Водородный автомобиль своими руками
«Поехали!» — по-гагарински подталкивает меня локтем главный редактор. Но не так быстро: сначала нужно «прогреть» топливный элемент на неполной нагрузке. Переключаю тумблер в режим «warm up» («прогрев») и жду положенное время. Потом на всякий случай дозаправляю бак до полного. Вот теперь поехали: машинка, плавно жужжа двигателем, трогается вперед. Динамика впечатляет, хотя, впрочем, чего еще ждать от электромобиля — момент постоянный на любых оборотах. Хотя и ненадолго — полного бака водорода хватает всего на несколько минут (компания Horizon обещает в ближайшем будущем выпустить новый вариант, в котором водород не запасается в виде газа под давлением, а удерживается пористым материалом в адсорбере). Да и управляется, прямо скажем, не очень — на дистанционном управлении всего две кнопки. Но в любом случае жаль, что это только радиоуправляемая игрушка, которая обошлась нам в $150. Мы бы не отказались покататься на настоящей машине с топливными элементами в качестве энергетической установки.
1 / 2
Бак, эластичная резиновая емкость внутри жесткого кожуха, при заправке растягивается и работает в качестве топливного насоса, «выдавливая» водород в топливный элемент. Чтобы не «перезаправить» бак, один из штуцеров подключен пластиковой трубкой к аварийному клапану сброса давления.
Сделай сам
Машина Horizon H-racer 2.0 поставляется в виде набора для крупноузловой сборки (типа «сделай сам»), купить её можно, например, на «Амазоне». Однако собрать ее несложно — достаточно поставить на место топливную ячейку и закрепить ее винтами, подсоединить шланги к баку для водорода, топливному элементу, заправочной горловине и аварийному клапану, и остается только поставить верхнюю часть корпуса на место, не забыв передний и задний бамперы. В комплекте идет заправочная станция, которая получает водород методом электролиза воды. Питается она от двух батареек АА, а если захочется, чтобы энергия была совсем «чистой», — от солнечных батарей (они тоже входят в комплект).
Водородный генератор своими руками – схема, конструкция установки, чертежи
Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:
- разобрать вопрос, как сделать водородный генератор с минимальными затратами;
- рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.
Краткая теоретическая часть
Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:
- Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
- Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
- Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
- Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
- Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.
Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывалисьДля справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.
Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:
2H2 + O2 → 2H2O + Q (энергия)
Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:
2H2O → 2H2 + O2 — Q
Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.
Создание опытного образца
Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.
Из чего состоит примитивный электролизер:
- реактор – стеклянная либо пластиковая емкость с толстыми стенками;
- металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
- второй резервуар играет роль водяного затвора;
- трубки для отвода газа HHO.
Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.
Принцип работы электролизера следующий:
- К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
- В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
- Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
- Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.
Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.
Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:
- Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
- Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
- Поместите электроды в бутылку и завинтите крышку.
- Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.
Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.
Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:
О водородной ячейке Мейера
Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.
Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:
Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.
Для изготовления ячейки Мейера потребуется:
- цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
- трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
- провода, изоляторы.
Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.
Под ячейку Мейера можно приспособить готовый пластиковый корпус от обычного водопроводного фильтраСоединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.
Принципиальная схема включения электролизераРеактор из пластин
Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.
Кроме листовой нержавейки марки 316 понадобится купить:
- резина толщиной 4 мм, стойкая к воздействию щелочи;
- концевые пластины из оргстекла либо текстолита;
- шпильки стяжные М10—14;
- обратный клапан для газосварочного аппарата;
- фильтр водяной под гидрозатвор;
- трубы соединительные из гофрированной нержавейки;
- гидроокись калия в виде порошка.
Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.
Схема водородной установки мокрого типаПримечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.
Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:
- На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
- В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
- Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».
Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:
Выгодно ли получать водород в домашних условиях
Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:
- использовать hydrogen в качестве топлива для автомобилей;
- бездымно сжигать водород в отопительных котлах и печах;
- применять для газосварочных работ.
Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.
Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.
Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:
- Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
- Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.
- Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.
Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.
Заключение
Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.
АВТО НА ВОДЕ СВОИМИ РУКАМИ ЧЕРТЕЖИ ВИДЕО… Мой генератор водорода на автомобиль своими руками
Главная › Новости
Опубликовано: 23. 10.2017
Автомобиль работающий на водороде (на воде). Своими рукамиНи кто не выпустит на рынок двигатель, который можно заправить просто набрав стакан воды из океане. Вот если бы его машина могла ездить на морской воде без дополнительной обработки, тогда да — прорыв. Вот в ядерный двигатель, в качестве энергетической установки для автомобиля, я охотней поверю.
hho 3L/min,Oxyhydrogen.Авто на воде электролизёр Брауна своими руками КИА ШУМА ИНЖЕКТОР
Двигатель работает мягче, снижается уровень вибраций, и становится более отзывчивым на малых скоростях и низких оборотах. Напомним – три месяца автомобиль тестировали в режимах загородных поездок и ежедневной городской эксплуатации, а также на динамометрическом мощностном стенде.
Авто на воде Экономия топлива на автомобиле до 55% HHO
И вот в наши руки попала инжекторная Daewoo Nexia с уже более «продвинутой» системой.
Нам предложили для теста автомобиль, оснащенный одной из таких установок. Совсем недавно autocentre.ua тестировал в Киеве рестайлинговый Toyota RAV4 2016 модельного года с дизельным мотором. Изменения 2015 года оказались настолько серьезными, что с чьей-то легкой руки автомобилю присвоили статус четвертого поколения.
В цилиндр помещаем воду,в количестве 1:10 от его объёма, вытесняем воздух и закрываемклапан, который находится вверху. При прокручивании коленчатого вала по часовой стрелке, поршень начинает двигаться вниз. Вода при этом растягивается. Необходимо только снабдить этот двигатель автоматической системой долива воды, в том случае, если она будет испарятся от нагрева цилиндров, или разбрызгиваться через клапан.
Автомобиль на воде своими руками. 3 вещи, которые можно снизить | Автомобилисты
Если ваш автомобиль работает на воде, то обязательно нужно знать 3 главные вещи. Когда вы станете использовать воду в качестве топлива, то заметите, что затраты на техническое обслуживание машины существенно снизилось.
Вот 3 основные показателя, которые будут снижены, когда вы преобразуете свой автомобиль для работы на воде:
Выбросы окиси углерода
Когда автомобиль будет работать на воде, значительно сократится выброс вредных компонентов топлива. Это означает, что машина будет выбрасывать в атмосферу гораздо меньше окиси углерода, а также других вредных газов и веществ, таких как углеводород и окись азота.
Когда такие газы попадают в атмосферу, то они накапливаются на уровне земли и могут вызывать многие заболевания легких или затрудненное дыхание.
Глобальное потепление
Глобальное потепление является большой проблемой во всем мире, поэтому люди должны быть в курсе событий. Ледники тают, каждый раз происходят значительные изменения в окружающей среде, появляются новые болезни.
Но все это не происходит просто так. Всему виной загрязнение окружающей среды. Загрязнение окружающей среды является главной причиной того, что происходит вокруг. Однако есть довольно много способов, чтобы принять участие в решение этой проблемы. Одним из способов является замена старых подержанных автомобилей.
Вы хотите лучшее решение? Купите новый автомобиль, при этом вы потратите по меньшей мере $17 000. Скорее всего, вы не захотите этого делать. Однако вы можете преобразовать свой автомобиль, чтобы он работал на воде, тем самым вы внесете свой вклад в предотвращение глобального потепления.
Стоимость и частота технического обслуживания
При правильном подключении оборудования вы сможете проехать несколько сотен километров с небольшой бутылкой воды. Необходимость заезжать на заправку два раза в неделю существенно снизится. Это принесет значительную экономию денег, тем более, что при управлении автомобилем на воде двигатель будет работать гораздо ровнее, чище и экономичнее, чем когда-либо ранее.
Автомобиль работающий на водороде (на воде) своими руками
Безусловно, всем понравится идея экономить свои денежные средства и тратить их, например, на свое любимое лакомство. А что думаете вы по этому поводу? Пишите в комментариях 😉
Читайте также:Житель Ставрополя превратил Ниву 2329 в мощный экспедиционный автомобиль (фото)
В сарае нашли 91-летний лимузин Packard, который превратили в эвакуатор (фото)
Как выглядит «Москвич», который провел в сыром гараже 25 лет (фото)
В Голландии УАЗ «Буханку» автодом продают за 23 тысячи евро! (фото)
Toyota планирует выпустить в 10 раз больше водородных электромобилей Mirai второго поколения, чем первого
Инертность корпорации Toyota в сегменте «чистокровных» электромобилей можно объяснить колоссальными вложениями в разработку автомобиля Mirai на водородных топливных элементах.
