомобили в основном используют усовершенствованные модели моторов прошлого столетия. Снижается расход топлива, повышается степень сжатия, благодаря чему увеличивается КПД цикла и всего мотора. В частности основные параметры двигателя улучшились при внедрении регулируемых фаз и системы непосредственного впрыска бензина. Она исключает неравномерность подачи топлива, повышает наполняемость цилиндров и сдвигает режимы детонации.
В последних тенденциях мирового автомобилестроения двигатель внутреннего сгорания все еще занимает лидирующие позиции, хотя все большую популярность, за счет высокой экологической безопасности, завоевывает электромотор. Для его работы используется электрическая энергия, находящаяся в аккумуляторах. Недостатком подобных систем считается небольшой ход, маленькая емкость батареи и недостаточно развитая инфраструктура для обслуживания и заправки электрокаров.
Также достаточно большое распространение получили гибридные силовые установки, объединяющие электродвигатель и ДВС, которые связываются через генератор.Конструктивные особенности двигателя
Основным механизмом типичного автомобильного двигателя является блок цилиндров, состоящий из разных каналов, которые обеспечивают циркуляцию охлаждающей жидкости. Внутри блока цилиндров находятся поршни с компрессионными и маслосъемными кольцами. Первые создают герметичную систему при сжатии для того, чтобы получилось воспламенение, а вторые отвечают за недопущение попадания моторного масла в камеру сгорания.
За правильное функционирование двигателя отвечают следующие системы:
- Система питания. Ее функция заключается в дозировании и подаче топливно-воздушной смеси в цилиндры
- Газораспределительная. Включает шестерни, валы, пружины, толкатели, клапаны, она регулирует подачу горючей смеси и вывод отработанных газов
- Зажигание, подает электрический ток на контакт свечи, в результате чего происходит воспламенение рабочей смеси
- Система охлаждения. Предотвращает перегрев и преждевременный выход из строя двигателя
- Система смазки. Обеспечивает смазывание трущихся деталей моторным маслом, тем самым уберегая их от износа
Принцип работы мотора заключается в том, что топливо проходит в камеру сгорания, где перемешивается с воздухом, создавая особую топливную смесь. Она воспламеняется, получившиеся газы толкают поршень, приводя в движение коленчатый вал. Он вращает трансмиссию, а шестеренный механизм приводит в движение колеса транспортного средства.
Диагностика и обслуживание двигателя
Проведение диагностических мероприятий и обслуживание автомобильного двигателя целесообразно при покупке подержанного авто, а также при возникновении проблем в процессе эксплуатации, при запуске, появлении посторонних шумов, снижении мощности, повышении расхода масла и топлива, троении, задымлении.
Техническое обслуживание двигателя включает в себя несколько этапов:
- Внешнюю очистку. Проводится обдуванием сжатым воздухом и протиранием материей, смоченной в специальном растворе
- Контрольный осмотр. Заключается в визуальном определении целостности деталей, в наличии утечек масла, топлива и рабочих жидкостей. Контролируются крепления, тестируется система пуска. На данном этапе выявляются очевидные неполадки
- Общее диагностирование. Диагностика дает возможность оценить состояние работоспособности мотора, исходя из его обобщенных параметров. Ведется инструментальное, акустическое или компьютерное обследование, анализируются внешние симптомы
- Регулирование систем, исправление неполадок, смена расходных материалов
Для оптимального функционирования всех деталей и узлов рекомендуется проводить диагностику нового мотора после 10-40 тысяч км пробега. Техническое обслуживание осуществляется также при прохождении плановых ТО.
В этом случае проверяются основные элементы системы зажигания, свечи, модули зажигания, проводка, герметичность впускного клапана, состояние ремня ГРМ, цилиндров, замеряется давление масла. При компьютерной диагностике анализируется состояние датчиков, считываются их данные.
При необходимости меняется или доливается моторное масло, охлаждающая жидкость, проводится замена фильтров, очищаются от нагара свечи зажигания, контакты.
Несоблюдение сроков проведения диагностики и несвоевременное обслуживание двигателя может привести к преждевременному износу и перегреву деталей и узлов мотора, что впоследствии грозит поломкой самого двигателя.Капитальный ремонт двигателя
Срок эксплуатации двигателя зависит от марки автомобиля, типа мотора и манеры вождения. В среднем он составляет 100-250 тысяч км, хотя основным фактором для проведения капитального ремонта служит не пробег, а техническое состояние двигателя. Несвоевременная замена моторного масла, некачественные фильтры, топливо и смазка, а также тяжелые условия эксплуатации снижают долговечность мотора.
Появление характерных стуков, а также синего дыма из выхлопной трубы на фоне повышенного потребления масла свидетельствует о необходимости проведения диагностики двигателя. Если повреждения существенные, изношены цилиндры, поршни или другие важные составляющие системы, принимается решение о проведении капитального ремонта.
Он включает в себя:- Визуальный осмотр
- Разборка. В зависимости от модели авто может потребоваться снятие двигателя
- Ремонт поверхности корпуса или головки блока цилиндров, коленвала. Меняются прокладки, опоры двигателя, поршневые кольца, маслосъемные колпачки, фильтры, шатунные и коренные вкладыши, регулируются клапаны. Производится проточка и отшлифовка кривошипно-шатнунного механизма, других деталей и узлов двигателя. Если стоимость поврежденного элемента невысокая, то обычно проводят замену, в противном случае пытаются восстановить его работоспособность
- Сборка и последующая диагностика функционирования систем силового агрегата
В некоторых случаях вместо капитального ремонта проводят полную замену двигателя. Это происходит из-за высокой стоимости или невозможности приобретения некоторых составляющих данного механизма, а также тогда, когда мотор не поддается ремонту из-за сильных повреждений.
Выбор запчастей для двигателя
Для проведения капитального ремонта или обслуживания двигателя необходимо приобрести запчасти для замены поврежденных элементов. В этом случае перед водителем возникает проблема, какие комплектующие лучше: оригинальные или неоригинальные.
Оригинальные детали и узлы поставляет завод-изготовитель, они отличаются надежностью и высоким качеством, имеют фирменную упаковку и гарантированно подойдут ко всем системам автомобиля. Оригинальные комплектующие обычно устанавливаются в сертифицированных автосервисах при гарантийном техобслуживании. Главным недостатком таких запчастей является их высокая стоимость.
В настоящее время появились качественные неоригинальные детали для двигателей, которые практически не уступают оригиналам по производительности и долговечности, но стоят при этом на 25-30% дешевле. Найти подобные аналоги можно намного быстрее, за счет обширного ассортимента. Имеет смысл приобретать неоригинальные расходные материалы, замена которых проводится достаточно часто.
Однако при слишком низкой цене аналоговых деталей можно столкнуться с некачественной продукцией, которая слишком быстро выйдет из строя. Также встречается бракованный товар или подделки, которые в результате могут спровоцировать серьезные повреждения крупных узлов двигателя.
Чтобы не ошибиться, приобретая автомобильные запчасти, следует обратиться к надежному поставщику подобной продукции. В магазине Eshop в наличие неимоверно широкий ассортимент автотоваров. Здесь можно купить качественные оригинальные и неоригинальные детали от проверенных производителей.
Устройство и принцип работы двигателя внутреннего сгорания
В статье разберём подробно устройство двигателя ДВС и принцип работы двигателя ДВС. Разберёмся из каких частей состоит мотор и принцип его функционирования. Приведём основные понятия и термины как для опытных автолюбителей, так и для новичков в этой сфере.Из каких основных частей состоит двигатель (мотор)
Мотор состоит из следующих основных частей:
— Кривошипно-шатунный механизм.
— Система газораспределения.
— Питающая система.
— Система выпуска.
— Система зажигания.
— Охлаждающая система.
— Смазочная система.
Устройство двигателя на примере одноцилиндрового ДВС
Для начала рассмотрим специфику устройства двигателя. Для примера возьмём мотор с всего одним цилиндром и разберёмся с его устройством и работой. Рассмотрим все процессы, которые в нём протекают и выясним что заставляет в конечном итоге колёса транспортного средства крутиться.
Одной из основных частей мотора является цилиндр. В цилиндре находится поршень. Поршень двигателя соединяется при помощи шатуна с коленчатым валом. Поршень движется в цилиндре вверх и вниз и таким образом приводит во вращение коленчатый вал мотора. Таким образом можно сказать что в ДВС осуществляется преобразование поступательного движения поршня во вращающееся движение колен вала. На конце колен вала закреплён маховик, который делает вращение вала равномерным. Сверху цилиндр плотно закрыт крышкой, в крышке цилиндра находятся два типа клапанов, для впуска и выпуска. Клапаны закрывают соответствующие каналы. Они открываются и закрываются под действием специальных устройств распред вала через передаточные детали. Распред вал вращается посредством вращения колен вала. Поршень в цилиндре может занимать два рабочих положения.
Клапаны открываются под действием специальных кулачков распред вала через передаточные детали. Распред вал приводится во вращение шестернями от колен вала. Поршень, который перемещается в цилиндре, занимает два крайних положения.
Для осуществления работы двигателя в цилиндры подаётся горючая смесь в определённом количестве, если это двигатель, работающий на бензине и, если это дизельный мотор топливо подаётся определёнными порциями под давлением. Все трущиеся части мотора смазываются в процессе работы маслом. Для обеспечения нормального теплового режима мотор охлаждается – эту функцию берёт на себя охлаждающая система.
Принцип работы двигателя (ДВС)
Поршень в цилиндре движется в поступательном режиме, то есть вверх и вниз. При этом колен вал совершает вращательное движение. Вращение колен вала осуществляется по часовой стрелке. За один оборот колен вала поршень совершает два хода (один ход вверх и один ход вниз).
При постоянной скорости вращения колен вала, поршень движется с ускорением – замедлением. Наименьшую скорость движения он имеет в верхней и в нижней точке. В верхней и в нижней части движения он останавливается и меняет направление движения.
Рабочий цикл четырёхтактного мотора:
— Впуск.
— Сжатие.
— Рабочий ход.
— Выпуск.
Работа мотора транспортного средства складывается из совокупности процессов, которые протекают в цилиндрах с определённой последовательностью. Эти процессы принято называть рабочим циклом.
Когда нужен ремонт а когда лучше полная замена двигателя
Отказ двигателя — это событие, которое всегда сулит неприятности и требует принятия важных решений:
Стоит ли тратить деньги на замену или ремонт двигателя или целесообразнее было бы вовсе избавиться от старого автомобиля и приобрести новый?
Пригоден ли старый двигатель для ремонта или придется заменить его новым, восстановленным или подержанным?
Какой вариант лучше и разумнее с экономической точки зрения?
Починить или выбросить?
Если вашему авто меньше десяти лет и вы сильно прикипели к нему душой или не можете в настоящий момент позволить себе другой, то, пожалуй, лучшим решением для вас будет отремонтировать или заменить старый двигатель. Автомобили быстро обесцениваются, даже если эксплуатировались они не слишком часто. К тому времени, как вашей машине понадобится новый мотор, ее рыночная цена или стоимость при встречной продаже может быть настолько низкой, что переводить на нее лишние деньги станет просто нерентабельно. Следовательно, если ваш автомобиль стоит меньше $2000, очень хорошо подумайте, прежде чем тратиться на капитальный ремонт. Уж лучше приберегите свои финансы для покупки нового авто.
С другой стороны, если ваша старушка отслужила более десяти лет, и вы ее терпеть уже не можете или ищете предлог обзавестись новым автомобилем, не тратьте на нее ни копейки. Забудьте о ремонте и замене старого мотора. Сдайте ее на утилизацию или пожертвуйте на благотворительность, позаботившись о списании налога, или продайте по дешевке кому-нибудь, кто думает, что сможет ее отремонтировать и «поставить на ноги».
Во-первых, выясните причину отказа двигателя.
Если старый двигатель «набегал» более 150000 миль и сжигает масло, работает кое-как, шумит или глохнет, то ремонт обойдется дорого. Для реконструкции двигателя с большим пробегом потребуется расточить цилиндры под новые поршни большего диаметра. В связи с этим увеличатся затраты на запчасти и услуги автосервиса. Возможно, понадобится расточить соосные отверстия в блоке цилиндров, чтобы восстановить их округлую форму и расположение вдоль одной линии. Также может понадобиться фрезеровка и шлифовка привалочных поверхностей для обеспечения их плоскости. Необходимо будет реставрировать поверхность головок цилиндров, заменить выпускные клапаны (возможно, и гнезда клапанов, если головка алюминиевая), может потребоваться расточка отверстий распредвала вдоль одной оси, чтобы восстановить опорные поверхности. Вдобавок к механической обработке двигатель нужно будет полностью демонтировать, тщательно очистить и проверить на наличие трещин или других повреждений, из-за которых блок или головки могут быть ремонтонепригодными. Если блок и головки цилиндров в порядке, то коленвал, скорее всего, придется переточить, чтобы восстановить поверхности шейки. Может быть, понадобятся новые кулачки, распредвал, толкатели клапанов или поршни, если старые слишком износились. Возможно, также надо будет заменить шатунные и коренные подшипники коленвала, подшипники распредвала, цепь механизма газораспределения и комплект шестерен (или зубчатый ремень привода, если это двигатель с распределительным валом в головке блока цилиндров), масляный насос и любые другие поврежденные или изношенные детали. Все это сводятся к тому, что ремонт влетит в копеечку.
В связи с тем, что реконструкция двигателя с большим пробегом требует немалых усилий, во многих автомастерских и у официальных дилеров вам посоветуют заменить старый мотор новым или восстановленным. В обоих случаях двигатель приходит более-менее укомплектованным и, как правило, может быть установлен за один день. Не будет никаких задержек, связанных с механической обработкой или ожиданием запчастей для старого мотора. На большинство новых и восстановленных двигателей распространяется гарантия.
Приобретать подержанные двигатели может быть рискованно. Двигатель, добытый на автосвалке с какой-нибудь машины с малым пробегом (менее 60000 миль), наверное, будет не так уж плох. Если гарантируется хорошее состояние двигателя (а гарантию дают не все), то его покупка и установка, действительно, гораздо дешевле. Но если пробег мотора довольно большой или автомобиль, с которого его сняли, был списан за негодностью (а не пострадал в аварии), и гарантий никто не дает, лучше не покупайте. Продолжайте искать и сделайте выбор в пользу нового или восстановленного двигателя от проверенного поставщика.
При выборе хорошего б/у двигателя следует помнить, что он должен быть совместимым с вашей системой управления двигателем, с датчиками и электропроводкой. Так как конструкция и настройки двигателей меняются из года в год, то может быть проблематично найти двигатель от авто необходимого вам года, марки и модели, или хотя бы его наиболее близкий аналог.
Новый или восстановленный двигатель?
Заказанный вами новый сменный двигатель может быть усовершенствован, чтобы обеспечить больший рабочий объём или больше мощности в соответствии с вашими пожеланиями. Если же вы не хотите никаких модификаций, то получите точную копию заводского двигателя.
Восстановленный двигатель — это б/у двигатель, который был разобран, проверен и реконструирован до состояния полного восстановления технических характеристик. Детали, подверженные естественному износу, такие как подшипники, кольца, цепи механизмов газораспределения, клапанные пружины, прокладки, пломбы, масляные насосы и т.п., подлежат обязательной замене. Более крупные детали — коленчатые, распределительные валы и поршни — будут заменены в случае необходимости. Конечный продукт должен соответствовать техническим характеристикам оригинального оборудования либо превосходить их.
Еще одно преимущество такого варианта (восстановления двигателя) состоит в том, что это позволит вам повторно использовать полезные детали и продлить их срок службы, вместо того, чтобы сдать их на металлолом. Таким образом, этот подход не только является благоприятным для окружающей среды, но и способствует сохранению и созданию рабочих мест.
Для сравнения, новый двигатель обычно оснащен новыми деталями (блок цилиндров, головки цилиндров, коленчатый вал, шатуны, поршни, распределительный вал, клапаны и т.п.), что, наряду с улучшением характеристик, значительно увеличивает его стоимость по сравнению с восстановленным двигателем.
Как на новые, так и на восстановленные двигатели распространяется гарантия (чем больше гарантийный срок, тем лучше).
Как работает двигатель?
Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.
Виды моторов
Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.
Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:
- цилиндры, в которых располагаются поршни;
- коленчатый вал;
- газораспределительный механизм.
К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.
Основные подходы к классификации силовых установок:
- По количеству цилиндров.
- По расположению цилиндров.
- По виду топлива.
1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.
2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов. Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.
3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.
В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).
А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.
Порядок работы двигателя
Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев. За счет меньшего количества оборотов мощность двухтактников выше, но экономичность хуже. Маленькие по размерам и мощности моторы не требуют сложной системы охлаждения, масло для смазки добавляется непосредственно с топливом в камеру сгорания.
Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:
- впуска;
- сжатия;
- рабочего хода;
- выпуска.
У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).
Теперь подробнее о четырехтактном процессе.
В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.
Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.
В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).
Во втором такте поршень идет вверх, сжимая содержимое и параллельно увеличивая его давление и температуру. В конце такта свеча зажигания создает искру, в результате чего происходит детонация топливной смеси в бензиновом двигателе. В дизельном же свеча не используется, а топливо подается в последний момент такта, которое возгорается за счет высокого давления и температуры воздуха.
В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.
На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы. Далее цикл из четырех тактов повторяется.
Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.
Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.
В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.
Общее устройство двигателя трактора
Категория:
Тракторы
Публикация:
Общее устройство двигателя трактора
Читать далее:
Общее устройство двигателя трактора
Основу поршневого двигателя внутреннего сгорания составляет блок цилиндров, внутри и снаружи которого располагаются детали его механизмов и систем.
Сверху блок цилиндров закрыт головкой, а снизу поддоном.
В передней части укреплен картер распределительных шестерен, а в задней — картер маховика.
Рекламные предложения на основе ваших интересов:
В число механизмов и систем двигателя, а также их основных показателей входят следующие.
Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршня (поршней) во вращательное коленчатого вала. Кроме того, он участвует в преобразовании тепловой энергии в механическую.
Действие механизма состоит в том, что поршень, совершая возвратно-поступательное движение через шатун, вращает коленчатый вал 1 в подшипниках.
При возвратно-поступательном движении поршни занимают различные положения, при которых изменяется объем цилиндра.
Верхняя мертвая точка (в. м.т.) — такое положение поршня в цилиндре, при котором расстояние от дна поршня до оси коленчатого вала наибольшее.
Нижняя мертвая точка (н. м.т.) — положение поршня в цилиндре, при котором расстояние от дна поршня до оси коленчатого вала наименьшее.
Ход поршня S равен перемещению его между мертвыми точками.
Рабочий объем цилиндра Vh — равен объему, освобожденному поршнем, при движении от в. м. т. к н. м. т.
Объем камеры сжатия Ус — объем, образующийся над поршнем, когда он находится в в. м. т.
Рис. 1. Основные части двигателя внутреннего сгорания:
1 — кривошипно-шатунный механизм; 2 — газораспределительный механизм; 3— система питания; 4 — система охлаждения; 5 — вентиляция картера; 6 — уравновешивающий механизм; 7 — смазочная система; 8 — система пуска; 9 — поддон; 10 — блок цилиндров; 11 — головка цилиндров.
Газораспределительный механизм (см. рис. 3) предназначен для сообщения камеры сгорания цилиндра (в строго установленные моменты) с впускным и выпускным каналами двигателя.
Уравновешивающий механизм устанавливают на некоторых двигателях для устранения вредного действия инерционных сил, возникающих при работе криво-шипно-шатунного механизма.
Системы питания и регулирования служат для очистки воздуха и топлива от механических примесей и воды и подачи их в камеру сгорания, а также для обеспечения равномерного вращения коленчатого вала двигателя во время его работы с переменными нагрузками.
Смазочная система обеспечивает очистку и подачу чистого масла к рабочим поверхностям деталей двигателя для уменьшения трения и отвода излишней теплоты от них.
Система охлаждения отводит избыточную теплоту от деталей двигателя и поддерживает необходимый тепловой режим во время его работы.
Система пуска используется для вращения коленчатого вала при пуске двигателя.
Система зажигания применяется у двигателей, работающих на бензине, для воспламенения рабочей смеси. У тракторных двигателей, работающих на дизельном топливе, такая система отсутствует, а топливо самовоспламеняется от высокой температуры, образующейся в камере сгорания на такте сжатия.
Вентиляция картера двигателя. Во время работы двигателя, через неплотности между поршневыми кольцами и цилиндрами, из камер сгорания в картер поступают продукты сгорания, воздух, пары топлива и воды. Эти вещества, попадая в картер и перемещаясь с распыленным маслом, вызывают его ускоренное старение, коррозию деталей двигателя, создают в камере повышенное давление и утечку масла через различные уплотнения двигателя.
Рис. 2. Схема двигателя:
а — поршень в верхней мертвой точке; б — поршень в нижней мертвой точке; 1 — коленчатый вал; 2 — поршень; 3 — шатун; 4 — цилиндр.
Для того чтобы избежать повышения чрезмерного давления, на двигателе устанавливают устройство под названием сапун, при помощи которого картер сообщается с атмосферой, окружающей двигатель; через него и выходят наружу все прорвавшиеся газы из камеры сгорания. Если в картере двигателя после прекращения его работы давление остывшего в нем воздуха окажется ниже атмосферного, то воздух из атмосферы войдет через сапун в картер и устранит вакуум.
Сапуны у разных двигателей делают по-разному: у одних, например, сапун представляет собой трубку А, у основания которой установлена фильтрующая набивка из стальной проволоки, предназначенной для защиты картера от попадания в него пыли, песка и предотвращения выброса из картера масла в атмосферу. У других двигателей сапун Б соединен с крышкой заливного патрубка для заправки маслом.
—
На отечественных тракторах установлены поршневые двигатели внутреннего сгорания. Принцип их работы основан на свойстве нагреваемых газов расширяться.
Ниже приведено назначение механизмов и систем двигателей.
Кривошипно-шатунный механизм воспринимает силу давления газов, нагревшихся при сгорании топливовоздушной смеси, и преобразует возвратно-поступательное движение поршйя во вращательное движение коленчатого вала. Этот механиз двигателя состоит из цилиндра с головкой, поршня с кольцами поршневого пальца, шатуна, коленчатого вала, маховика картера (с поддоном).
Распределительный механизм своевременно впускает в цилиндр топливовоздушную смесь (у карбюраторных двигателей) или воздух (у дизелей) и выпускает из цилиндра отработавшие газы. Механизм образуют распределительный вал, шестерни, клапаны и их пружины, коромысла, штанги и толкатели.
Система питания и регулирования обеспечивает двигатель нужным количеством топливовоздушной смеси определенного состава.
Система охлаждения поддерживает нормальный тепловой режим работающего двигателя.
Система смазки подает масло к трущимся деталям двигателя, которое уменьшает трение и износ.
Система зажигания обеспечивает у карбюраторных двигателей воспламенение в цилиндре рабочей смеси.
Система пуска обеспечивает пуск двигателя.
Если перемещать поршень в цилиндре, коленчатый вал начнет вращаться, и наоборот, если вращать коленчатый вал, поршень будет двигаться вверх и вниз, т. е. возвратно-поступательно.
Крайние положения поршня называют мертвыми точками: в верхней мертвой точке (ВМТ) поршень наиболее удален от оси коленчатого вала, а в нижней (НМТ) максимально приближен к оси коленчатого вала. В мертвых точках скорость поршня равна нулю.
Расстояние, проходимое поршнем от одной мертвой точки до другой, называют ходом S поршня. Ход поршня равен удвоенному радиусу кривошипа коленчатого вала.
Пространство цилиндра над поршнем, находящимся в ВМТ, называют камерой сгорания (Vc), а пространство над поршнем, когда он находится в НМТ, — полным объемом цилиндра (Уд).
Пространство, освобожденное поршнем при перемещении из ВМТ к НМТ, называется рабочим объемом цилиндра (Vh). Это разность между полным объемом цилиндра и объемом камеры сгорания.
Рис. 3. Одноцилиндровый поршневой двигатель:
а — схема устройства; б — основные обозначения;
1 — коленчатый вал; 2 — маховик; 3—картер; цилиндр; 5 — шатун; 6 — поршень; 7 — поршневой палец; 8 — головка цилиндра; 9 — канал для впуска воздуха или горючей смеси; 10 и 15 — клапаны; 11 и 14 — пружины клапанов; 12 и 13 — коромысла; 16 — канал для выпуска отработавших газов; 11 — штанга толкателя; 18 — толкатель; 19 — кулачок; 20 — распределительный вал; 21 и 22 — шестерни привода распределительного вала.
Рекламные предложения:
Читать далее: Рабочие процессы четырехтактного дизеля
Категория: — Тракторы
Главная → Справочник → Статьи → Форум
ДВИГАТЕЛЬ
101 ЧАСТЬ 1: Основы работы с двигателем для чайников
ЗАВИСИМО ЛИ ВЫ, ПРИВЫКАЛИСЬ к острым ощущениям и скорости быстрой езды, , но не понимаете первой вещи о том, что на самом деле происходит под капотом? Хотите узнать больше о том, что происходит, не посещая Auto Shop 101? Вас пугает техника в вашем местном магазине производительности, потому что он всегда пытается продать вам мигающую жидкость, подшипники глушителя и другие детали, о существовании которых вы даже не уверены? Если вы ответили «да» на любой из этих вопросов, вам следует начать именно с этого.Мы расскажем вам все о шумном куске металла, прикрепленного к вашим колесам, и немного о том, что заставляет его двигаться вперед.
Текст Майка Кодзимы и Арнольда Эухенио // Фотографии и иллюстрации сотрудников DSPORT
ДСПОРТ Выпуск № 148Знание — сила
Чтобы полностью понять, как работают новейшие скоростные детали, вам сначала нужно понять, как работает двигатель. Большинство известных нам автомобилей приводится в действие так называемым 4-тактным двигателем.4-тактный — это четыре такта в энергетическом цикле; такт впуска, такт сжатия, рабочий такт и такт выпуска. Мы рассмотрим их более подробно в разделе «ДВИГАТЕЛЬ 101, ЧАСТЬ 2». На данный момент вам нужно знать, что 4-тактный цикл объясняет, как смесь бензина и воздуха может быть воспламенена, сожжена и плавно преобразована в полезную мощность, чтобы сбросить вас на четверть мили, по трассе или просто доставить вас к Работа.
Двигатель состоит из нескольких основных компонентов; блок, кривошип, шатуны, поршни, головку (или головки), клапаны, кулачки, впускную и выпускную системы и систему зажигания.Эти части работают вместе, чтобы использовать химическую энергию бензина, преобразовывая множество мелких и быстрых процессов сгорания в вращательное движение, которое в конечном итоге раскручивает ваши колеса и приводит в движение ваш автомобиль.