Источник изображения: Toyota
Выпуск водородомобиля Mirai первого поколения осуществлялся мелкими сериями, на том же предприятии, которое выпускало суперкар Lexus LFA, а это негативно сказывалось на конечной стоимости машины. В тех редких случаях, когда Mirai первого поколения передавался в собственность владельца, последний должен был выложить не менее $60 000. Преемник, который уже готов выйти на рынок, снизит рыночную стоимость до $50 000.
Впрочем, главным сдерживающим фактором распространения Mirai по планете остаётся даже не высокая цена, а ограниченное развитие заправочной инфраструктуры — чтобы вырабатывать электрический ток для двигателей, это транспортное средство должно заправляться водородом под высоким давлением. Добыча водорода из воды методом электролиза хоть и является самым экологически чистым способом получения топлива, требует высоких затрат не только на сам процесс электролиза, но и на последующую транспортировку и хранение. В этом смысле заправочные станции выгоднее объединять с установками по электролитическому преобразованию воды в водород и кислород.
Источник изображения: Engadget
Mirai второго поколения сможет хранить в трёх резервуарах 5,6 кг водорода, что больше присущих предшественнику 4,6 кг. Это соответствует условному запасу хода в 650 км, а пополнить запасы топлива можно минут за пять. Конструкция машины подразумевает наличие трёх резервуаров для хранения водорода, один из них разместился под полом салона в районе центрального тоннеля. Последний из-за этого получился достаточно объёмным — он не только отчётливо разделяет водителя и переднего пассажира, но и должен создавать определённые неудобства для среднего пассажира на заднем диване, который номинально на присутствие в салоне может претендовать.
Силовая установка Mirai после смены поколений увеличила отдачу с 114 до 128 кВт, при этом занимаемое ею пространство уменьшилось с 33 до 24 литров. Тяговый аккумулятор сократил количество ячеек с 370 до 330 штук, но эффективность хранения заряда увеличилась. В совокупности, все технические изменения позволили увеличить запас хода Toyota Mirai на 30 % по сравнению с предшественником, до 650 км. Представители компании отмечают, что автомобиль ещё и ускоряется быстрее, а наличие заднего привода и почти идеальная развесовка по осям (50 : 50) наделяет его азартной управляемостью.
В новом поколении Toyota Mirai делит платформу с флагманским седаном концерна, Lexus LS. От него машина унаследовала не только многорычажную заднюю подвеску, но и более роскошный интерьер, при этом сократив стоимость по сравнению с первым поколением водородомобиля. Toyota рассчитывает продать десятки тысяч Mirai второго поколения, а в лучшем случае — не менее сотни тысяч. Попутно придётся развивать и заправочную сеть, но соответствующих инициатив сейчас не так много по сравнению с теми же зарядными станциями для электромобилей. В самой Японии, например, сейчас не более 127 водородных заправочных станций, а по данным правительства страны, для удобства эксплуатации соответствующих машин их количество надо увеличить до 900 штук, как минимум.
Даже если Mirai не позволит Toyota завоевать значимую долю рынка легковых автомобилей с силовыми установками нового поколения, полученный опыт корпорация сможет использовать при создании грузового и железнодорожного транспорта на водородных топливных ячейках.
Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля
Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород.
Генератор водорода: устройство и его принцип работы
Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.
Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.
Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.
Перед тем как приступить к использованию генератора водорода, нужно тщательно ознакомиться с инструкцией
Водяной двигатель имеет такое устройство:
- Генератор водородного типа, где и происходит электролиз;
- Горелка, она устанавливается в самой топке;
- Котел, он выполняет функцию теплообменника.
На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.
Водородный генератор: его достоинства и недостатки
Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.
Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.
Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.
Водородный реактор имеет свои преимущества:
- Работает на воде;
- Экономит электричество;
- Является экологически чистым;
- Высокий КПД;
- Простота обслуживания.
Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.
Самодельный водородный генератор: пошаговая инструкция
Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.
Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.
Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.
Инструкция изготовления:
- Из листа нержавейки вырезаем 16 одинаковых пластин.
- Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
- Противоположный угол обязательно спиливаем.
- Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
- Стягиваем всю конструкцию гайками, получается батарея.
- Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
- Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.
Чтобы сделать самодельный водородный генератор, нужно предварительно посмотреть обучающее видео и изучить советы профессионалов
Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.
Электролизер для автомобиля: виды катализаторов
Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.
Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.
Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.
Существует несколько видов катализаторов:
- Цилиндрические;
- С открытыми пластинами или их еще называют сухими;
- С раздельными ячейками.
Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.
Авто на воде своими руками: чертежи (видео)
В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.
Добавить комментарий
Водородный двигатель автомобиля — как работает и основные недостатки
Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.
Как работает
Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.
Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.
Потому что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90%, уходит от 15 минут до часа в зависимости от окружающей температуры.
В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.
Главные недостатки
Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.
Серьезный недостаток — энергетическая эффективность. Если использовать водород только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.
Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.
Если производить автомобили с водородными двигатели, то где взять заправки? В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать на водородном топливе и бензине. Владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.
Лет через десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии не радуют. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.
Возможно, исследователи нашли лучший способ получения водорода для автомобилей.
Хотя электромобили прошли долгий путь — даже Ford производит электрические грузовики — они все еще далеки от совершенства. Одна из самых больших жалоб заключается в том, что батареи необходимо подключать и заряжать, и даже когда они заряжены, их диапазон ограничен. Электромобили на топливных элементах предлагают альтернативу. Их «аккумулятор» — фактически водородно-кислородный топливный элемент — можно пополнять газообразным водородом. На сегодняшний день самой большой проблемой является то, что производство водорода не является экологически безопасным процессом. Нам также понадобится инфраструктура для заправки водородом. Но новая технология UMass Lowell может устранить эти препятствия.
Исследователи создали способ производства водорода по запросу с использованием воды, двуокиси углерода и кобальта. Теоретически он попадет прямо в топливный элемент, где смешается с кислородом для выработки электроэнергии и воды. Затем электричество питало двигатель электромобиля, аккумулятор и фары.
Согласно УМассу Лоуэллу, производимый водород имеет чистоту 95 процентов, и автомобили не нужно заправлять на заправочной станции.Вместо этого владельцы заменили бы канистры с металлическим кобальтом, который питал бы водородный генератор. Поскольку технология может производить водород при низких температурах и давлениях, а излишки не хранятся в автомобиле, это сводит к минимуму риск возгорания или взрыва. Хотя это еще не практическое применение, оно может помочь сделать FCEV жизнеспособным вариантом.
Исследователи из Университета Массачусетса Лоуэлла открыли эффективный способ производства водорода для электромобилей https://t. co/ON6CrK6R9Q #electriccars #umasslowell #greenhousegases #renewabletech pic.twitter.com/e3gUWOIXeM
— UMass Lowell (@UMassLowell) 7 марта 2019 г.
ОБНОВЛЕНИЕ, 22.03.2019, 14:30 по восточному времени: Эта история была обновлена, чтобы отразить, что автомобили не заправляются на заправочной станции. Вы можете прочитать заявление председателя химического факультета Университета Массачусетса Лоуэлла профессора Дэвида Райана ниже:
Разработанная нами система не требует дозаправки автомобиля на водородной заправке. Наша технология будет использовать канистры с металлическим кобальтом в качестве топлива для работы водородного генератора.Канистры будут заменены при израсходовании. На самом деле еще рано говорить, но обычно цель состоит в том, чтобы проехать от 350 до 400 миль для большинства автомобилей до «дозаправки».
Новый способ сделать водородную энергию из воды намного дешевле
Ученые показывают, как использование только воды, железа, никеля и электричества позволяет производить водородную энергию гораздо дешевле, чем раньше.
Автомобили с водородным двигателем вскоре могут стать больше, чем просто новинкой после того, как группа ученых под руководством UNSW продемонстрировала гораздо более дешевый и устойчивый способ производства водорода, необходимого для их работы.
В исследовании, опубликованном недавно в Nature Communications, ученые из Университета штата Южный Уэльс в Сиднее, Университета Гриффита и Технологического университета Суинберна показали, что улавливание водорода путем отделения его от кислорода в воде может быть достигнуто за счет использования в качестве катализаторов дешевых металлов, таких как железо и никель, которые ускоряют эта химическая реакция требует меньше энергии.
Железо и никель, которые в изобилии встречаются на Земле, заменят драгоценные металлы рутений, платину и иридий, которые до сих пор считаются эталонными катализаторами в процессе «расщепления воды».
Профессор школы химии UNSW Чуан Чжао говорит, что при расщеплении воды два электрода прикладывают к воде электрический заряд, который позволяет отделять водород от кислорода и использовать его в качестве энергии в топливном элементе.