Block Hole, Сын
Блок — это основная часть двигателя, которая содержит возвратно-поступательные компоненты, которые используют энергию бензина. Если вы заглянете под капот, то увидите, что в центре моторного отсека находится большой кусок металла, к которому, кажется, прикреплена целая куча другого металла, проводов и трубок.
Блок имеет круглые отверстия, в которых поршни скользят вверх и вниз. Каждое отверстие называется «расточкой цилиндра». Поскольку отверстие цилиндра или «цилиндр» имеет один поршень, общее количество цилиндров в блоке равно количеству поршней; четырехцилиндровый двигатель имеет четыре отверстия и четыре поршня, шестицилиндровый двигатель будет иметь шесть отверстий и шесть поршней и так далее. Головка блока цилиндров называется головкой, потому что она находится на верхней части блока, закрывая цилиндры и поршни. Некоторые двигатели имеют цилиндры, расположенные горизонтально напротив друг друга или имеющие V-образную конфигурацию.В результате есть две головки, закрывающие участки на блоке с открытыми поршнями. На данный момент нам просто нужно знать, что головка цилиндра, или, для краткости, головка просто сидит на верхней части блока и закрывает каждый из цилиндров, в которых есть поршни.
Блок также имеет несколько залитых в него проходов для жидкости. Некоторые из них используются для направления охлаждающей жидкости, называемой «охлаждающей жидкостью», вокруг цилиндров для поддержания температуры двигателя и предотвращения перегрева. Другие каналы направляют моторное масло к движущимся частям для смазки и защиты от трения, снижающего мощность.Поскольку блок должен выдерживать огромное давление в цилиндре, производители для прочности отливают его из железа. Другие производители отливают легкие алюминиевые блоки для снижения веса. В алюминиевых блоках используется гильза цилиндра из стального сплава или отверстия со специальным покрытием, чтобы они имели более твердую поверхность и обеспечивали увеличенный срок службы.
Ротационная станция
Поршни перемещаются вверх и вниз в цилиндрах блока, потому что в цилиндре воспламеняется смесь топлива и воздуха.Последующее сгорание быстро расширяется и толкает поршень вниз по длине отверстия цилиндра, от головки цилиндра, и с большим давлением. Эта мощность, производимая в одном цилиндре, умножается, потому что события сгорания повторяются в каждом из цилиндров. Это основная предпосылка того, как работает двигатель.
На каждом поршне установлены металлические кольца с открытым концом, которые называются просто «кольцами». Это тонкие, круглые, упругие металлические детали, которые входят в канавки вокруг контактных площадок колец в верхней части поршней.Кольца действуют как уплотнение, которое удерживает давление в цилиндре от сгоревшего воздуха и топливной смеси между головкой и верхней частью цилиндра, гарантируя, что давление толкает поршень вниз, а не проталкивает его мимо. Поршневые кольца также соскребают масло со стенок цилиндра, чтобы все масло в вашем двигателе не сгорело во время сгорания. Существует также гофрированное кольцо, известное как масляное кольцо, которое позволяет маслу смазывать стенки цилиндра, чтобы поршень, кольца и цилиндры не изнашивались преждевременно.Если бы у ваших поршней не было колец или колец, которые не очень хорошо уплотнялись, сгорание не смогло бы толкнуть поршень вниз с большой силой, и ваша машина не выдала бы никакой мощности, если бы она вообще работала. Кроме того, если бы кольца не могли соскрести масло со стенок цилиндра, в вашем двигателе в конечном итоге закончилось бы масло, оно заклинило и образовало бы огромное количество неприятного черного дыма от горящего масла.
Поршни и штоки
После того, как блок очищен, обмерен и обработан, можно установить коленчатый вал, и набор поршней и шатунов заполнит отверстия.Поршни прикреплены к металлической детали, называемой шатуном. Задача шатуна — передавать силу давления, толкающего поршень по отверстию цилиндра, на коленчатый вал или «кривошип». Обеспечивая связь между поршнем и кривошипом, понятно, как шатуны получили свое название.
Шатун соединен с поршнем трубкой, называемой пальцем. Штифт для запястья проходит через отверстие в поршне и отверстие на меньшей стороне шатуна; эта область называется малым концом шатуна.Большой конец штока — это область, которая соединяется с кривошипом. Большой конец стержня имеет съемную секцию, называемую торцевой крышкой или крышкой, которая позволяет прикрепить его к кривошипу.
Поверхность, на которой шатун поворачивается вокруг пальца на запястье, называется шейкой пальца на запястье. Область на кривошипе, где шатун соединяется и вращается вокруг, называется шейкой шатуна коленчатого вала. Цапфы коленчатого вала больше, чем шейки наручных пальцев, потому что шейка кривошипа постоянно вращается с высокой скоростью, в отличие от простого возвратно-поступательного качающегося движения на конце шатуна на запястье.Это высокоскоростное вращение требует большей площади поверхности, чтобы предотвратить повреждение штока и кривошипа трением. Большой конец штока плавно вращается на шейке кривошипа на масляной пленке под давлением, которая покрывает подшипник скольжения из мягкого металла. На большинстве двигателей на малом конце штока имеется бронзовая втулка для пальца кисти, который питается за счет смазки разбрызгиванием. На некоторых двигателях на запястье подается масло, соскребаемое кольцами со стенок цилиндра, через канал из канавки для масляного кольца, называемой масленкой для пальца.Это редко, но бывают случаи, когда на штифт запястья подается масло под давлением из подшипника штока из отверстия, просверленного по всей длине штока от большого конца штока.
В этом блоке Honda серии B вместо отверстий основного цилиндра используются гильзы из ковкого чугуна для увеличения прочности и соответствия условиям применения с высокой мощностью.Кривошип Янкерс
Рукоятка двигателя очень похожа на кривошип велосипеда. Сила вращения педалей вверх и вниз точно такая же, как сила движения поршней вверх и вниз по каналу цилиндра.В двигателе автомобиля вместо энергии ваших ног, нажимающих на педали для создания силы, энергия сгорания в цилиндре и давление, действующее на поршень, создают энергию. Если вы посмотрите на изображение, вы увидите, что кривошипная рукоятка имеет смещение, точно так же, как и рукоятка велосипеда, поэтому штоки и поршни выполняют ту же функцию, что и ваши ноги. На велосипеде, когда вы крутите педали вниз, ваш велосипед идет вперед, а смещенный бросок идет вверх с другой стороны. Точно так же, когда один поршень толкается вниз в результате сгорания воздуха / топлива, он поворачивает кривошип и толкает другой поршень вверх, готовый к следующему сгоранию.Это то, что заставляет вашу машину двигаться вперед. Коленчатый вал прикреплен к блоку металлическими кусками, называемыми главными крышками. Кривошип фактически зажат на блоке, а не прикреплен, с помощью дополнительных подшипников скольжения (называемых коренными подшипниками), которые помогают смазывать шейки кривошипа. В главных шейках также есть отверстия, которые позволяют маслу под давлением из масляной системы двигателя смазывать шейку и подшипники.
Клапаны: вход и выходВ головке блока цилиндров также находятся впускной и выпускной клапаны.Впускные и выпускные клапаны представляют собой металлические детали, напоминающие тройники для гольфа. Клапаны действуют как дверные проемы для входящего воздуха и топлива и выходящих выхлопных газов соответственно. Во время 4-тактного процесса впускные клапаны открываются, пропуская топливно-воздушную смесь в камеру сгорания, затем закрываются, когда поршень поднимается для сжатия смеси. После того, как смесь воспламенилась и сгорела, поршень вдавливается в его отверстие. На обратном пути поршня вверх выпускные клапаны открываются, чтобы выпустить сгоревшие газы, а затем закрываются, готовясь к следующему витку цикла двигателя.
Для открытия клапанов в двигателе есть металлические стержни, называемые распределительными валами, которые имеют специальные выступы (выступы), используемые для открытия клапанов. Кулачки вращаются с помощью ремня или цепи, которая соединяет вращающийся кривошип с кулачковыми шестернями; это то, что называется ремнем ГРМ или цепью ГРМ. Некоторые кулачки распределительного вала нажимают прямо на клапаны, чтобы открыть их, но большинство двигателей уличных автомобилей работают косвенно через коромысло. Коромысло — это, по сути, миниатюрные качели; один конец коромысла толкается вверх выступом распределительного вала, что заставляет другой конец надавить на наконечник клапана, чтобы открыть клапан.Пружины клапанов — это буквально пружины, прикрепленные к клапанам, которые помогают удерживать их закрытыми, когда они должны быть закрыты.
Голова HonchoКак упоминалось ранее, головка блока цилиндров представляет собой большой кусок металла, который прикрепляется к верхней части блока и закрывает цилиндры, в которых происходит сгорание. Головка, обычно изготовленная из алюминия, также содержит свечи зажигания, клапаны и остальную часть клапанного механизма (пружины клапанов, фиксаторы, распределительные валы).
Головка (головки) должны быть затянуты вниз к блоку, чтобы сдерживать быстрое расширение воспламененной топливно-воздушной смеси без деформации, отделения или полного сдувания верхней части блока.Когда головка прижимается к блоку, она создает область наверху каждого цилиндра, где энергия сгорания высвобождается и фокусируется на поршне. Эта зона называется камерой сгорания. Если вы посмотрите на сторону головки цилиндра, которая крепится болтами к блоку, вы увидите камеры сгорания как пространства в головке, которые совпадают с вершинами отверстий цилиндров. В каждой камере видны кончик свечи зажигания и плоские части клапанов. Именно в этой камере сгорания свеча зажигания создает электрическую дугу, которая воспламеняет топливно-воздушную смесь.
Головка также имеет встроенные в нее проходы, которые позволяют охлаждающей жидкости или маслу (в зависимости от типа прохода) циркулировать через головку, помогая ей сохранять охлаждение и смазку. Между головкой и блоком вы найдете кусок металла или композитного материала, в котором есть области, вырезанные для каждого отверстия и каждого прохода, идущего от блока к головке. Этот зажатый кусок называется прокладкой головки блока цилиндров.
Сумасшедший поездБольшинство современных двигателей имеют клапанный механизм с двумя верхними распредвалами (DOHC), что означает, что впускные и выпускные клапаны имеют собственные распредвалы.Преимущество наличия отдельных распределительных валов заключается в том, что каждый кулачок может быть размещен очень близко к клапану, что позволяет кулачкам работать либо непосредственно на клапанах, либо через очень маленький коромысел. Это снижает инерционную массу клапанного механизма до минимума, что еще больше способствует работе на высоких оборотах. Почти во всех современных высокопроизводительных двигателях используются клапанные механизмы DOHC, чтобы максимально увеличить доступную мощность при высоких оборотах. Mitsubishi 4B11, установленный в EVO X, и Mazda MZR 2.3 DISI, установленный в MAZDASPEED3, являются яркими примерами современных высокопроизводительных двигателей DOHC.
Как работают автомобильные двигатели | HowStuffWorks
Используя всю эту информацию, вы можете начать понимать, что существует множество различных способов улучшить работу движка. Производители автомобилей постоянно играют со всеми перечисленными ниже параметрами, чтобы сделать двигатель более мощным и / или более экономичным.
Увеличьте рабочий объем: Чем больше рабочий объем, тем больше мощность, потому что вы можете сжигать больше газа за каждый оборот двигателя. Вы можете увеличить рабочий объем, увеличив цилиндры или добавив больше цилиндров.Двенадцать цилиндров кажутся практическим пределом.
Увеличьте степень сжатия: Чем выше степень сжатия, тем больше мощность. Однако чем сильнее вы сжимаете топливно-воздушную смесь, тем больше вероятность самопроизвольного воспламенения (до того, как свеча зажигания воспламенит его). Бензины с более высоким октановым числом предотвращают такое преждевременное сгорание. Вот почему высокопроизводительным автомобилям обычно нужен высокооктановый бензин — их двигатели используют более высокую степень сжатия, чтобы получить больше мощности.
Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше мощности от цилиндра (точно так же, как если бы вы увеличили размер цилиндра). цилиндр) без увеличения количества топлива, необходимого для сгорания. Турбокомпрессоры и нагнетатели сжимают входящий воздух, чтобы эффективно втиснуть больше воздуха в цилиндр.
Охлаждение входящего воздуха: Сжатие воздуха повышает его температуру. Однако вы хотели бы иметь как можно более холодный воздух в цилиндре, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании.Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его перед попаданием в цилиндр.
Позвольте воздуху поступать легче: Когда поршень движется вниз во время такта впуска, сопротивление воздуха может лишить двигатель мощности. Сопротивление воздуха можно значительно уменьшить, поместив по два впускных клапана в каждый цилиндр. В некоторых новых автомобилях также используются полированные впускные коллекторы для устранения сопротивления воздуха.Большие воздушные фильтры также могут улучшить воздушный поток.
Упростите выход выхлопных газов: Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности. Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан к каждому цилиндру. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что улучшает рабочие характеристики. Когда вы слышите рекламу автомобиля, в которой говорится, что автомобиль имеет четыре цилиндра и 16 клапанов, в рекламе говорится, что двигатель имеет четыре клапана на цилиндр.
Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и глушители со свободным потоком для устранения противодавления в выхлопной системе. Когда вы слышите, что у автомобиля «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.
Сделайте все легче: Легкие детали улучшают работу двигателя.Каждый раз, когда поршень меняет направление, он использует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии он потребляет. Это приводит к повышению топливной экономичности и производительности.
Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо в каждый цилиндр. Это улучшает характеристики и экономию топлива.
В следующих разделах мы ответим на некоторые распространенные вопросы читателей, связанные с двигателем.
Как работает автомобильный двигатель
Я никогда не был автолюбителем. Мне просто не было никакого интереса копаться под капотом, чтобы понять, как работает моя машина. За исключением замены воздушных фильтров или замены масла время от времени, если у меня когда-либо возникала проблема с моей машиной, я просто отнес ее к механику, и когда он вышел, чтобы объяснить, что случилось, я вежливо кивнул и притворился. как будто я знал, о чем он говорил.
Но в последнее время мне не терпелось изучить основы работы автомобилей.Я не планирую превращаться в обезьяну-смазку, но я хочу иметь общее представление о том, как все в моей машине действительно работает. Как минимум, эти знания позволят мне понять, о чем механик говорит в следующий раз, когда я сяду в машину. Кроме того, мне кажется, что мужчина должен уметь понимать основы технологии, которую он использует. ежедневно. Что касается этого веб-сайта, я знаю, как работают кодирование и SEO; пора мне изучить более конкретные вещи в моем мире, например, что находится под капотом моей машины.
Я полагаю, что есть и другие взрослые мужчины, похожие на меня — люди, которые не занимаются машинами, но им немного интересно, как работают их машины. Так что я планирую поделиться тем, что я узнал в ходе собственного исследования, и время от времени возьмусь за серию статей, которые мы назовем Gearhead 101. Цель состоит в том, чтобы объяснить самые основы того, как работают различные детали в автомобиле, и предоставить ресурсы о том, где вы можете узнайте больше самостоятельно.
Итак, без лишних слов, мы начнем наш первый урок Gearhead 101 с объяснения всех тонкостей сердца автомобиля: двигателя внутреннего сгорания.
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания называется «двигателем внутреннего сгорания», потому что топливо и воздух сгорают внутри двигателя , создавая энергию для движения поршней, которые, в свою очередь, приводят в движение автомобиль (мы подробно покажем вам, как это происходит ниже. ).
Сравните это с двигателем внешнего сгорания, где топливо сгорает за пределами двигателя, и энергия, создаваемая этим сгоранием, является его движущей силой. Паровые двигатели — лучший тому пример.Уголь сжигается за пределами двигателя, который нагревает воду для производства пара, который затем приводит в действие двигатель.
Большинство людей думает, что в мире механизированного движения паровые двигатели внешнего сгорания появились раньше, чем двигатели внутреннего сгорания. Реальность такова, что двигатель внутреннего сгорания был первым. (Да, древние греки возились с паровыми двигателями, но из их экспериментов ничего практического не вышло.)
В 16 -х годах века изобретатели создали двигатель внутреннего сгорания, используя порох в качестве топлива для движения поршней.На самом деле, их двигал не порох. Принцип работы этого раннего двигателя внутреннего сгорания заключался в том, что вы вставляли поршень до верхней части цилиндра, а затем зажигали порох под поршнем. После взрыва образовался вакуум, который засосал поршень в цилиндр. Поскольку этот двигатель полагался на изменения давления воздуха для перемещения поршня, они назвали его атмосферным двигателем. Это было не очень эффективно. К 17 90–140-м годам 90–141 века паровые двигатели были многообещающими, поэтому от двигателя внутреннего сгорания отказались.
Только в 1860 году был изобретен надежный, работающий двигатель внутреннего сгорания. Бельгийский парень по имени Жан Жозеф Этьен Ленуар запатентовал двигатель, который впрыскивал природный газ в цилиндр, который впоследствии воспламенялся постоянным пламенем рядом с цилиндром. Он работал аналогично пороховому атмосферному двигателю, но не слишком эффективно.
Основываясь на этой работе, в 1864 году два немецких инженера по имени Николаус Август Отто и Ойген Ланген основали компанию, которая производила двигатели, аналогичные модели Ленуара.Отто отказался от управления компанией и начал работать над конструкцией двигателя, над которым он играл с 1861 года. Его конструкция привела к созданию того, что мы теперь знаем как четырехтактный двигатель, и базовая конструкция до сих пор используется в автомобилях.
Анатомия автомобильного двигателя
Двигатель V-6
Я покажу вам, как здесь работает четырехтактный двигатель, но прежде чем я это сделаю, я подумал, что было бы полезно пройтись по различным частям двигателя, чтобы вы имели представление о том, что делает, что в четырехтактный процесс.В этих объяснениях используется терминология, основанная на других терминах из списка, поэтому не беспокойтесь, если вы сначала запутаетесь. Прочтите все, чтобы получить общее представление, а затем прочтите еще раз, чтобы иметь общее представление о каждой части, о которой идет речь.
Блок цилиндров (блок цилиндров)
Блок цилиндров — это основа двигателя. Большинство блоков цилиндров отлиты из алюминиевого сплава, но некоторые производители по-прежнему используют железо.Блок двигателя также называют блоком цилиндров из-за большого отверстия или трубок, называемых цилиндрами, которые залиты в интегрированную конструкцию. В цилиндре поршни двигателя скользят вверх и вниз. Чем больше цилиндров в двигателе, тем он мощнее. Помимо цилиндров, в блок встроены другие каналы и каналы, которые позволяют маслу и охлаждающей жидкости течь к различным частям двигателя.
Почему двигатель называется «V6» или «V8»?
Отличный вопрос! Это связано с формой и количеством цилиндров в двигателе.В четырехцилиндровых двигателях цилиндры обычно устанавливаются по прямой линии над коленчатым валом. Эта компоновка двигателя называется рядным двигателем .
Еще одна четырехцилиндровая компоновка называется «плоская четверка». Здесь цилиндры расположены горизонтально двумя рядами, коленчатый вал идет посередине.
Когда двигатель имеет более четырех цилиндров, они делятся на два ряда цилиндров — по три (или более) цилиндра на каждую сторону. Разделение цилиндров на два ряда делает двигатель похожим на букву V.”V-образный двигатель с шестью цилиндрами = двигатель V6. V-образный двигатель с восемью цилиндрами = V8 — по четыре в каждом ряду цилиндров.
Камера сгорания
В камере сгорания двигателя происходит волшебство. Здесь топливо, воздух, давление и электричество объединяются, чтобы создать небольшой взрыв, который перемещает поршни автомобиля вверх и вниз, создавая таким образом силу для движения автомобиля. Камера сгорания состоит из цилиндра, поршня и головки блока цилиндров.Цилиндр действует как стенка камеры сгорания, верхняя часть поршня действует как дно камеры сгорания, а головка цилиндра служит потолком камеры сгорания.
Головка цилиндра
Головка блока цилиндров представляет собой кусок металла, который находится над цилиндрами двигателя. В головке блока цилиндров отлиты небольшие закругленные углубления для создания пространства в верхней части камеры сгорания. Прокладка головки герметично закрывает стык между головкой блока цилиндров и блоком цилиндров.Впускные и выпускные клапаны, свечи зажигания и топливные форсунки (эти детали будут объяснены позже) также установлены на головке блока цилиндров.
Поршень
Поршни перемещаются вверх и вниз по цилиндру. Они похожи на перевернутые суповые банки. Когда топливо воспламеняется в камере сгорания, сила толкает поршень вниз, который, в свою очередь, перемещает коленчатый вал (см. Ниже). Поршень прикреплен к коленчатому валу через шатун, он же шатун. Он соединяется с шатуном через поршневой палец, а шатун соединяется с коленчатым валом через шатунный подшипник.
В верхней части поршня вы найдете три или четыре канавки, отлитые в металле. Внутри канавок вставлены поршневые кольца . Поршневые кольца — это часть, которая фактически касается стенок цилиндра. Они сделаны из железа и бывают двух видов: компрессионные кольца и масляные кольца. Компрессионные кольца — это верхние кольца, они прижимаются наружу к стенкам цилиндра, обеспечивая прочное уплотнение камеры сгорания. Масляное кольцо — это нижнее кольцо на поршне, которое предотвращает просачивание масла из картера в камеру сгорания.Он также вытирает излишки масла со стенок цилиндров и обратно в картер.
Коленчатый вал
Коленчатый вал — это то, что преобразует движение поршней вверх и вниз во вращательное движение, которое позволяет автомобилю двигаться. Коленчатый вал обычно входит по длине в блок цилиндров рядом с нижней частью. Он простирается от одного конца блока двигателя до другого. В передней части двигателя коленчатый вал соединяется с резиновыми ремнями, которые соединяются с распределительным валом и передают мощность другим частям автомобиля; в задней части двигателя распределительный вал соединяется с трансмиссией, которая передает мощность на колеса.На каждом конце коленчатого вала вы найдете сальники или «уплотнительные кольца», которые предотвращают утечку масла из двигателя.
Коленчатый вал находится в так называемом картере двигателя. Картер находится под блоком цилиндров. Картер защищает коленчатый вал и шатуны от посторонних предметов. Область в нижней части картера называется масляным поддоном, и именно здесь хранится масло вашего двигателя. Внутри масляного поддона вы найдете масляный насос, который прокачивает масло через фильтр, а затем это масло разбрызгивается на коленчатый вал, шатунные подшипники и стенки цилиндра, чтобы обеспечить смазку для движения поршня.Масло в конечном итоге стекает обратно в масляный поддон, чтобы снова начать процесс.
Вдоль коленчатого вала расположены уравновешивающие выступы, которые действуют как противовесы, уравновешивая коленчатый вал и предотвращая повреждение двигателя из-за колебаний, возникающих при вращении коленчатого вала.
Также вдоль коленчатого вала находятся коренные подшипники. Коренные подшипники обеспечивают гладкую поверхность между коленчатым валом и блоком цилиндров для вращения коленчатого вала.
Распредвал
Распределительный вал — это мозг двигателя.Он работает вместе с коленчатым валом через ремень ГРМ, чтобы впускные и выпускные клапаны открывались и закрывались в нужное время для оптимальной работы двигателя. Распределительный вал использует овальные выступы, которые проходят поперек него, чтобы контролировать время открытия и закрытия клапанов.
Большинство распределительных валов проходят через верхнюю часть блока цилиндров непосредственно над коленчатым валом. В рядных двигателях один распределительный вал управляет как впускным, так и выпускным клапанами. На V-образных двигателях используются два отдельных распредвала.Один управляет клапанами на одной стороне V, а другой — клапанами на противоположной стороне. Некоторые V-образные двигатели (например, на нашей иллюстрации) даже имеют два распределительных вала на ряд цилиндров. Один распределительный вал управляет одной стороной клапанов, а другой распределительный вал — другой стороной.
Система синхронизации
Как упоминалось выше, распределительный вал и коленчатый вал координируют свое движение через ремень или цепь ГРМ. Цепь газораспределительного механизма удерживает коленчатый вал и распределительный вал в одном и том же положении относительно друг друга все время во время работы двигателя.Если распредвал и коленчатый вал по какой-либо причине рассинхронизируются (например, цепь ГРМ пропускает зубчатый венец), двигатель не будет работать.
Клапанный
Клапанный механизм — это механическая система, которая установлена на головке блока цилиндров и управляет работой клапанов. Клапанный механизм состоит из клапанов, коромысел, толкателей и подъемников.
Клапаны
Клапаны бывают двух типов: впускные и выпускные.Впускные клапаны подают смесь воздуха и топлива в камеру сгорания, чтобы создать сгорание для питания двигателя. Выпускные клапаны позволяют выхлопным газам, образовавшимся после сгорания, выходить из камеры сгорания.
Автомобили обычно имеют один впускной клапан и один выпускной клапан на цилиндр. Большинство высокопроизводительных автомобилей (Ягуары, Мазерати и др.) Имеют четыре клапана на цилиндр (два впускных, два выпускных). Хотя Honda не считается «высокопроизводительным» брендом, она также использует в своих автомобилях четыре клапана на цилиндр.Есть даже двигатели с тремя клапанами на цилиндр — двумя впускными клапанами, одним выпускным клапаном. Многоклапанные системы позволяют автомобилю лучше «дышать», что, в свою очередь, улучшает характеристики двигателя.
Коромысла
Коромысла — это маленькие рычаги, которые касаются кулачков или кулачков распределительного вала. Когда лепесток поднимает один конец коромысла, другой конец коромысла давит на шток клапана, открывая клапан, чтобы впустить воздух в камеру сгорания или выпустить выхлоп.Это работает как качели.
Толкатели / подъемники
Иногда кулачки распредвала непосредственно касаются коромысла (как вы видите на двигателях с верхним распределительным валом), открывая и закрывая клапан. В двигателях с верхним расположением клапана кулачки распределительного вала не контактируют напрямую с коромыслами, поэтому используются толкатели или толкатели.
Топливные форсунки
Чтобы создать сгорание, необходимое для движения поршней, нам нужно топливо в цилиндрах.До 1980-х годов автомобили использовали карбюраторы для подачи топлива в камеру сгорания. Сегодня все автомобили используют одну из трех систем впрыска топлива: прямой впрыск топлива, впрыск топлива через отверстия или впрыск топлива через корпус дроссельной заслонки.
При непосредственном впрыске топлива каждый цилиндр имеет собственную форсунку, которая впрыскивает топливо прямо в камеру сгорания в самый подходящий момент для сгорания.
При распределенном впрыске топлива вместо того, чтобы распылять топливо непосредственно в цилиндр, оно распыляется во впускной коллектор сразу за клапаном.Когда клапан открывается, воздух и топливо попадают в камеру сгорания.
Системы впрыска топлива в корпусе дроссельной заслонки работают как карбюраторы, но без карбюратора. Вместо того, чтобы у каждого цилиндра была собственная топливная форсунка, к корпусу дроссельной заслонки идет только одна топливная форсунка. Топливо смешивается с воздухом в корпусе дроссельной заслонки, а затем распределяется по цилиндрам через впускные клапаны.
Свеча зажигания
Над каждым цилиндром находится свеча зажигания. Когда он загорается, он воспламеняет сжатое топливо и воздух, вызывая мини-взрыв, который толкает поршень вниз.
Четырехтактный цикл
Итак, теперь, когда мы знаем все основные части двигателя, давайте посмотрим на движение, которое на самом деле заставляет нашу машину двигаться: четырехтактный цикл.
На приведенном выше рисунке показан четырехтактный цикл в одном цилиндре. Это происходит и в других цилиндрах. Повторите этот цикл тысячу раз в минуту, и вы получите движущуюся машину.
Ну вот. Основы работы автомобильного двигателя. Загляните сегодня под капот вашего автомобиля и посмотрите, сможете ли вы указать на детали, которые мы обсуждали.Если вам нужна дополнительная информация о том, как устроен автомобиль, посмотрите книгу How Cars Work. Это очень помогло мне в моих исследованиях. Автор отлично справляется с переводом вещей на язык, понятный даже новичку.
5 Основные части автомобильного двигателя (и их функции)
(Обновлено 13 января 2021 г.)
Проверяя масло, задумывались ли вы, что на самом деле находится под крышкой двигателя? Что делают эти части? Как на самом деле работает двигатель?
Под этой красивой (в некоторых случаях) крышкой двигателя скрывается замечательный образец инженерной мысли.Современный автомобильный двигатель способен на чудеса.
Давайте отдернем занавес и взглянем на некоторые из наиболее распространенных деталей, которые находятся в моторном отсеке современных автомобилей.
Топ 5 важных частей двигателя автомобиля
1) Блок двигателя
Блок двигателя — это основа двигателя автомобиля. Он представляет собой корпус, в котором находятся поршни, коленчатый вал, а иногда и распределительный вал. Мало того, что блок-хаус двигателя, он также содержит множество обработанных поверхностей.
Отверстия, которые обрабатываются в блоке, называются цилиндрами, и двигатель может содержать от 4 до 16 цилиндров в зависимости от размера. Большинство автомобилей на дорогах сегодня имеют четыре, шесть или восемь цилиндров.
Блок двигателя можно настроить множеством способов. Как вы понимаете, рядный двигатель имеет цилиндры, расположенные в линию. V-образный двигатель имеет V-образную конфигурацию цилиндров, аналогичную букве, обозначающей его название (например, V8).
Другие конфигурации двигателей включают в себя: прямой или рядный, плоский, оппозитный, W и даже двигатель Ванкеля (роторный), ставший известным Mazda.
Связано: симптомы треснувшего блока цилиндров по сравнению с прокладкой наддува головки
2) Поршни
Поршни — это то, что передает энергию, которая создается во время цикла сгорания, и передает ее коленчатому валу. Проще говоря, эта передача энергии — это то, что эффективно приводит в движение наши транспортные средства.
Поршни содержат поршневые кольца, которые обеспечивают надлежащее уплотнение, а также контроль масла. Поршни на многих современных транспортных средствах также имеют покрытие из материала, предотвращающего трение, что позволяет поршням служить дольше.
Эти поршни перемещаются вверх и вниз в цилиндре дважды за каждый оборот коленчатого вала. Это означает, что двигатель вращается со скоростью 2500 об / мин, поршни перемещаются вверх и вниз 5000 раз в минуту.
3) Коленчатый вал
Коленчатый вал движется в нижней части блока цилиндров и входит в так называемые шейки коленчатого вала. Коленчатый вал — это тщательно обработанный и сбалансированный компонент, который соединен с поршнями через так называемый шатун.
Коленчатый вал воспринимает движение поршня вверх и вниз и преобразует его во вращательное движение или возвратно-поступательное движение. Коленчатый вал вращается с частотой вращения двигателя.
4) Распределительный вал
В зависимости от исполнения двигателя распредвал может располагаться либо в блоке, либо в головках цилиндров. Когда распределительный вал расположен в блоке цилиндров, он известен как двигатель с кулачком в блоке, однако в большинстве современных двигателей распределительный вал расположен в головках цилиндров.
Эти современные двигатели известны как DOHC (двойной верхний распределительный вал) или SOHC (одинарный верхний распределительный вал).Основная задача распределительного вала — принимать вращательное движение двигателя и преобразовывать его в движение вверх и вниз.
Это движение вверх и вниз контролирует движение подъемников, которые, в свою очередь, перемещают толкатели, коромысла и клапаны. Распределительный вал поддерживается серией подшипников, смазываемых маслом, чтобы продлить срок службы двигателя.
Связано: Причины тикающего шума в вашем двигателе
5) Головка цилиндра
Хотя вышеупомянутые компоненты могут считаться тяжелыми подъемниками в автомобильном двигателе, головка блока цилиндров намного точнее.Головка блока цилиндров содержит множество элементов, включая клапанные пружины, клапаны, толкатели, толкатели, коромысла, а иногда даже распределительные валы.
Головка блока цилиндров также управляет каналами, которые позволяют потоку всасываемого воздуха в цилиндры во время такта впуска, а также выпускными каналами, которые позволяют удалять выхлопные газы во время такта выпуска.
Головка блока цилиндров прикреплена к двигателю с помощью так называемых болтов головки блока цилиндров, область между ними герметизирована прокладкой головки блока цилиндров.Прокладки головки блока цилиндров могут быть частым источником проблем с двигателем.
См. Также: История прокладки головки блока цилиндров Subaru Выпуск
Заключение
Вышеупомянутые компоненты являются основными компонентами автомобильного двигателя. В автомобильном двигателе также есть много других деталей, шлангов, проводов и креплений, которые скрепляют все вместе. Подшипники и масло во всем двигателе предотвращают преждевременный износ, а ремень или цепь ГРМ обеспечивают совместную работу всех компонентов в нужное время.
Хотя современный автомобильный двигатель может показаться устрашающим, надеюсь, теперь вы можете получить немного больше информации о том, как все эти компоненты работают вместе в так называемом современном автомобильном двигателе.
Компоненты нижней части двигателя — узнайте детали внутри вашего двигателя
Компоненты нижней части двигателя — узнайте детали внутри вашего двигателя Двигатель в сборе, безусловно, является наиболее важной частью всех компонентов нижней части двигателя. Но, двигатель — это не что-то одно. Следовательно, он состоит из целого списка компонентов нижней части двигателя. Следовательно, все эти нижние компоненты двигателя должны правильно работать вместе, чтобы сформировать исправный двигатель.Итак, было проведено множество исследований по улучшению характеристик автомобильных двигателей за счет улучшения нижних компонентов двигателя.
Компоненты нижней части двигателя — узнайте детали внутри вашего двигателяКроме того, не все двигатели одинаковы или даже содержат одинаковые нижние компоненты двигателя. Следовательно, большая часть этого зависит от года выпуска, марки, модели и объема двигателя с различными опциями.
Итак, вот список наиболее распространенных нижних компонентов двигателя.Кроме того, компоненты двигателя обычно группируются в разные категории. Каждая из этих категорий также состоит из собственного списка компонентов.
Некоторые из общих имен для этих групп категорий:- Нижний конец двигателя
- Верхняя часть двигателя
- Передняя часть
- Масляный поддон
- Крышка клапана
- Передняя крышка или крышка привода ГРМ
- Впускной и выпускной коллекторы
- Также список отверстий внешних деталей
- Итак, короткий блок включает в себя блок цилиндров со всеми установленными его внутренними частями.Поршни, шатуны, коленчатый вал и подшипники будут в блоке.
- Блок цилиндров со снятыми всеми деталями. В результате в блоке не было бы поршней, шатунов, коленчатого вала или других деталей.
- Плоская обработанная поверхность головки блока цилиндров.
- Обработка больших отверстий в блоке цилиндров. Следовательно, одно отверстие на цилиндр.Цельный цилиндр является частью блока цилиндров.
- Другой способ сделать цилиндр в двигателе. Иногда втулки используются при ремонте блоков. Итак, существует два основных типа гильз цилиндров: сухие гильзы и мокрые гильзы.
- В блоке цилиндров имеется несколько отверстий и отверстий. Некоторые из них включают отверстия подъемника, отверстия кулачка, основные отверстия, масляные галереи и водяные рубашки.
- Крышки коренных подшипников прикручены к нижней части блока цилиндров. Следовательно, формируя половину главного канала ствола. Большие основные болты крышки ввинчиваются в отверстия в блоке, чтобы прикрепить крышки к блоку.
- Коренные подшипники вставляются с защелкиванием в блок цилиндров и главные крышки, чтобы обеспечить рабочую поверхность для коренных шеек коленчатого вала.
- Итак, коленчатый вал преобразует возвратно-поступательное движение во вращательное движение.Коленчатый вал входит в основную расточку блока. Коленчатый вал имеет масляные каналы, противовесы и фланец коленчатого вала. Иногда с направляющим подшипником в центре для поддержки первичного вала механической коробки передач.
- Прецизионно обработанные и полированные поверхности, которые опираются на коренные подшипники.
- Прецизионно обработанные и полированные поверхности, которые перемещаются на подшипниках штока.
- Маховик — один из важнейших компонентов двигателя. Это большое и тяжелое металлическое колесо. Следовательно, маховик прикреплен к задней части коленчатого вала, чтобы сглаживать импульсы зажигания. Он обеспечивает инерцию для плавного вращения коленчатого вала в те периоды, когда не подается питание. Он также служит основой для коронной шестерни стартера и в механической коробке передач для узла сцепления.
- Шатун — это часть двигателя, которая соединяет поршень с коленчатым валом.Шатун вместе с кривошипом преобразует возвратно-поступательное движение поршня во вращение коленчатого вала.
- Крышка шатуна крепится болтами к нижней части корпуса шатуна.
- Подшипники шатуна вставляются в шатун с защелкиванием для обеспечения рабочей поверхности шейки шатуна коленчатого вала.
- Поршень представляет собой сплошной металлический цилиндр, который перемещается вверх и вниз в цилиндре блока цилиндров.Его цель — передать усилие от расширяющегося газа в цилиндре на коленчатый вал.
- Поршневой палец позволяет поршню поворачиваться на шатуне. Поршневой палец проходит через отверстие в поршне и на малый конец шатуна.
- Поршневое кольцо представляет собой разъемное кольцо. Он расположен на внешнем диаметре поршня. Поршневые кольца выполняют несколько функций. Поршневые кольца герметизируют камеру сгорания, поэтому потери газов в картер минимальны.Кроме того, отвод тепла от поршня к стенке цилиндра. Поддерживайте необходимое количество масла между поршнем и стенкой цилиндра. Наконец, отрегулируйте расход моторного масла, соскребая масло со стенок цилиндра обратно в масляный поддон.
- Балансирные валы используются для уменьшения вибрации. Эти валы с противовесом обычно устанавливаются с левой и с правой стороны блока цилиндров.
- Итак, масляный насос обеспечивает циркуляцию моторного масла под давлением к вращающимся подшипникам, поршням и распределительному валу.В результате масляный насос смазывает все движущиеся части внутри двигателя, охлаждая двигатель.
- Масляный поддон, обычно изготовленный из тонкого листа металла или алюминия, прикручивается болтами к нижней части блока цилиндров. Он содержит дополнительный запас масла для системы смазки. Картер — это самая нижняя часть масляного поддона, где собирается масло.
Итак, как видите, существует целый список деталей, составляющих нижнюю часть двигателя.Следите за обновлениями, чтобы получить дополнительную информацию, поскольку мы расширимся до некоторых других категорий, упомянутых выше.
ЗаключениеАвтомобильные двигатели могут показаться сложными, но их задача проста — двигать ваш автомобиль вперед. С таким количеством компонентов, работающих вместе, чтобы создать это движение; Совершенно необходимо, чтобы ваш автомобиль проходил надлежащее обслуживание, чтобы обеспечить его долговечность. И, наконец, регулярная плановая замена масла, промывка жидкости и замена ремней и шлангов в рекомендованное время; — отличный способ предотвратить отказ двигателя.
Деталь двигателяПоделитесь новостями портала DannysEngine
— обзор
10.05.7.2 Системы SLM
Системы SLM производятся компаниями 3D Systems, EOS, Concept Laser и MCP ( 76 ). Их основные системные характеристики приведены ниже в таблице 2.