«Мы покрываем электроды нашим катализатором, чтобы снизить потребление энергии», — говорит он. «На этом катализаторе есть крошечный наноразмерный интерфейс, где железо и никель встречаются на атомном уровне, который становится активным центром для расщепления воды. Здесь водород может быть отделен от кислорода и уловлен в качестве топлива, а кислород может быть выделен как экологически безопасные отходы.”
В 2015 году команда профессора Чжао изобрела никель-железный электрод для выработки кислорода с рекордно высокой эффективностью. Однако профессор Чжао говорит, что железо и никель сами по себе не являются хорошими катализаторами для производства водорода, но там, где они соединяются в наномасштабе, «происходит волшебство».
«Наноразмерный интерфейс в корне меняет свойства этих материалов», — говорит он. «Наши результаты показывают, что никель-железный катализатор может быть таким же активным, как и платиновый, для производства водорода.
«Дополнительным преимуществом является то, что наш никель-железный электрод может катализировать образование как водорода, так и кислорода, поэтому мы можем не только сократить производственные затраты за счет использования элементов, богатых землей, но также и затраты на производство одного катализатора вместо двух».
Беглый взгляд на сегодняшние цены на металлы показывает, почему это может изменить правила игры, необходимые для ускорения перехода к так называемой водородной экономике. Цена на железо и никель составляет 0,13 и 19,65 доллара за килограмм.Напротив, рутений, платина и иридий оцениваются в 11,77, 42,13 и 69,58 долларов за грамм — другими словами, в тысячи раз дороже.
«В настоящий момент, когда мы экономим на ископаемом топливе, у нас есть огромный стимул перейти к водородной экономике, чтобы мы могли использовать водород в качестве экологически чистого энергоносителя, которого много на Земле», — говорит профессор Чжао.
«Мы говорили о водородной экономике целую вечность, но на этот раз похоже, что она действительно приближается.”
Профессор Чжао говорит, что если технология разделения воды получит дальнейшее развитие, однажды могут появиться водородные заправочные станции, похожие на сегодняшние заправочные станции, куда вы могли бы пойти и заправить свой автомобиль на водородных топливных элементах водородным газом, полученным в результате этого разделения воды. реакция. Заправку можно было произвести за считанные минуты по сравнению с часами в случае электромобилей с питанием от литиевых батарей.
«Мы надеемся, что наши исследования могут быть использованы такими станциями для производства собственного водорода с использованием устойчивых источников, таких как вода, солнечная энергия и эти недорогие, но эффективные катализаторы.”
Ссылка: «Общее электрохимическое расщепление воды на гетерогенной границе раздела никеля и оксида железа» Брайан Х. Р. Сурьянто, Юн Ван, Розали К. Хокинг, Уильям Адамсон и Чуан Чжао, 6 декабря 2019 г., Nature Communications .
DOI: 10.1038 / s41467-019-13415-8
Авторы исследовательской работы: Брайан Сурьянто (UNSW), Юн Ван (Griffith), Розали Хокинг (Swinburne), Уильям Адамсон (UNSW) и Чуан Чжао (UNSW).
Как работают топливные элементы в водородных автомобилях?
Как работают топливные элементы в водородных автомобилях? — Объясни этоРеклама
Криса Вудфорда. Последнее обновление: 15 марта 2020 г.
Столетие назад или около того, количество автомобилей на Земле исчисляется тысячами. Сегодня существует около миллиарда автомобилей — примерно одна на каждые семь человек на планете, и ожидаемое количество достигнет 2 миллиардов к 2040 году. Думайте о Земле как о гигантской заправочной станции с ограниченным запасом топлива, и вы довольно быстро поймете что у нас проблема. Многие геологи думают, что мы достигли точки они называют «пиком нефти», а в ближайшие несколько десятилетий поставки бензина (и все остальное, сделанное из нефти) начнет истощаться.Если такое случается, откуда все наши машины будут получать топливо? Кратковременное решение — повысить эффективность использования топлива. от существующих автомобилей. В долгосрочной перспективе решение может быть переключение автомобилей с бензиновых и дизельных двигателей на электрические топливные элементы, которые немного похожи на батареи, работающие на водороде газ, который никогда не выходит из строя. Бесшумные и экологически чистые, они среди самые чистые и экологически чистые источники энергии из когда-либо созданных. Они все, кем обещаны быть? Давайте подробнее рассмотрим, как они работают!
Фото: демонстрационный автомобиль Ford Motor Company на водородных топливных элементах (модифицированный Ford Focus).Фото любезно предоставлено Космическим центром Кеннеди НАСА (NASA-KSC).
Что такое топливные элементы?
Фото: Под капотом автомобиля Ford на водородных топливных элементах. Фото любезно предоставлено Ford Motor Company и Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии.
На самом деле есть всего два способа привести в действие современный автомобиль. Большинство машин на Дорога сегодня использует двигатель внутреннего сгорания сжигать топливо на нефтяной основе, выделять тепло и толкать поршни вверх и вниз, чтобы вести трансмиссию и колеса.Электрический машины работают совершенно по-другому. Вместо двигателя они полагаться на батареи, которые питают электроэнергией электродвигатели, приводящие в движение колеса напрямую. Гибридные автомобили имеют оба двигатели внутреннего сгорания и электрические двигатели и переключайтесь между ними в соответствии с условиями вождения.
Топливные элементы чем-то напоминают нечто среднее между двигателем внутреннего сгорания. мощность двигателя и аккумулятора. Как двигатель внутреннего сгорания, они производят мощность за счет использования топлива из бака (хотя топливо находится под давлением водородный газ, а не бензин или дизельное топливо).Но, в отличие от двигателя, топливный элемент не сжигает водород. Вместо этого он слит химически с кислородом воздуха для получения воды. В процессе, что похоже на то, что происходит в батарее, электричество высвобождается и это используется для питания электродвигателя (или двигателей), который может приводить в действие средство передвижения. Единственный продукт отходов — это вода, и она настолько чиста, что вы можете выпей это!
Думайте о топливных элементах как о батареях, которые никогда не разряжаются. Вместо медленно истощая химические вещества внутри них (как это делают обычные батареи), топливные элементы работают на постоянном запасе водорода и продолжают производить электричество до тех пор, пока в баке есть топливо.
Как топливный элемент производит электричество из водорода?
То, что происходит в топливном элементе, называется электрохимическим реакция. Это химическая реакция, потому что она включает соединение двух химических веществ. вместе, но это тоже электрическая реакция, потому что электричество производится по мере протекания реакции.
Топливный элемент состоит из трех основных частей, аналогичных элементам батареи. Это имеет положительно заряженный вывод (показан красным), отрицательно заряженный терминал (синий) и разделяющее химическое вещество, называемое электролитом, между двумя (желтый) держать их отдельно.(Думайте об этом как о бутерброде с ветчиной. клеммы — это куски хлеба, а электролит — это ветчина между ними.)
Вот как топливный элемент производит электричество:
- Газообразный водород из резервуара (показан здесь большими коричневыми пятнами) подается по трубе к положительной клемме. Водород легко воспламеняется и взрывоопасен, поэтому танк должен быть очень сильным.
- Кислород из воздуха (большие бирюзовые капли) спускается по второй трубе к отрицательной клемме.
- Положительный вывод (красный) изготовлен из платины, катализатора из благородного металла. разработан, чтобы ускорить химический процесс, происходящий в топливном элементе.Когда атомы газообразного водорода достигают катализатор, они расщепляются на ионы водорода (протоны) и электроны (маленькие черные капли). На случай, если вы запутались: ионы водорода — это просто атомы водорода с удаленными электронами. Поскольку у них есть только один протон и один электрон, ион водорода — это то же самое, что протон.
- Протоны, будучи положительно заряженными, притягиваются к отрицательному выводу (синий) и проходят через электролит. (желтый) к нему. Электролит представляет собой тонкую мембрану из специальной полимерной (пластиковой) пленки. и только протоны могут проходить через него.
- Тем временем электроны проходят по внешнему контуру.
- При этом они приводят в действие электродвигатель (оранжевый и черный), который приводит в движение колеса автомобиля. В конце концов, они тоже приходят к отрицательной клемме (синей).
- На отрицательном полюсе протоны и электроны рекомбинируют с кислородом воздуха в химической реакции, в результате которой образуется вода.
- Вода выходит из выхлопной трубы в виде водяного пара или пара.
Этот тип топливного элемента называется PEM (разные люди говорят, что это означает полимерную обменную мембрану или протонообменную мембрану, потому что она включает обмен протонами через полимерную мембрану).Это будет держать работает до тех пор, пока есть запасы водорода и кислорода. Поскольку в воздухе всегда много кислорода, единственное ограничение Фактором является количество водорода в резервуаре.