Таблица 2. Технические характеристики различных систем SLM
Производители | Модель | Объем сборки (мм × мм × мм) | Laser | Другое |
---|---|---|---|---|
3D Systems | DM 125 | 125 × 125 × 125 | Волокно, 100, 200 Вт | Максимальная скорость сканирования 10 мс −1 |
3D Systems | DM 250 | 250 × 250 × 320 | Волокно, 200, 400 Вт | Максимальная скорость сканирования 10 мс −1 |
EOS | EOSINT M 270 | 250 × 250 × 215 | Волокно, 250 Вт | Максимальная скорость сканирования 7 мс −1 |
EOS | EOSINT M 280 | 250 × 250 × 325 | Волокно, 200 Вт, 400 Вт | Контроль мощности лазера, система управления газом |
Conc ept | M1 Cusing | 250 × 250 × 250 | Волокно, 200 W (cw) | Максимальная скорость сканирования 7 мс −1 |
Concept | M2 Cusing | 250 × 250 × 280 | Волокно, 200 Вт (непрерывное)Максимальная скорость сканирования 7 мс −1 | |
Concept | M3 Линейный | 300 × 350 × 300 | Волоконно, 200 Вт (непрерывно) Твердотельный лазер, 100 Вт (непрерывный + импульс) | Максимальная скорость сканирования 7 мс −1 , установка для лазерной эрозии и маркировки |
MCP | SLM 125 | 125 × 125 × 215 | Волокно, 100 Вт, 200 Вт | |
MCP | SLM 250 | 250 × 250 × 300/400 | Волокно, 200 Вт, 400 Вт |
Объем сборки: из таблицы 2 ясно, что объем сборки подходит для средних — пресс-форма, детали двигателя, имплантаты и функциональные прототипы.Применение станка оправдано, когда детали сложные и единичные; в других случаях она перестала бы быть экономичной и конкурентоспособной.
Последние версии этих машин имеют больший объем сборки. Полезность этого большего объема может быть обнаружена в (1) производстве большего количества сложных деталей за один цикл; (2) интегрированная структура, которая устраняет необходимость соединения и сборки компонентов; и (3) добавление функций на сборную деталь. Однако последний вариант зависит от геометрии, и для добавления любого элемента в данную деталь необходимо, чтобы элемент был добавлен на самой верхней поверхности.
Машине большего объема требуется такое же количество порошка, даже если вместо большой детали изготавливается крошечная деталь. Это приводит к переработке большого количества порошка. Переработанный порошок не всегда дает одинаковые свойства детали, что приводит к обесцениванию или потере драгоценных порошков. Это также подрывает саму цель создания AM с меньшими потерями. Более того, как для маленькой, так и для большой детали время для повторного нанесения порошкового покрытия, контроля атмосферы и предварительного нагрева остается неизменным. Это гарантирует оптимальное использование объема сборки.Машину можно было модифицировать, используя вставки как в контейнере для порошка, так и на строительной платформе. Это устранит необходимость в большем количестве порошка для автоматического запуска машины, и машину можно будет использовать как для оптимального изготовления небольших деталей, так и для проведения исследований с небольшим количеством порошка.
Недавно компания Concept Laser разработала новую небольшую машину Mlab Cusing, которая имеет меньший гибкий объем сборки. Камера сборки содержит системы выдвижных ящиков. Система выдвижных ящиков доступна в различных размерах (мм × мм), таких как 50 × 50, 70 × 70 и 90 × 90, что позволяет изготавливать изделия различных размеров.Эта машина особенно подходит для изготовления украшений. Еще одна аналогичная машина (Realizer SLM 50) с диаметром рабочего объема 70 мм × 40 мм для той же цели была разработана группой MCP ( 86 ).
Предварительный нагрев: уменьшает температурный градиент, возникающий между точкой взаимодействия лазерного луча и порошка с подложкой (под слоем) или с окружающим порошком. Предварительный нагрев имеет множество разветвлений: он снижает остаточное напряжение; отжигает наросты; действует как сдерживающий фактор при тушении; он контролирует поток ванны расплава и впоследствии регулирует размер продукта; он увеличивает атомную диффузию и помогает консолидировать материал, если это делается при более высокой температуре в течение более длительного времени; в горизонтальной плоскости предотвращает расслоение слоя; и он способствует увеличению энергии, подаваемой в зону обработки, и снижает количество энергии, необходимой для использования лазерного луча ( 87 ).
Предварительный нагрев уменьшает температурный градиент, что приводит к уменьшению конвекции Марангони в ванне расплава. Он обеспечивает стабильность ванны расплава, что снижает образование волнистости на поверхности. Он также изменяет влияние параметров процесса. Например, при условии предварительного нагрева для данной скорости сканирования ширина созданной ванны расплава будет больше, что уменьшит нестабильность Рэлея ( 16 ).
Предварительный нагрев может быть осуществлен с помощью (1) нагревателя под слоем порошка, как это делается в случае EOS и 3D, (2) нагрева всей камеры, как в случае Phenix, (3) нагрева поверхности слоя порошка с использованием теплового излучения как в случае 3D, и (4) с использованием источника лазерного луча, как в случае EOS.
Предварительный нагрев требует (1) контроля температуры камеры обработки, который осуществляется с помощью датчика, закрепленного на порошковой подушке (или где-то внутри камеры), и (2) повторная оптимизация экспериментальных параметров. Его побочными эффектами являются (1) изменение морфологии и свойств порошка (предварительный нагрев выполняется ниже температуры рекристаллизации порошка; однако, чем ниже температура, тем лучше свойства порошка) и (2) увеличение времени производства (время нагрева порошка). слой и увеличенное время охлаждения конечного продукта), хотя этого не происходит, если предварительный нагрев выполняется локально с помощью лазерного луча.
Локальный предварительный нагрев не оказывает такого же стабилизирующего эффекта на весь нарост, как в случае нагрева камеры / порошкового слоя. Его действие ограничивается локальным уменьшением температурного градиента, что приводит к уменьшению вероятности появления микротрещин и большей точности размеров.
Атмосферный контроль: чтобы поддерживать неокислительную среду внутри технологической камеры, создается вакуум и удаляется азот. Азот может быть произведен с помощью генератора азота, используя сжатый воздух внутри генератора.EOS и 3D поставляют генератор азота для своих систем. Это уменьшает потребность в установке дополнительного баллона с азотом для системы. Порошок титана реагирует с азотом, образуя нитрид, который приводит к повышенной пористости и снижению прочности продукта. В случае титана используется более дорогой аргон.
В случае, если камеру необходимо открыть либо для осмотра, либо для устранения каких-либо механических проблем, камеру снова необходимо заполнить требуемым газом, что увеличивает стоимость и время производства.
Управление процессом: во время обработки сканирующий луч проходит через различную порошковую среду, например, когда он сканирует в середине слоя, он окружен теми же типами материалов, пока он сканирует по краю, одна сторона — газ, а другая сторона пудра. То же самое и с выступом или тонкой стенкой. Эта разница в окружающей среде приводит к разной теплопередаче, что приводит к разным типам уплотнения порошков, что приводит к различным свойствам в разных точках.Иногда невозможно успешно выполнить обработку с одинаковыми параметрами сканирования, если разница в теплопередаче слишком велика. Эту ситуацию необходимо исправить, изменив параметры соответствующим образом.
Это можно контролировать, контролируя размер ванны расплава. Если размер ванны расплава отличается от стандартного измеренного размера, мощность или скорость сканирующего луча изменятся, чтобы отрегулировать энергию, подаваемую в зону обработки, что приведет к возвращению размера ванны расплава в пределах предварительно определенного выбранного размера.
Однако этот тип управления с обратной связью был реализован в различных других типах коммерческих машин; современные машины с порошковой подстилкой этого не предлагают. Аппарат EOS предоставляет информацию только о температуре, количестве кислорода и мощности лазера во время работы, в то время как 3D позволяет контролировать температуру порошкового слоя.
Стратегия сканирования: Программное обеспечение представленных машин в этом отношении довольно продвинуто и позволяет различным стратегиям сканирования иметь изотропные свойства. Некоторые из стратегий представляют собой островную стратегию (разделение области сканирования на различные небольшие области), изменение направления сканирования при каждом последовательном сканировании, спиральное сканирование, фрактальный путь, каждый последующий слой с противоположным сканированием и т. Д.Цель состоит в том, чтобы равномерно распределить накопление тепла по всему слою. Кроме того, сканирование в одном направлении делает слой виртуально состоящим из множества волокон в этом направлении, что придает предпочтительные свойства в этом направлении. Цель стратегии — свести на нет этот эффект.
Стратегия создания: Настоящие машины позволяют получать пятна наименьшего размера и толщину самого тонкого слоя 20 мкм каждая. Этот небольшой размер пятна даст повышенное разрешение, детализацию и четкость, в то время как такая толщина слоя снизит эффект ступеньки до минимума.
Эффект ступеньки создается при создании криволинейной поверхности. Поскольку прямоугольный слой не может полностью уместиться в пространстве кривой, незаполненное пространство не обрабатывается и создает неоднородность на внешней негоризонтальной поверхности. Использование более тонкого слоя уменьшает размер незаполненного пространства и увеличивает однородность.
Скорость производства может быть увеличена за счет использования слоев различной толщины; на вертикальной боковой поверхности размер может быть увеличен до уровня, на котором его можно будет обрабатывать, не влияя на свойства.На боковой поверхности изгиба размер может быть уменьшен. Однако постоянное уменьшение размера увеличивает время и стоимость, поэтому необходим баланс между производственной скоростью, стоимостью и разрешением.
То же самое можно сказать и для обработки с различными размерами пятна. Для сложных элементов требуется небольшой размер пятна, в то время как для простой геометрии может работать увеличенный размер пятна, если это не ухудшает качество.
Управление лучом: Во всех машинах для сканирования лазерного луча используются линза f-theta и высокоскоростной сканер.Поскольку максимальная скорость пока не превышает 15 м / с −1 , настоящая оптика работает хорошо. В случае Concept Laser сканер также пересекает горизонтальную плоскость, так что его можно расположить точно над предполагаемой зоной обработки, что снижает наклонное воздействие лазерного луча. Этот эффект возникает, когда сканирование выполняется на большей площади с помощью статического сканера, и луч, который падает на удаленную область, имеет форму расширенного пятна (эллиптического, если форма пятна является сферической перпендикулярно сканеру), что приводит к снижению плотности энергии, что приводит к изменились механические свойства.
Нанесение порошка: в случае 3D для повторного нанесения порошкового покрытия используется вращающийся в противоположных направлениях ролик, а в других случаях используется скребок. Ролик отличается прочностью, а лезвие подвержено износу и поломке. Ролик опирается на шарнир и используется для отвода только тех порошков, которые выступают над плоскостью его нижней поверхности. Следовательно, валик не играет роли в сжатии порошков и увеличении плотности утряски слоя.
Чтобы уменьшить вероятность смещения незавершенной детали из-за неровностей поверхности, скорость ролика должна быть минимальной.Однако скорость ролика не играет значительной роли в изменении скорости производства, которая в основном определяется скоростью сканирования.
Поршни двигателя внутреннего сгорания — x-engineer.org
Поршень является составной частью двигателя внутреннего сгорания. Основная функция поршня — преобразовывать давление, создаваемое горящей топливовоздушной смесью, в силу, действующую на коленчатый вал. Легковые автомобили имеют поршни из алюминиевого сплава, а грузовые автомобили также могут иметь поршни из стали и чугуна.
Поршень является частью кривошипно-шатунного механизма (также называемого кривошипно-шатунным механизмом ), который состоит из следующих компонентов:
- поршень
- поршневые кольца
- шатун
- коленчатый вал
Изображение: Привод коленчатого вала двигателя (кривошипно-шатунный механизм) Предоставлено: Rheinmetall
Поршень также выполняет второстепенные функции двигателя :
- способствует рассеиванию тепла , образующемуся во время сгорания утечки газа из нее и проникновение масла в камеру сгорания
- направляет движение шатуна
- обеспечивает непрерывную смену газов в камере сгорания
- создает переменного объема в камере сгорания
Изображение: поршни Kolbenschmidt
Кредит: Kolbenschmidt
Форма поршня в основном зависит от типа двигателя внутреннего сгорания.Поршни бензиновых двигателей обычно легче и короче по сравнению с поршнями дизельных двигателей. Геометрия поршня имеет множество тонкостей из-за сложности его рабочей среды, но основными частями поршня являются:
- поршень головка , также называемая верхняя часть или головка : верхняя часть поршня который вступает в контакт с давлением газа в камере сгорания
- кольцевой ремень : верхняя средняя часть поршня, когда поршневые кольца расположены
- выступ штифта : нижняя средняя часть поршня который содержит поршневой палец
- юбка поршня : область под кольцевым ремнем
Изображение: оси поршневого пальца и юбки | Изображение: Основные детали поршня |
где:
- верх поршня
- верхняя фаска
- кольцевой ремень
- распорки
- стопорный зажим пальца
- выступ штифта
- поршневой тонный штифт
- поршневые кольца
- юбка поршня
Поршень соединен с шатуном через поршневой палец (7).Штифт позволяет поршню вращаться вокруг оси штифта. Штифт удерживается в поршне фиксатором пальца (5).
После днища поршня доходит до кольцевого ремня (также называемого кольцевой зоной) (3). Большинство поршней имеют три кольцевые канавки, в которые устанавливаются поршневые кольца. Верхнее кольцо называется компрессионным кольцом , среднее на нем — скребковым кольцом , а нижнее — кольцом контроля масла . Компрессионное кольцо должно герметизировать камеру сгорания, чтобы предотвратить утечку внутренних газов в блок двигателя.Маслосъемное кольцо соскребает масло со стенок цилиндра, когда поршень находится на рабочем или выпускном такте. Среднее кольцо выполняет комбинированную функцию обеспечения сжатия в цилиндре и удаления излишков масла со стенок цилиндра.
Юбка поршня (8) удерживает поршень в равновесии внутри цилиндра. Обычно он покрывается материалом с низким коэффициентом трения, чтобы уменьшить потери на трение. В отверстии для пальца или втулки (6) поршня находится поршневой палец (7), который соединяет поршень с шатуном.
Геометрические характеристики поршня
Поршни должны правильно работать в широком диапазоне температур, от -30 ° C до 300-400 ° C. В то же время он должен быть достаточно легким, чтобы иметь низкую инерцию и обеспечивать высокие обороты двигателя. Ниже представлена пара геометрических характеристик поршня.
Овальность поршня
Из-за процесса сгорания температура внутри цилиндров двигателя достигает сотен градусов Цельсия.Поршень является одним из основных компонентов, который поглощает часть выделяемого тепла и отводит его в моторное масло. Поскольку ось поршневого пальца содержит больше материала, чем ось юбки, тепловое расширение вдоль оси пальца немного выше, чем тепловое расширение вдоль оси юбки. По этой причине поршень имеет овальную форму, диаметр по оси пальца на 0,3-0,8% меньше диаметра по оси юбки [6].
Изображение: Овальность поршня
Поршень конической формы
Форма поршня не идеальна для цилиндра.При низкой температуре зазор между поршнем и цилиндром двигателя больше по сравнению с высокими температурами. Кроме того, зазор не является постоянным по длине поршня, он меньше вокруг верхней части поршня по сравнению с областью юбки поршня. Это необходимо для большего теплового расширения головки поршня, поскольку она содержит больший объем металла.
Изображение: Зазор поршня (коническая форма) | Изображение: Тепловое расширение поршня (если цилиндрическая форма) |
Смещение поршневого пальца
Поршень перемещается на 3 градуса внутри цилиндра свободы, 1 первичный и 2 вторичных:
- по вертикальной оси цилиндра, между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ) (основная, ось Y)
- вокруг Ось пальца (вторичная, α — угол)
- вдоль оси юбки (вторичная, ось x)
Первичное движение создает крутящий момент на коленчатом валу, это желательно с механической точки зрения.Вторичные движения происходят из-за комбинации нескольких факторов: двунаправленного движения шатуна и зазора между поршнем и цилиндром. Оба вторичных движения вызывают трение о стенки цилиндра, а также шум, вибрацию (удар поршня).
Изображение: Осевое усилие поршня и смещение пальца
Когда коленчатый вал вращается по часовой стрелке, левая сторона цилиндра называется осевой стороной (TS) , а противоположная сторона — противодействующей стороной (ATS). .Удары поршня могут происходить с любой стороны цилиндра. Удар поршня возбуждает блок двигателя и проявляется в виде поверхностных вибраций, которые в конечном итоге излучаются в виде шума вблизи двигателя [9]. Еще одно неудобство заключается в том, что когда поршень движется через ВМТ и ВТС, на коленчатый вал создается повышенная нагрузка, поскольку поршень совмещен с центром вращения коленчатого вала.
Смещение поршневого пальца — это несоосность между центром отверстия поршневого пальца и центром коленчатого вала.За счет этого в конструкции улучшаются шумовые характеристики двигателя из-за ударов поршня в ВМТ. Это основная проблема NVH (шумовая вибрация и резкость) для инженеров-технологов, которые хотят устранить тревожные шумы везде, где они могут. Вторая причина — повышение мощности двигателя за счет уменьшения внутреннего трения в TS и ATS.
Смещение пальца снижает механическое напряжение, возникающее в соединительной штанге, когда она достигает ВМТ или НМТ, потому что шатун не должен толкать поршень в противоположном направлении в конце хода.Это смещение заставляет стержень перемещаться по дуге в ВМТ и НМТ.
Механические нагрузки на поршень
Поршень является элементом двигателя внутреннего сгорания (ДВС) , который должен выдерживать наибольшие механические и термические нагрузки. Из-за поршня мощность ДВС ограничена. В случае очень высокой термической или механической нагрузки поршень выходит из строя первым (по сравнению с блоком цилиндров, клапанами, головкой блока цилиндров). Это связано с тем, что поршень должен быть компромиссом между массой и устойчивостью к механическим и термическим нагрузкам.
Циклическое нагружение поршня из-за [6]:
- сила газа от давления в цилиндре
- сила инерции от колебательного движения поршня и
- поперечная сила от опоры силы газа наклонным шатуном, а сила инерции колеблющегося шатуна
определяет механическую нагрузку .
Вертикальные силы, действующие на поршень, состоят из: сил давления, , создаваемых расширяющимися газами, и сил инерции, , создаваемых собственной массой поршня [10].
\ [F_ {p} = F_ {gas} + F_ {ineria} \]Силы инерции намного меньше сил давления и имеют наибольшую интенсивность, когда поршень меняет направление, в ВМТ и НМТ.
Изображение: Напряжение поршня по Мизесу и механическая деформация | Изображение: Вертикальные силы поршня в зависимости от угла поворота коленчатого вала |
Вышеуказанные силы поршня рассчитываются с использованием передовых методов анализа методом конечных элементов для алюминиевого поршня, используемого в легковых автомобилях с дизельным двигателем [7].
Процесс сгорания имеет разные характеристики для дизельного и бензинового ДВС. В дизельном двигателе пиковое давление газа при сгорании может достигать 150 — 160 бар. В бензиновом двигателе максимальное давление ниже 100 бар. Из-за более высокого давления поршни дизельного двигателя должны выдерживать более высокие механические нагрузки.
Чтобы работать без сбоев в таких суровых условиях, поршни дизельных двигателей конструируются более тяжелыми, прочными и имеют большую массу.Недостатком является более высокая инерция, более высокие динамические силы, поэтому максимальная частота вращения двигателя ниже. Одна из причин, по которой дизельные двигатели имеют более низкую максимальную скорость (около 4500 об / мин) по сравнению с бензиновыми двигателями (около 6500 об / мин), — это более тяжелые механические компоненты (поршни, шатуны, коленчатый вал и т. Д.).
Термические нагрузки на поршень
Головка поршня находится в прямом контакте с горящими газами внутри камеры сгорания, поэтому подвергается высоким термическим и механическим нагрузкам .В зависимости от типа двигателя (дизельный или бензиновый) и типа впрыска топлива (прямой или непрямой) головка поршня может быть плоской или содержать чашу .
Тепловая нагрузка от температуры газа в процессе сгорания также является циклической нагрузкой на поршень. Он действует в основном во время такта расширения на поршне со стороны камеры сгорания. В других тактах, в зависимости от принципа работы, тепловая нагрузка на поршень уменьшается, прерывается или даже имеет охлаждающий эффект во время газообмена.Как правило, передача тепла от горячих дымовых газов к поршню происходит в основном за счет конвекции, и лишь небольшая часть является результатом излучения.
Изображение: Рабочие температуры поршня
Предоставлено: [3]
Изображение: Распределение температуры в поршне бензинового двигателя | Изображение: Распределение температуры в поршне дизельного двигателя с каналом охлаждения |
Изображение: Тепловая нагрузка поршня |
Что касается хода расширения, продолжительность действия тепловой нагрузки от сгорания очень мала.Следовательно, только очень небольшая часть составляющей массы поршня, вблизи поверхности на стороне сгорания, следует за циклическими колебаниями температуры. Таким образом, почти вся масса поршня достигает квазистатической температуры, которая, однако, может иметь значительные локальные изменения.
Охлаждение поршня
По мере увеличения удельной мощности в современных двигателях внутреннего сгорания поршни подвергаются возрастающим тепловым нагрузкам. Поэтому эффективное охлаждение поршня требуется чаще, чтобы обеспечить безопасность эксплуатации.
Изображение: 2009 Ecotec 2.0L I-4 VVT DI Turbo (LNF) Головка поршня и масляная форсунка
Кредит: GM
Температуру поршня можно снизить за счет циркуляции масла в средней части поршня. Это может быть достигнуто с помощью маслоструйных устройств, установленных на блоке цилиндров, которые впрыскивают моторное масло через отверстие, когда поршень находится близко к нижней мертвой точке (НМТ).
Компания Tenneco Powertrain разработала новый стальной поршень для дизельных двигателей, который она спроектировала с «герметичной на весь срок службы» охлаждающей камерой в головной части, что позволяет поршням безопасно работать при температурах в головке более чем на 100 ° C выше действующих ограничений.
Изображение: технология охлаждения поршня EnviroKool
Кредит: Tenneco
Для формирования коронки EnviroKool внутри поршня с помощью сварки трением создается цельный охлаждающий канал, который затем заполняется высокотемпературным маслом и инертным газом. Эта камера постоянно закрыта приварной заглушкой. Согласно Tenneco Powertrain, технология EnviroKool позволяет преодолеть температурные ограничения обычных открытых галерей, в которых в качестве теплоносителя используется смазочное масло.
Типы поршней
Геометрия поршня ограничена из-за кубатуры ДВС. Поэтому основной способ повышения механического и термического сопротивления поршня — увеличение его массы. Это не рекомендуется, потому что поршень с большой массой имеет большую инерцию, которая преобразуется в высокие динамические силы, особенно при высоких оборотах двигателя. Сопротивление поршня можно улучшить за счет оптимизации геометрии, но всегда будет компромисс между массой, механическим и термическим сопротивлением.
На первый взгляд поршень кажется простым компонентом, но его геометрия довольно сложна:
Изображение: Техническое описание дизельного поршня | Изображение: Техническое описание бензинового поршня |
Условные обозначения:
- диаметр чаши
- днище поршня
- камера сгорания (чаша)
- кромка днища поршня
- верхняя площадка поршня
- посадочная площадка канавки компрессионного кольца
- встраиваемое кольцо земля
- паза сторона
- маслосъемных кольцевой паз возврата
- масла отверстие
- поршневого палец босс
- удержания для паза на расстоянии
- паза для стопорного кольца
- поршня босса расстояние
- поршня босс расстояния
- активизировал край
- диаметр поршня 90 ° C относительно отверстия под поршневой палец 90 388
- отверстие под поршневой палец
- глубина чаши
- юбка
- зона кольца
- высота сжатия поршня
- длина поршня
- канал масляного радиатора
- держатель кольца
- втулка болта
- Как видите, между дизельными и бензиновыми поршнями есть существенные различия.
- эвтектический сплав (AlSi12CuMgNi): литой или кованый
- заэвтектический сплав (AlSi18CuMgNi): литой или кованый
- специальный эвтектический сплав (только AlSi212MgNi
- , потому что
- специальный эвтектический сплав (только AlSi212MgNi) алюминиевый сплав имеет более низкую прочность, чем чугун, поэтому необходимо использовать более толстые секции, поэтому не все преимущества легкого веса этого материала реализуются. Кроме того, из-за более высокого коэффициента теплового расширения алюминиевые поршни должны иметь больший рабочий зазор.С другой стороны, теплопроводность алюминия примерно в три раза выше, чем у железа. Это, вместе с большей толщиной используемых секций, позволяет алюминиевым поршням работать при температурах примерно на 200 ° C ниже, чем чугунные [8].
В некоторых случаях прочность и износостойкость поршней из алюминиевого сплава недостаточны для удовлетворения требований по нагрузке, поэтому используются черные материалы (например, чугун, сталь). Существует несколько методов использования черных металлов в производстве поршней:
- в качестве местного армирования, вставки из черного металла (т.е.g., опоры колец)
- в виде удлиненных частей композитных поршней (например, днища поршня, болтов)
- поршней, полностью изготовленных из чугуна или кованой стали
Изображение: композитный поршень для тяжелого двигателя — поперечное сечение
Кредит: [8]Изображение: Поршень композитной конструкции для судовых дизельных двигателей
Кредит: WarstilaДля поршней и поршней используются два типа черных металлов компоненты [6]:
- чугун :
- аустенитный чугун для держателей колец
- чугун с шаровидным графитом для поршней и юбок поршней
- сталь
- хром-молибденовый сплав
- хромомолибден-никелевый сплав (34CrNiMo6)
- молибден-ванадиевый сплав (38MnVS6)
чугун обычно имеют содержание углерода> 2%.Поршни высоконагруженных дизельных двигателей и другие высоконагруженные компоненты двигателей и конструкции машин преимущественно изготавливаются из сферолитического чугуна M-S70. Этот материал используется, например, для изготовления цельных поршней и юбок поршней в композитных поршнях [6].
Сплавы железа, обозначенные как стали, обычно имеют содержание углерода менее 2%. При нагревании они полностью превращаются в ковкий (пригодный для ковки) аустенит. Поэтому сплавы железа отлично подходят для горячей штамповки, такой как прокатка или ковка.
Поршневые технологии
Существует несколько передовых поршневых технологий, каждая из которых имеет целью увеличить механическое и / или термическое сопротивление, снизить коэффициент трения или общую массу (сохраняя в то же время механические и термические свойства).
Ниже вы можете найти примеры современных поршней, производимых на заводе Kolbenschmidt , каждый с уникальными технологиями.