Стек топливных элементов
Один топливный элемент производит примерно столько же электроэнергии, сколько одиночная батарея с сухими элементами, которой недостаточно для питания портативного компьютера, не говоря уже о машине. Вот почему в топливных элементах, предназначенных для автомобилей, используются стеки. топливных элементов, соединенных вместе в серию.Общее электричество они продукция равна количеству ячеек, умноженному на мощность каждой клетка производит.
Виды топливных элементов
Фото: Вот как на самом деле выглядит топливный элемент. Это типичный водородный топливный элемент с протонообменной мембраной (PEM), который может производить 5 киловатт (5000 ватт) энергии. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / National Лаборатория возобновляемой энергии (DOE / NREL).
Топливные элементы PEM (иногда называемые PEMFC) в настоящее время инженеры предпочитают приводить в движение автомобили, но они никоим образом не возможен только дизайн.Так же, как есть много видов батарей, каждая используя различные химические реакции, поэтому существует много видов топлива ячейка тоже. Космические аппараты используют более примитивную конструкцию, называемую щелочным. топливный элемент (AFC), в то время как гораздо большее количество энергии может быть генерируется альтернативной конструкцией, известной как твердооксидный топливная ячейка (ТОТЭ). Микробные топливные элементы имеют дополнительную особенность: они используют бак бактерий для переваривания сахара, органических веществ или другого топлива и производить электрический ток (который может использоваться для питания двигатель) или водород (который может питать топливный элемент обычным способом).Другая возможность — иметь автомобиль с солнечной панелью на крыше, который использует электричество Солнца для разделения воды на водород и кислород. электролизер (см. вставку ниже). Затем эти газы рекомбинируются в топливном элементе для производства электроэнергии. (Преимущество такого подхода вместо прямого использования энергии Солнца в том, что вы можете накапливать водород в дневное время, когда светит Солнце, а затем использовать его для движения топливный элемент ночью.)
Откуда возьмется весь водород?
За последние 150 лет практически каждая машина бег по жидкости мы весьма сбивчиво называем газом. Но в следующие 150 лет многие люди думают, что автомобили будут работать на настоящем газе: водород. Теоретически запустить автомобили на водороде — отличная идея: это самый простой способ. и наиболее распространенный химический элемент, и он составляет подавляющее большинство (что-то вроде трех четвертей) всего вещества во Вселенной. Значит, хватит всем! Но есть загвоздка: ковыряться в воздухе вокруг вас, и вы не найдете много водорода — только около одного литр водорода на каждый миллион литров воздуха. (В натуральном выражении это то же самое, что случайно найти около двух литров воды перепутал в каждом олимпийском бассейне полный).Так откуда же взяться всем огромным облакам водорода, чтобы управлять нашим глобальным автопарком? Нам нужно будет сделать его самим из воды, волшебного вещества, которое покрывает 70 процентов поверхности Земли, частично состоит из водорода. Разделите старый добрый h3O на части, и вы получите h3 (водород) и O2 (кислород). Как ты это делаешь? С электролизером!
Электролизеры и электролизеры
Электролизер — это часть электрохимического аппарата (нечто который использует электричество и химию одновременно), предназначенный для выполнять электролиз: расщеплять раствор на атомы, из которых он состоит, пропуская через него электричество. Электролиз был впервые был разработан в 18 веке британским химиком сэром Хамфри Дэви. (1778–1829), который использовал примитивную батарею под названием Гальваническая свая открыть ряд химических элементов, включая натрий и калий.
Электролизер немного похож на аккумулятор, работающий в обратном направлении:
- В аккумуляторе химикаты упакованы в герметичный контейнер с двумя электрические клеммы погружаются в них. При подключении клеммы в цепь, химические вещества вступают в реакцию внутри контейнер и производят электричество, которое течет по цепи.(Подробнее об этом читайте в нашей основной статье об аккумуляторах.)
- В электролизере вы помещаете раствор в емкость и окунаете два клеммы в него. Вы подключаете клеммы к аккумулятору или другому источник питания и пропускать электричество через раствор. Химическая происходят реакции, и раствор распадается на атомы. Если раствор, который вы используете, — это чистая вода (h3O), вы обнаружите, что она быстро распадается в газообразный водород (на отрицательном электроде) и газообразный кислород (на положительный электрод). Их относительно легко собрать и хранить газы для использования в будущем.
Фото: Демонстрация водородной энергии. Свет (от Солнца) попадает в солнечную батарею (синий прямоугольник слева),
делая электричество. Электролизер использует эту электрическую энергию для разделения воды на кислород и водород.
(собраны в пробирки в середине рисунка). Затем водород подается в топливный элемент (металлический
ящик справа), который производит электричество
и зажигает лампу (справа). Фотографии Уоррена Гретца любезно предоставлены Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).
Как работает электролизер?
Вот как очень простой электролизер производит водород из воды:
- Аккумулятор соединяет положительную клемму (иногда называемую анодом) с отрицательной клеммой (или катодом) через электролит. В простом лабораторном эксперименте электролитом может быть чистая вода. В реальном электролизере производительность значительно улучшается за счет использования твердой полимерной мембраны в качестве электролита, которая позволяет ионам перемещаться через нее.
- При включении питания вода (h3O — показаны здесь как две красные капли, соединенные с одной зеленой) распадается на положительно заряженные ионы водорода (атомы водорода без электронов показаны красным) и отрицательно заряженные ионы кислорода (атомы кислорода с дополнительными электроны, показаны зеленым).
- Положительные ионы водорода притягиваются к отрицательному полюсу и попарно рекомбинируют с образованием газообразного водорода. (h3).
- Аналогичным образом отрицательные ионы кислорода притягиваются к положительному выводу и попарно рекомбинируют там с образованием газообразного кислорода. (O2).
Почему топливные элементы так долго завоевывают популярность?
Фото: Может пройти некоторое время, прежде чем насосы для заправки водородом станут обычным явлением. Фото любезно предоставлено Исследовательским центром Гленна НАСА.
« На протяжении десятилетий водород был Дракулой автомобильного топлива: когда вы думаете, что ставка прошла через его сердце с нулевым уровнем выбросов, технология восстает из могилы».
Лоуренс Ульрих
The New York Times, апрель 2015 г.
Люди провозглашали топливные элементы следующим большим достижением в области энергетики поставляет с 1960-х годов, когда космический корабль Аполлона ракеты впервые продемонстрировали практичность этой технологии. Четыре десятилетия спустя на наших улицах почти нет автомобилей на топливных элементах — из-за множества причины. Во-первых, мир настроен на производство бензиновых двигателей за счет миллион, поэтому они, естественно, намного дешевле, лучше протестированы и многое другое надежный. Купить обычную машину можно за несколько тысяч. долларов / фунт, но до недавнего времени автомобиль на топливных элементах стоил бы вам тысячи.(«Относительно доступный» автомобиль Toyota Mirai наконец стал широко доступен в 2016 году. по цене чуть менее 60 000 долларов США, что вдвое превышает цену его гибрида Prius. Отчасти поэтому некоторые автомобили на топливных элементах доступны только в лизинг. распоряжения. В 2020 году автомобиль Honda Clarity Fuel Cell можно будет арендовать за относительно скромные 379 долларов в месяц.) Стоимость — не единственная проблема. Также есть огромное экономия на нефти для поддержки бензиновых двигателей: есть гаражи везде, где обслуживают бензиновые автомобили и заправочные станции повсюду, чтобы снабжать их топливом.Напротив, почти никто ничего не знает об автомобилях на топливных элементах, и в них практически нет заправки станции подачи сжатого водорода. «Водородная экономика» — это далекая мечта.
Легко понять, как может работать мир, полный водородных автомобилей. У нас было бы много заводов по производству электролизеров по всему миру. водородный газ из воды. Теперь газы занимают гораздо больше пространство, чем жидкости или твердые тела, поэтому нам нужно повернуть водород газ в жидкий водород, что упрощает транспортировку и хранение, сжав его до высокого давления.Затем мы транспортировали водород на заправочные станции («водородные станции»?) где люди могли бы заправлять его в свои автомобили, которые работали бы на топливных элементах вместо обычных бензиновые двигатели.
Беда с водородом
Но вы видите проблему? Для производства водорода электролизом используется энергия — и довольно много: мы должны использовать электричество для разделения воды. Если мы будем использовать обычные солнечные батареи для обеспечения этого электричества, их эффективность может составить около 10 процентов. в то время как электролизер может иметь КПД 75 процентов, что дает жалкую общую эффективность всего лишь 7.5 процентов. Это довольно плохое начало — а это только !
Мы также используем энергию для транспортировки водорода и его сжатия (превращая газообразный водород в жидкость), чтобы автомобили могли перевозить его в своих баках в количестве, достаточном для поездки куда угодно. Это настоящая проблема, потому что плотность энергии водород (количество энергии, которое он несет на единицу своего объема или массы), равно только около пятой бензина. Другими словами, вам нужно в пять раз больше, чтобы зайти так далеко (при условии, что ваш водородный автомобиль тяжелый, как ваш бензиновый, что может быть не так — потому что бензиновым автомобилям нужны тяжелые двигатели и трансмиссии). Другая проблема в том, что водород трудно хранить в течение длительного времени, потому что он чрезвычайно крошечные молекулы легко утекают из большинства контейнеров, а поскольку водород легко воспламеняется, утечка может вызвать ужасные взрывы.
И затем, конечно, есть все недостатки на противоположном конце процесса, когда топливный элемент Автомобиль превращает водород обратно в электричество, чтобы приводить в действие электродвигатели, приводящие в движение его колеса.
Водород не является топливом
« …водород — это разрекламированная подножка … Водород не является чудесным источником энергии; это просто энергоноситель, как аккумулятор. И это довольно неэффективная энергия носитель, с кучей практических недоработок ».
Профессор Дэвид Маккей
Устойчивая энергетика без горячего воздуха
Водород сам по себе не является топливом, а просто средством транспортировки топлива, полученного в результате какого-либо другого процесса. Так что лучше сравнить с батареями (еще один способ упаковки и транспортировки энергии) чем бензин (настоящее топливо).В целом, сегодняшние водородные автомобили значительно менее эффективны, чем лучшие электромобили, работающие от батарей, и часто менее эффективны, чем обычные автомобили с бензиновым или дизельным двигателем! Мы могли бы использовать солнечные элементы для электролиза воды «для бесплатно », но мы могли бы с таким же успехом хранить ту же энергию в батареях и использовать их для питания наших автомобилей. Автомобили на топливных элементах звучат многообещающе, но если автомобили с аккумулятором действительно лучше, водород может оказаться дорогим отвлечение от важного дела по переключению мира с ископаемого топлива к возобновляемым источникам энергии.
Все эти проблемы, подытоженные, объясняют, почему сторонники аккумуляторных автомобилей, такие как Илон Маск из Tesla, любят высмеивать водород. автомобили как «автомобили для дурацких камер».
Но и у водорода есть свои плюсы!
Так почему люди все еще ищут топливные элементы? Потому что, как утверждают их сторонники, у них есть множество преимуществ перед другими электроэнергетическими технологиями. Если на зарядку автомобиля с батарейным питанием может уйти от получаса до целой ночи, вы можете заправить водородный автомобиль всего за пять минут — так же быстро, как вы можете заправить бензобак обычного автомобиля.Запас хода автомобилей с батарейным питанием также был предметом споров. Современные модели заявляют, что могут проехать сотни километров или миль без подзарядки, но не все из них справляются с этим; это зависит от того, сколько энергии вы используете для других целей во время вождения; и дальность действия снижается по мере старения аккумулятора. Автомобили на топливных элементах, напротив, имеют такой же запас хода, что и обычные газовые автомобили, хотя их характеристики ухудшаются с возрастом. В то время как аккумуляторные технологии, возможно, лучше всего работают в небольших автомобилях, топливные элементы одинаково хороши для более крупных автомобилей и грузовиков.Некоторые из этих вещей могут измениться со временем по мере развития и развития двух конкурирующих технологий — водородных топливных элементов и аккумуляторов.
Что-нибудь, кроме масла?
Таким образом, до тех пор, пока масло не станет дороже, у автомобилистов будет мало или нет стимула переходить на автомобили на топливных элементах. Даже тогда есть соперники технологии, которые могут остановить распространение автомобилей на топливных элементах. Мы могут придерживаться двигателей внутреннего сгорания, но питать их биотопливом. Или может оказаться более эффективным строить электромобили с бортовыми аккумуляторами, которые заряжаются на дома.Или, возможно, массовый переход на гибридные автомобили с бензиновыми двигателями. и электродвигатели, продлят нам мировые поставки нефти придумать совершенно новую технологию — возможно, даже атомные автомобили! Никто не знает, что нас ждет в будущем, но одно можно сказать наверняка: нефть будет играть в нем гораздо меньшую роль. Чем раньше мы обнимемся альтернативы — электромобили на батареях, биотопливо, топливные элементы или что-то еще — тем лучше.
Узнать больше
На этом сайте
На других сайтах
- Министерство энергетики США: Транспортные средства на топливных элементах: Руководство правительства США по плюсам и минусам автомобилей на топливных элементах, включая то, как они работают, что в них хорошего и плохого, и какую экономию топлива можно ожидать. Есть также видео тест-драйва некоторых современных автомобилей на водородных топливных элементах.
- California Fuel Cell Partnership: Промышленное лобби, продвигающее использование технологии топливных элементов. На сайте много полезной справочной информации.
- Водородная экономика: всестороннее введение в Википедии о плюсах, минусах и практических вопросах, связанных с использованием водорода в качестве альтернативы ископаемому топливу.
- Национальный исследовательский центр топливных элементов, Калифорнийский университет в Ирвине: хорошая отправная точка для получения более подробной технической информации.
Статьи
- Toyota раскрывает план по превращению грузовиков в экологически чистые «электростанции» Джиллиан Эмброуз, The Guardian, 17 сентября 2020 г. Грузовики Toyota со встроенными топливными элементами могут работать как мобильные электрогенераторы. ИБП
- для развертывания гибридных топливных элементов / аккумуляторов в качестве грузовиков для доставки с нулевым выбросом, Мария Галлуччи, IEEE Spectrum, 24 августа 2018 г. Грузовики для доставки топливных элементов начинают появляться в экологически чистой Калифорнии.
- Сначала появились водородные автомобили.Теперь заправочные станции Нила Э. Будетта. The New York Times, 18 мая 2017 года. Если великая водородная экономика когда-либо начнет расти, нам понадобится намного больше водородных станций.
- Почему в автомобильном будущем будут доминировать топливные элементы Скотт Самуэльсен, IEEE Spectrum, 5 декабря 2016 г. Энтузиаст топливных элементов отвечает критикам страстной защитой технологии.
- Битва автомобилей с нулевым уровнем выбросов: водородные или электрические? Руперта Вингфилд-Хейса. BBC News, 8 июня 2015 г.Toyota, пионер гибридных автомобилей, теперь делает ставку на водородные топливные элементы как на способ увеличения дальности действия электромобилей.
- «Автомобили на водородных топливных элементах» возвращаются для очередного пробега Лоуренса Ульриха The New York Times, 16 апреля 2015 года. Почему автопроизводители снова обращаются к топливным элементам. Портативная солнечная электростанция
- очищает воду и производит водород, Вилли Джонс, IEEE Spectrum, 20 октября 2010 г. Новое изобретение для оказания помощи при стихийных бедствиях позволяет очищать воду, вырабатывать электричество и производить водород с помощью бортового электролизера и топливного элемента.
- Наследие Apollo на топливных элементах Ричарда Холлингема. BBC News, 16 июля 2009 г. Краткий обзор автомобилей на топливных элементах и того, как они были вдохновлены ракетно-космическими технологиями.
- Керамические топливные элементы от Дункана Кларка. The Guardian, 13 июля 2009 г. Как топливные элементы можно использовать для производства электроэнергии в доме.
- Toshiba разрабатывает крошечный топливный элемент: BBC News, 24 июня 2004 г. Топливные элементы могут питать как небольшие приборы, так и автомобили.
Книги
Топливные элементы и водородная экономия
Электролизеры и ионный обмен
Патенты
- Патент США 7241950: Электролиз воды на солнечных батареях для получения водорода и кислорода, автор Qinbai Fan и др. , Институт газовой технологии, 10 июля 2007 г.Современный, высокоэффективный электролизер на солнечной энергии.
- Патент США 1 495 681: Электролизер для производства водорода и кислорода, Джакомо Фаузер, 27 мая 1924 г. Относительно простой водородно-кислородный электролизер начала 20 века.
Деятельность
- [PDF] Работа с топливными элементами НАСА: Отличная небольшая активность для 5–12 классов. Вы можете построить автомобиль на топливных элементах и заправить его водородом, полученным путем расщепления воды.
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Крис Вудфорд 2008, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.
Следуйте за нами
Поделиться страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:
Цитировать эту страницу
Вудфорд, Крис.(2008/2018) Топливные элементы. Получено с https://www.explainthatstuff.com/fuelcells.html. [Доступ (укажите дату здесь)]
Больше на нашем сайте …
Как построить водородный генератор для работы вашего автомобиля на воде
Многие люди интересовались, как построить водородный генератор для работы вашего автомобиля на воде, потому что современное общество сосредоточено на чистой прибыли, общей картине и том, кто может не отставать от Джонсов дольше всех, пока не сломается карманная книга.Все мы знаем, что этим правительством управляют нефтяные компании. Они защищают их нашей жизнью, но что происходит, когда нам больше не нужна их нефть или, по крайней мере, большая ее часть? Это означает, что борьба за запасы нефти идет на убыль, с ней идет бессмысленное количество погибших, и мы наконец можем стать свободными и справедливыми. Однако пока этого не произойдет, мы застряли.
Нефтяные компании ненавидят покупать электромобили или гибриды, им не нравятся альтернативные виды топлива, такие как растительное масло, вода или этанол. Так что же нам тогда делать? Мы делаем то, что делали наши предки — сопротивляемся.Их не устраивали налоги, поэтому они выпили чаю за бортом в Бостоне — мы по возможности перестаем использовать газ и нефть. Гибриды дороги, потому что они хотят удержать нас от покупки, пока они не придумают, как на них заработать.
Водород может стать следующим большим достижением, и я смог построить водородный генератор менее чем за 125 долларов! И все, что мне нужно было сделать, это спуститься в Home Depot — в результате мои счета за бензин в моей машине были разделены пополам. К сожалению, вы не можете отказаться от двигателя внутреннего сгорания в автомобиле — генератор водорода дополняет его, повышая эффективность использования бензина в автомобиле.Увеличивается расход бензина, вы сжигаете меньше топлива и вот она: экономия.
Для создания водородного генератора вам потребуется подробное руководство, необходимые инструменты и некоторые технические ноу-хау. Мне не разрешено разглашать что-либо слишком подробно, так как у изобретателей была бы моя шкура или шкура сервера, на котором размещена эта статья. Однако основная «идея» не защищена авторским правом.
Емкость, пусть и небольшая, плотно устанавливается в моторном отсеке. Он наполняется водой и небольшим количеством пищевой соды.Другие соединения в конечном итоге приведут к воде с помощью аккумуляторных кабелей, поэтому, когда автомобильный аккумулятор попадает в воду с пищевой содой, происходит химическая реакция, когда молекулы воды разрушаются до того, что ученые называют «газом Брауна». Газ Брауна использует вакуум двигателя, чтобы попасть в коллектор двигателя, а затем в двигатель, где он смешивается с обычным бензином. Это заставляет бензин гореть более плавно и эффективно — если хотите, полное сгорание.
Не волнуйтесь — нет никакого вмешательства в двигатель или компьютер, и это устройство работает с системами впрыска топлива, а также с автомобилями последних моделей, в которых используются карбюраторы. Вы можете получить 50-100% расхода бензина. Как я уже сказал ранее, цены на газ не упадут, пока мы не перестанем на него полагаться. Пока мы этого не сделаем — они будут расти, пока мы не остановимся, и к тому времени мы все будем банкротами, а политики и нефтяные магнаты останутся на вершине пищевой цепи.
Генераторы водорода для легковых и грузовых автомобилей
Генераторы водорода для легковых и грузовых автомобилей становятся все более популярными.И почему бы и нет, поскольку эти агрегаты могут одновременно увеличивать расход топлива, повышать производительность двигателя и снижать выбросы.
Генераторы водорода для легковых и грузовых автомобилей иногда называют технологией наддува водорода, впрыском водорода или даже технологией добавления водорода. |
Но, что бы вы ни делали, все они работают одинаково.
Идея бортовых генераторов водорода для легковых и грузовых автомобилей заключается в том, что они используют электричество, вырабатываемое автомобилем, для электролиза небольшого количества воды и нагнетания образующихся газов водорода и кислорода во впускную систему автомобиля. Водород и кислород вытесняют часть ископаемого топлива в цилиндрах, помогают бензину или дизельному топливу сгорать более эффективно, увеличивают мощность и уменьшают выбросы загрязняющих веществ из выхлопной трубы.
Заявление об ограничении ответственности: необходимо отметить, что генераторы водорода вызывают споры прямо сейчас, поскольку критики говорят, что они не работают, а если и работают, то не работают так, как рекламируют некоторые производители.
Ниже приведен список некоторых из наиболее популярных комплектов водородных генераторов и самодельных систем, которые в настоящее время представлены на рынке.
Планы DIY для производства водорода
Smack’s Booster — это система, сделанная своими руками, которая показывает гаражным изобретателям, как поэтапно построить установку электролиза.
Комплекты генераторов водорода для автомобилей и легких грузовиков
Комплекты генераторов водорода — включает полную линейку генераторов водорода для легковых и грузовых автомобилей, а также аксессуары. Цены начинаются от 400 долларов.
HHO Kits — включает полные комплекты HHO от 500 до 800 долларов в зависимости от размера вашего автомобиля.Множество дополнительных услуг, если они необходимы для вашего автомобиля.
Hydrogen Boost — это полная система, включающая шланг, комплект проводки, электронную схему управления и руководства. Продается по цене от 1000 до 4000 долларов в зависимости от типа автомобиля.
Green Future Technology предлагает комплект водородного генератора для бензиновых и дизельных автомобилей и грузовиков. Цены начинаются от 1095 долларов.
National Vapor Industries — предлагает несколько различных типов устройств и в настоящее время ожидает рассмотрения заявки в Калифорнийском совете по воздушным ресурсам (CARB).
HydroLectricPower — устройство, работающее только на водороде (не HHO), которое одобрено CARB для снижения выбросов выхлопных газов и, как утверждается, значительно увеличивает расход топлива.
Комплекты генераторов водорода только для легких грузовиков
Примечание — не на работе: Get Hydro Power — это система для легких грузовиков, которая устанавливается в ящике для инструментов или платформе транспортного средства. Системы начинаются с 2095 долларов и доходят до 11 490 долларов.
Комплекты генератора водорода для больших грузовиков
GreenChek Technology — использует систему впрыска водородного топлива для больших грузовиков, дизельных поездов и автобусов.
Преобразование автомобилей с бензиновым двигателем для 100-процентной работы на водороде
Вот компании, занимающиеся переводом обычных бензиновых двигателей внутреннего сгорания для работы на 100-процентном сжатом газообразном водороде:
Межгалактический водород (американские топливные автомобили) — http://americanfuelvehicles.com/
Collier Technologies —
Quantum Fuel Systems Technologies Worldwide Inc. — http://www.qtww.com/
Как видите, существует довольно много вариантов генераторов водорода для легковых и грузовых автомобилей, и постоянно разрабатываются новые.Учитывая рекордно высокие цены на бензин и глобальную угрозу глобального потепления, многие люди сейчас ищут способ использовать меньше топлива. Устройства, перечисленные на этой странице, — шаг в правильном направлении. Для других типов водородных генераторов, пожалуйста, посетите страницу, на которой перечислено множество различных систем, существующих на современном рынке.
Дополнительную информацию о генераторах газообразного водорода и генераторах водорода можно найти в нашем блоге.
HyTech Power, возможно, решил водород, одну из самых сложных проблем в чистой энергии
Это странный химический поворот в том, что топливо встроено в самое обычное вещество на Земле: воду.
Водород — символ славы h3O — оказался чем-то вроде универсального элемента, швейцарского армейского ножа для получения энергии. Его можно производить без парниковых газов. Он легко воспламеняется, поэтому может использоваться в качестве топлива для сжигания. Его можно подавать в топливный элемент для производства электричества напрямую, без сжигания, с помощью электрохимического процесса.
Может храниться и распространяться в виде газа или жидкости. Его можно комбинировать с CO2 (и / или азотом и другими газами) для создания других полезных видов топлива, таких как метан или аммиак.Его можно использовать в качестве химического сырья в различных промышленных процессах, помогая производить удобрения, пластмассы или фармацевтические препараты.
Довольно удобно.
И это самый распространенный химический элемент во Вселенной, так что можно подумать, что у нас есть все, что нам нужно. К сожалению, это не так просто.
Выделять водород из других элементов, хранить его и преобразовывать обратно в полезную энергию — это дорого как с точки зрения денег, так и энергии. Ценность, которую мы получаем от этого, никогда полностью не оправдывала того, что мы вкладываем в его производство.Это одна из тех технологий, которая, кажется, постоянно находится на грани прорыва, но никогда не достигает цели.
Уроженец Сиэтла Эван Джонсон считает, что он может это изменить. Он думает, что наконец-то понял, как разблокировать водородную экономику.
Джонсон — далеко не первый и не единственный человек, поставивший эту цель. Но после 10 лет экспериментов, испытаний и подготовки он разработал ряд технологий и практический бизнес-план, который проложил путь к реальному коммерческому масштабу использования водорода.
И хотя HyTech Power, где Джонсон является техническим директором, очевидно, стремится к финансовому успеху, Джонсон видит в своих продуктах нечто большее: способ использовать водород для немедленного уменьшения загрязнения при одновременном увеличении масштабов и снижении затрат, достаточных для внесения более фундаментальных изменений в энергетику. система.
Стационарный дизель-генератор с водородными форсунками HyTech. HyTech PowerHyTech нацелена на большой рынок, чтобы выйти на еще больший
HyTech Power, базирующаяся в Редмонде, штат Вашингтон, намеревается представить три продукта в течение ближайшего года или двух.
Первый будет использовать водород для очистки существующих дизельных двигателей, повышая их топливную эффективность на треть и устраняя более половины их загрязнения воздуха, со средней окупаемостью за девять месяцев, сообщает компания. Это потенциально огромный рынок с большим существующим спросом, который, как надеется HyTech, позволит капитализировать свой второй продукт — модернизацию, которая превратит любой автомобиль внутреннего сгорания в автомобиль с нулевым уровнем выбросов (ZEV), позволив ему работать на чистом водороде. В первую очередь это будет нацелено на крупные флоты.
И это станет третьим продуктом — тот, на который Джонсон положил глаз с самого начала, тот, который может революционизировать и децентрализовать энергетическую систему — стационарный продукт для хранения энергии, предназначенный для конкуренции и, в конечном итоге, вытеснения с такими большими батареями, как Powerwall Теслы.
По крайней мере, таков план.
Мир энергетики, конечно, полон громких стартапов, и путь от прототипа к рыночному успеху долог и опасен. Для успеха HyTech потребуется нечто большее, чем просто умная технология.Потребуется хорошее исполнение.
С этой целью компания недавно привлекла поддержку нескольких опытных руководителей Boeing, в том числе Джерри Аллина, который проработал 30 лет в Boeing и в декабре вышел на пенсию, чтобы возглавить расширение HyTech в качестве главного операционного директора.
Мягкая и неторопливая, с аккуратно подстриженной бородой, Аллин занимает небольшой офис на втором этаже бежевого здания HyTech, которое в основном занято огромным гаражом / мастерской. «Я, как и обычно, очень скептически относился к технологии», — говорит он, — но «как только я смог увидеть ее собственными глазами и понять физику, я подумал: о боже.Это действительно интересно! »
Его привлекло то, что исходные продукты не требуют новых рынков или инфраструктуры. «Они действительно могут изменить мир сейчас», — говорит он. Главное — сначала добиться дизельных двигателей. Их миллионы, они грязные и дорогие, и политики настаивают на их очистке. Это большой спрос. Компания «ожидает совершить много ошибок», — говорит Аллайн, но потенциальный рынок почти непостижимо велик.
Работа в гараже HyTech, переоборудование больших дизельных грузовиков. HyTech PowerИ ставки выше быть не могут. В последние годы стало ясно, что какое-то топливо с нулевым выбросом углерода, пригодное для хранения, горючее, если не необходимо, для полной декарбонизации энергетической системы, по крайней мере, чрезвычайно полезно.
Перед тем, как углубиться в продукты HyTech, стоит объяснить, почему доступный водород является такой заманчивой перспективой для тех, кто озабочен устойчивой энергетикой.
Проблема с водородом: его дорого собирать, хранить и преобразовывать.
Около 95 процентов мирового производства водорода осуществляется за счет парового риформинга метана (SMR), продувки природного газа высокотемпературным паром под высоким давлением. Это энергоемкий процесс, требующий использования ископаемого топлива и оставляющий после себя поток углекислого газа, поэтому его использование для декарбонизации энергетической системы ограничено.
Но также можно извлечь водород непосредственно из воды с помощью электролиза — это процесс поглощения воды (содержащей различные «электрокатализаторы») электричеством, стимулируя химическую реакцию, которая расщепляет водород и кислород. Если электролиз проводится с использованием возобновляемой электроэнергии с нулевым выбросом углерода, полученный водород является топливом с нулевым выбросом углерода.
Это решает проблему углерода, но есть и другие. Водород в воде на самом деле не хочет выпускать кислород (они «прочно связаны»), поэтому их расщепление требует довольно много энергии. Образующийся водород необходимо хранить, либо сжимая его в виде газа с помощью больших насосов, либо (слабо) связывая его с чем-то еще и храня в виде жидкости. Для этого газа или жидкости потребуется распределительная инфраструктура. Наконец, водород должен быть извлечен из хранилища и преобразован обратно в энергию путем его сжигания или пропуска через топливный элемент.
К тому времени количество энергии, вложенной в процесс, значительно превышает то, что может быть возвращено обратно.
Это был барьер. Если сложить все затраты на преобразование энергии, «добыча» водорода для использования в энергетической системе с нулевым выбросом углерода, как правило, была убыточным бизнесом. Полезные услуги, предоставляемые водородом, не могут компенсировать энергию (и деньги), необходимые для ее производства и использования. По крайней мере, не на сегодняшний день.
Вот почему, хотя люди добывают и сжигают водород с 17-го века, двигатели и топливные элементы, работающие на водороде, существуют примерно с 19-го, а водород пережил многочисленные циклы ажиотажа, вплоть до 21-го века. — разрекламированная «водородная экономика» так и не получила широкого распространения.
Вы не видите таких много вокруг. ShutterstockЕще в конце 2000-х годов большинство экспертов в области энергетики списали водород со счетов. С тех пор изменились две вещи.
Доступный водород может устранить основные препятствия на пути к устойчивой энергетике
Главное, что изменилось, — это глобальный переход на чистую энергию. Чтобы решить проблему изменения климата, мир фактически согласился полностью обезуглерожить энергетическую систему в течение столетия.Это вызвало интенсивные исследования инструментов, необходимых для создания системы с нулевым выбросом углерода.
Мы знаем, как производить электричество с нулевым выбросом углерода (возобновляемые источники, гидроэнергетика, атомная энергия), поэтому одним из ключевых шагов в декарбонизации является «электрификация всего» или, по крайней мере, как можно большего количества видов энергии.
Но масштабная электрификация — непростая задача. Существует множество существующих приложений, работающих на горючем жидком топливе. Помимо практически всего транспорта, подумайте о миллионах и миллионах зданий по всему миру, отапливаемых нефтью или природным газом.
Большая часть транспорта может быть электрифицирована, и все эти печи теоретически можно заменить электрическими альтернативами, такими как тепловые насосы, но сделать все это за оставшееся время для обезуглероживания — поистине монументальная задача.
Конечно, было бы неплохо выиграть время, если бы у нас было жидкое топливо с нулевым выбросом углерода, которое мы могли бы просто использовать в этих существующих системах, чтобы сократить выбросы от транспортных средств и приборов, которые мы уже используем. (Великобритания экспериментирует с отоплением домов водородом; Норвегия запретит любое использование мазута для отопления домов к 2020 году.)
Кроме того, если переменная возобновляемая энергия (солнце и ветер) должна обеспечивать большую часть или всю нашу энергию, нам понадобится какой-то способ хранить эту энергию, когда солнце и ветер не хватает. Нам потребуется не просто посекундное или почасовое хранение (которое вполне может обеспечить батареи), но и ежедневное, ежемесячное или ежегодное хранение (для которого батареи не подходят), чтобы гарантировать от долгосрочных колебаний солнца и ветра. . Было бы неплохо, если бы мы могли хранить много резервной энергии в виде стабильного жидкого топлива.
Короче говоря, в наших планах по устойчивой энергетике есть дыра в форме водорода.
Второе, что изменилось, это то, что исследования, разработки и ранние рыночные испытания неуклонно снижали стоимость и повышали долговечность основных компонентов водородной технологии.
Таким образом, потребность в сочетании с инновациями может, наконец, означать, что под рукой есть рентабельные продукты. Вот почему наблюдается «возрождение водородной активности во всем мире», — говорит Адам Вебер, руководитель группы преобразования энергии в Национальной лаборатории Лоуренса Беркли.
Или, как недавно сказал Пьер-Этьен Франк, секретарь торговой группы Hydrogen Council, «2020-2030 годы будут для водорода такими же, как 1990-е годы для солнечной и ветровой энергии».
Несмотря на все недавние инновации, Джонсон снова и снова обнаруживал, что каждый раз, когда он отказывался от стандартных компонентов и создавал свои собственные — практически каждый элемент в продуктах HyTech спроектирован и изготовлен по индивидуальному заказу, с исходными материалами, заказанными через Интернет, — цена пошла вниз. Не знаю почему.”
Джонсон — высокий, худощавый блондин, заядлый мастер и строитель, глаза которого загораются, когда он говорит о технике. После учебы в Тихоокеанском университете Сиэтла он провел первые 10 лет своей 20-летней карьеры в области сжатия видео. Но работа в Норвегии с Innovation Norway над хранением водородной энергии привела к возникновению у него водородной ошибки. С тех пор он стал истинным верующим. «Ставка на водород в будущем — лучшее, что вы можете сделать», — говорит он.
«Если электролиз действительно настолько дешевле, это меняет правила игры»
Это начинается с электролизера, который вытягивает водород из воды. Джонсон не смог найти такой дешевый, простой и эффективный, как он хотел, поэтому он построил свой собственный.
Электролизер HyTech (в данном случае присоединенный к стационарному дизель-генератору). HyTech PowerНичего особенного, просто трубка с дистиллированной водой. Примерно в центре подвешена небольшая титановая пластина, покрытая специальной смесью электрокатализаторов, оптимизированных для разделения водорода и кислорода.Газы поднимаются от пластины непрерывным потоком пузырьков. Он полностью герметичен, в нем нет движущихся частей, поэтому он чрезвычайно прочен и не требует значительного обслуживания.
В целом, по словам Джонсона, система «очень проста и бессмысленна». (Это тема, к которой он часто возвращается — предпочтение замкнутых, простых, полностью перерабатываемых систем.) Но благодаря эффективности электрокатализаторов, добавляет он, «очень точно, сколько энергии необходимо для производства необходимый водород. ”
Джонсон может похвастаться тем, что его электролизер может производить водород примерно в три или четыре раза быстрее, чем электролизеры с аналогичными габаритами, используя примерно треть электрического тока. Это означает постепенное снижение затрат.
«Очевидно, я не могу проверить их экономику издалека, — сказал мне Джеймс Бреннер из Национального центра исследований водорода при Технологическом институте Флориды, — но если электролиз действительно намного дешевле, это меняет правила игры».
А теперь давайте посмотрим, что HyTech планирует с этим делать.
Модернизация. HyTech PowerСпособ очистки дизельных двигателей для рынка, который остро нуждается в одном
Первый продукт, дебют которого запланирован на апрель, — ключ ко всему остальному.
Это называется «Система внутреннего сгорания» (ICA), модификация двигателей внутреннего сгорания, которая позволяет им существенно повысить эффективность использования топлива и уменьшить загрязнение воздуха. Это достигается путем добавления к топливу крошечных количеств газообразного водорода и кислорода непосредственно перед его сгоранием в цилиндрах двигателя.Смесь HHO придает интенсивность сгоранию, позволяя топливу сгорать более полно, генерируя больше мощности и меньше загрязнения.
Система ICA технически может работать на любом двигателе внутреннего сгорания, но для начала HyTech нацелена на самые грязные двигатели с самой быстрой окупаемостью инвестиций, а именно на дизельные двигатели — в транспортных средствах, таких как грузовики, автофургоны, автобусы и вилочные погрузчики, а также большие стационарные дизельные генераторы, которые по-прежнему обеспечивают резервное (и даже основное) питание для миллионов людей во всем мире.
Все эти дизельные двигатели выделяют канцерогенный дым, содержащий твердые частицы (сажа) и оксиды азота (NOx), которые наносят вред здоровью человека. Штаты и города по всему миру борются с загрязнением воздуха дизельным топливом.
youtube.com/embed/AiHKC_ZSlio?rel=0&showinfo=0″ allowfullscreen=»» scrolling=»no»/>
Но дизельные сажевые фильтры (DPF), которые задерживают твердые частицы, дороги, требуют технического обслуживания и требуют частой замены. Жидкости для избирательного каталитического восстановления (SCR), добавляемые в выхлопные газы для удаления NOx, сами по себе являются загрязнителями, и их необходимо часто менять.
Короче говоря, есть много дизельных двигателей, они очень грязные (ответственны за до 50 процентов загрязнения городского воздуха зимой), и многие люди тратят много денег, пытаясь их очистить. Это большой рынок.
ПредложениеHyTech на этом рынке весьма примечательно: оно утверждает, что его ICA может повысить топливную экономичность дизельного двигателя на 20–30 процентов, снизить содержание твердых частиц на 85 процентов и сократить выбросы NOx на 50–90 процентов.В сочетании с сажевым фильтром и некоторым количеством SCR он может дать дизельный двигатель, который соответствует официальным калифорнийским стандартам для автомобилей со «сверхнизким уровнем выбросов».
Стоимость преобразования грязного дизельного двигателя в относительно чистый: около 10 000 долларов на установку, которые, по оценке HyTech, окупятся за девять месяцев за счет сокращения расходов на топливо и техническое обслуживание.
Устройство HyTech для внутреннего сгорания (ICA), установленное на большом дизельном двигателе.(Видите маленький ряд форсунок?) HyTech PowerHyTech — не первая и не единственная компания, разработавшая систему присадок HHO, но ничто на рынке не может сравниться с такими цифрами.
ICA достигает этой эффективности благодаря компьютеризированному контроллеру времени, который определяет и анализирует вращение коленчатого и распределительного валов, чтобы определить точное время и размер впрыска HHO. Предыдущие системы HHO более или менее заполняли двигатель HHO через воздухозаборник, но HyTech использует «впрыск через порт» с отдельным инжектором на впускном клапане каждого цилиндра, управляемым таймером. Каждый инжектор (размером примерно с человеческий волос) впрыскивает крошечные струйки HHO в цилиндр именно тогда, когда это необходимо.
Такой уровень точности позволяет ICA использовать гораздо меньше водорода, чем его конкуренты, гораздо более эффективно. Небольшого бортового электролизера производит более чем достаточно.
Это смелые заявления, но пока они остаются верными. ICA был включен в список EPA как кандидат на технологию сокращения выбросов; Уважаемая испытательная фирма SGS обнаружила, что ICA повысила топливную экономичность грузовика FedEx на 27.4 процента; FedEx в настоящее время проводит дорожные испытания ICA на автопарке грузовиков и обнаруживает, что экономия топлива на 20–30 процентов выше, а затраты на техническое обслуживание сажевого фильтра значительно снизились. При стороннем тестировании и при ограниченных местных продажах в районе Редмонда ICA выполнила свои обещания.
Если он сможет сделать это в масштабе HyTech — надежно повысить экономию топлива на треть и уменьшить загрязнение почти до нуля, с окупаемостью за девять месяцев — возможностей не будет конца. Компания оценивает рынок очистных работ в 100 миллиардов долларов, включая портовые грузовики, грузовые суда, рефрижераторы, грузовики дальнего следования, автобусы, генераторы и все другие грязные дизельные двигатели.
ICA не полагается на новую инфраструктуру или субсидии. Это способ выйти на большой рынок, немедленно сократить выбросы и накопить финансирование для долгосрочных усилий по полной замене дизельного топлива.
HyTech также хочет очистить существующие автомобили
Позже в этом году HyTech представит свою вторую линейку продуктов: модифицированные водородом автомобили с ДВС. Проще говоря, он будет переключать любой двигатель, работающий на дизельном топливе, бензине, пропане или СПГ, на 100-процентный водород.(В настоящее время компания находится в процессе сертификации своего модифицированного продукта Калифорнийским советом по воздушным ресурсам как имеющий нулевой уровень выбросов.) Это позволит любому водителю получить автомобиль с нулевым уровнем выбросов по значительно меньшей цене, чем стоимость покупки нового электрического или электрического автомобиля. автомобиль на водородных топливных элементах.
Джонсон признает, что, если бы он проектировал автомобиль с нуля, он бы спроектировал его на основе водородного топливного элемента без сгорания, но «мы не заинтересованы в том, чтобы становиться автомобильной компанией», — говорит он.Вместо этого HyTech хочет очистить существующие автомобили.
Не каждый может позволить себе автомобиль Toyota Mirai на водородных топливных элементах (начиная с, кхм, 58 365 долларов). ShutterstockДля такого применения с чистым водородом (в отличие от смешанного HHO) электролизер немного отличается. Водород проходит через мембрану, которая лишает его остатков кислорода или азота, оставляя чистый водород для сгорания автомобиля.(Это делает электролизер протонообменной мембраной или PEM, электролизером, вариант, знакомый любителям водорода.)
По обыкновению, Джонсон разработал собственную мембрану, смешав сырье, чтобы создать что-то более эффективное и дешевое, чем другие продукты PEM на рынке.
Есть еще одно отличие, которое представляет собой еще одну из основных технологических разработок Джонсона.
Потребляемая мощность двигателя транспортного средства варьируется и может быстро увеличиваться и уменьшаться