Изображение: Поршень дизеля с охлаждающим каналом, втулкой болта и держателем кольца
Кредит: Kolbenschmidt Изображение: Поршень бензинового двигателя в облегченной конструкции LiteKS® с держателем кольцаИзображение: Шарнирно-сочлененный поршень дизеля с кованой верхней стальной частью и алюминиевой юбкой
Кредит: Kolbenschmidt5
Кредит: KolbenschmidtИзображение: Литые держатели колец из чугуна многократно увеличивают долговечность первой кольцевой канавки дизельных поршней.Kolbenschmidt является лидером в разработке соединения держателя кольца Alfin
Кредит: KolbenschmidtИзображение: Канавки под кольцо с твердым анодированием предотвращают износ и микросварку поршней для бензиновых двигателей
Кредит: Kolbenschmidt20 Изображение
Поршни KS Kolbenschmidt имеют специальное покрытие LofriKS®, NanofriKS® или графит на юбке поршня. Они уменьшают трение внутри двигателя и обеспечивают хорошие характеристики при аварийной работе. Покрытия LofriKS® также используются по акустическим причинам.Их использование сводит к минимуму шумы от хлопка поршня. NanofriKS® является дальнейшим развитием испытанного и испытанного покрытия LofriKS® и дополнительно содержит наночастицы оксида титана для повышения износостойкости и долговечности покрытия. ®) гарантируют надежную работу при использовании в алюминиево-кремниевых поверхностях цилиндров (Alusil®)
Кредит: KolbenschmidtИзображение: Отверстия поршневого пальца специальной формы (Hi-SpeKS®) повышают динамическую нагрузочную способность станины поршневого пальца, тем самым увеличивая долговечность поршня
Кредит: KolbenschmidtНиже вы можете найти примеры современных поршней, производимых компанией Tenneco Powertrain (ранее Federal Mogul) , каждый из которых отличается уникальными технологиями.
Изображение: Поршень Elastothermic® (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)
Характеристики: поршень
с охлаждением по каналу улучшает мощность и расход топлива уменьшенных бензиновых двигателей. около 30 ° C
— снижение температуры первой кольцевой канавки примерно на 50 ° C, следовательно, уменьшение отложений углерода и износ канавок и колец для длительного срока службы; низкий расход масла и удар по
— снижение риска неконтролируемого возгорания, такого как предварительное сгорание на низкой скорости. зажиганиеКредит: Tenneco Powertrain (Federal Mogul)
Изображение: Алюминиевые дизельные поршни
Характеристики:
— оптимизированное расположение каналов для максимального охлаждения может привести к снижению температуры обода барабана до 10%
— улучшенная боковая заливка методы значительно улучшают конструктивную устойчивость (даже при тонкостенных конструкциях)
— реструктуризация обода камеры сгорания и дно стакана могут увеличить усталостный ресурс до 100%Кредит: Tenneco Powertrain (Federal Mogul)
Изображение: Поршни для дизельных двигателей из моностали (стальные поршни для дизельных автомобилей большой грузоподъемности или промышленного применения)
Поршень Monosteel® обеспечивает прочность и охлаждение, чтобы удовлетворить самые жесткие требования к двигателям на рынках тяжелых и промышленных двигателей, включая новое поколение давлений срабатывания двигателя, необходимых для дорожных правил Евро VI и выше.
Прочная конструкция, состоящая из сварных с помощью инерционной сварки кованых стальных секций, образующих большие охлаждающие галереи, позволяет поршням Monosteel выдерживать возрастающие механические нагрузки. Эволюция Monosteel включает в себя последние разработки для промышленных двигателей с большим диаметром цилиндра, а также использование тонкостенных легких поковок и отливок для дизельных двигателей легких транспортных средств.
Основные характеристики продукта:
— большая закрытая структурная галерея с превосходным охлаждением обода чаши и кольцевой канавки, уменьшающим деформацию канавки и улучшающим контроль масла и газового уплотнения.
— профилированное отверстие под палец без втулки. динамика, снижение риска кавитации гильзы и улучшение кольцевого уплотнения.
— процесс обеспечивает гибкость материала с возможностью выбора материала коронки для уменьшения коррозии или окисления и / или выбора материала юбки для повышения технологичности.Кредит: Tenneco Powertrain (Federal Mogul)
Изображение: Поршни с покрытием EcoTough® (алюминиевый поршень для бензиновых / бензиновых легких или тяжелых автомобилей)
Поршень с покрытием EcoTough® обеспечивает важные преимущества, которые помогают удовлетворить потребности клиентов в более эффективные конструкции двигателей, в том числе сниженный расход топлива и выбросы CO 2 . Он сочетает в себе низкий износ и низкое трение в одном применении и снижает расход топлива на 0,8% по сравнению с обычными покрытиями поршней.
Ключевые преимущества включают:
— совместим с существующей и усовершенствованной отделкой внутренних отверстий цилиндров и может быть беспрепятственно введен в серийное производство двигателей в качестве рабочих изменений.
— состав обеспечивает большую толщину, чем поршни с обычными покрытиями, обеспечивая дополнительную защиту. ; не содержит токсичных растворителей.
— запатентованное усовершенствованное покрытие юбки поршня с твердыми смазочными материалами и армированием углеродными волокнами, специально разработанное для тяжелых условий эксплуатации бензина.
— снижение трения на 10% в силовом цилиндре (поршень + кольца) по сравнению сстандартные покрытия, повышение экономии топлива до 0,4% / CO 2 сокращение в европейских испытаниях ездового цикла
— уменьшение износа на 40% по сравнению со стандартными бензиновыми покрытиями, повышенная надежность современных бензиновых двигателей с наддувом DI
— EcoTough® — это запатентованное покрытие FMПредоставлено: Tenneco Powertrain (Federal Mogul)
Изображение: Поршень DuraBowl® (алюминиевый поршень для дизельных легких или тяжелых автомобилей)
Усиление поршня DuraBowl® Частичное переплавление кромки чаши :
— чрезвычайное улучшение структуры алюминиевого материала, созданное локализованным переплавом с использованием технологии TIG.
— до 4 раз улучшенная долговечность в двигателях с высокой удельной мощностью по сравнению с поршнями без переплавки барабана.Допускает форму камеры сгорания, подвергающуюся высоким нагрузкам.
— Процесс FM DuraBowl® расширяет пределы алюминиевых поршней в самых сложных условиях за счет увеличения усталостной прочности (циклов) поршняАвторы и права: Tenneco Powertrain (Federal Mogul)
Изображение: Elastoval II сверхлегкие поршни (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)
Технология бензиновых поршней Avanced Elastoval® II основана на:
— глубоких карманах под коронкой
— наклонных боковых панелях
— облегченной конструкции опоры пальца
— тонких стенках 2.5 мм
— оптимизированная площадь юбки и гибкость
— Высокоэффективный сплав FM S2NОсобенности и преимущества:
— снижение веса на 15% по сравнению с бензиновыми поршнями предыдущего поколения
— обеспечивает удельную мощность до 100 кВт / л
— оптимизировано характеристики шума и трения
Совместимость с опцией держателя альфинового кольца для повышения пикового давления в цилиндре и устойчивости к детонацииКредит: Tenneco Powertrain (Federal Mogul)
Часто задаваемые вопросы о поршнях
Для чего используются поршни?
Поршни используются в двигателях внутреннего сгорания для передачи усилия на шатун и коленчатый вал, создавая крутящий момент двигателя.Поршни преобразуют давление газа из камеры сгорания в механическую силу.
Что такое поршень и как он работает?
Поршень — это компонент двигателя внутреннего сгорания, сделанный из алюминия или стали, используемый для преобразования давления газа из камеры сгорания в механическую силу, передаваемую на шатун и коленчатый вал.
Из чего сделан поршень?
Поршень может быть изготовлен из цветных металлов, алюминия (Al) или черных металлов, таких как чугун или сталь .
Какие бывают два типа поршневых колец?
Два типа поршневых колец: компрессионные кольца и масляные кольца.
Какие два основных типа поршневых двигателей?
Двумя основными типами поршневых двигателей являются: дизельные, поршневые двигатели и бензиновые (бензиновые), поршневые двигатели. Функция материала, два основных типа поршня: алюминиевый поршень и стальной поршень .
Каков срок службы поршней?
Поршень должен служить в течение всего срока службы автомобиля, если условия эксплуатации являются номинальными (нормальная смазка, регулярное обслуживание двигателя, отсутствие чрезмерной нагрузки, отсутствие чрезмерной температуры). В нормальных условиях эксплуатации поршень должен прослужить не менее 300000 км до 500000 км и более.
Что вызывает отверстия в поршнях?
Обычно аномально высокие температуры вызывают плавление поршней, или детонация двигателя может вызвать трещины в поршнях.Неисправные форсунки могут подавать чрезмерное количество топлива в цилиндры, что может вызвать аномально высокую температуру сгорания и частично оплавить поршни.
Как узнать, повреждены ли поршни?
Если поршень поврежден, наиболее вероятными симптомами являются: потеря мощности из-за потери сжатия, чрезмерный дым в выхлопе или необычный шум двигателя.
Можно ли починить сломанный поршень?
Сломанный поршень не подлежит ремонту, его необходимо заменить.Поршни имеют очень жесткие геометрические допуски, которые, скорее всего, не будут соблюдены после ремонта. Кроме того, их механические и термические свойства будут изменены после ремонта, что приведет к дальнейшим повреждениям. Сломанный поршень может вызвать серьезные повреждения блока цилиндров, шатуна, клапанов и т. Д. И должен быть немедленно заменен.
Можно ли водить машину с неисправным поршнем?
Вы можете ездить с плохим поршнем, но это не рекомендуется. Повреждение поршня может привести к значительному выходу из строя блока цилиндров, коленчатого вала, шатунов, клапанов и т. Д.Если не заменить поврежденный поршень, это может привести к полному отказу двигателя.
Повредит ли мой двигатель удар поршня?
Удар поршня повредит двигатель, оставьте без присмотра. Удар поршня в течение длительного времени приведет к повреждению гильзы цилиндра и самого поршня.
Уходит ли поршень при нагревании?
Поршень частично уходит, когда двигатель прогрет. Удар поршня вызван чрезмерным износом гильзы цилиндра или самого поршня.Когда двигатель нагревается, поршень имеет тепловое расширение, и зазор между поршнем и цилиндром уменьшается, что приводит к уменьшению ударов поршня.
Могу ли я ехать с хлопком поршня?
Можно ездить с хлопком поршня, но долго водить не рекомендуется. Удар поршня вызовет износ самого поршня и гильзы цилиндра. Удар поршня также может вызвать трещины в поршне, что может привести к полному отказу двигателя, если его оставить без присмотра.
Что вызывает износ юбки поршня?
Износ юбки поршня вызван недостаточной смазкой гильзы цилиндра маслом.В нормальном рабочем состоянии система смазки разбрызгивает масло на цилиндры, чтобы избежать прямого контакта между юбкой поршня и цилиндром. При неисправности системы смазки или недостаточном уровне масла на стенках цилиндра не будет достаточно масла, и юбка поршня будет значительно изнашиваться.
Ссылки
[1] Клаус Молленхауэр, Хельмут Чоеке, Справочник по дизельным двигателям, Springer, 2010 г.
[2] Хироши Ямагата, Наука и технология материалов в автомобильных двигателях, Woodhead Publishing in Materials, Кембридж, Англия, 2005 г. .
[3] The Aluminium Automotive Manual, European Aluminium Association, 2011.
[4] Heisler, Heinz, Vehicle and Engine Technology, Society of Automotive Engineers, 1999.
[5] QinZhaoju et al., Поршневая термомеханическая муфта дизельного двигателя моделирование и многопрофильная оптимизация проектирования, Примеры в теплотехнике, Том 15, ноябрь 2019 г.
[6] Испытания поршней и двигателей, Mahle GmbH, Штутгарт, 2012 г.
[7] Скотт Кеннингли и Роман Моргенштерн, Тепловые и механические нагрузки в Область чаши сгорания легковых дизельных поршней из AlSiCuNiMg; Пересмотрено с акцентом на расширенный анализ методом конечных элементов и инструментальные методы тестирования двигателей, Federal Mogul Corporation, SAE Paper 2012-01-1330.
Поршни дизельного двигателя должны выдерживать более высокие давления и температуры, поэтому они больше, крупнее и тяжелее. Они могут быть изготовлены из алюминиевых сплавов, стали или их комбинации. Поршень дизеля содержит часть камеры сгорания в головке поршня. Из-за формы поперечного сечения головки поршня поршень дизельного двигателя также называют поршнем с головкой омега.
Поршни для бензиновых двигателей легче и предназначены для более высоких оборотов двигателя.Они изготавливаются из алюминиевых сплавов и обычно имеют плоскую головку. Бензиновые двигатели с непосредственным впрыском (DI) имеют специальные головки, позволяющие направлять поток топлива качающимся движением.
Ниже вы можете увидеть несколько изображений дизельных и бензиновых (бензиновых) двигателей в высоком разрешении.
Изображение: LS9 6.2L V-8 SC поршень (алюминий, бензин / бензиновый двигатель с непрямым впрыском) | Изображение: Ecotec 2.0L I-4 VVT DI Turbo (LNF) поршень (алюминий, бензиновый / бензиновый двигатель с прямым впрыском) |
Изображение: Поршень дизельного двигателя автомобиля с кольцами (алюминий, дизель) | Изображение: Поршень из моностали (сталь, дизель) ) |
Материалы поршней
Большинство поршней для автомобильной промышленности изготавливаются из алюминиевых сплавов .Это потому, что алюминий легкий, обладает достаточной механической прочностью и хорошей теплопроводностью. Есть тяжелые применения, коммерческие автомобили, в которых используются поршни из стали , которые более устойчивы к более высоким давлениям и температурам в камере сгорания.
Алюминиевые поршни производятся из литых или кованых жаропрочных алюминиево-кремниевых сплавов. Есть три основных типа алюминиевых поршневых сплавов. Стандартный поршневой сплав представляет собой эвтектический сплав Al-12% Si, содержащий дополнительно ок.По 1% каждого из Cu, Ni и Mg [3].
Основными алюминиевыми сплавами для поршней являются [3]: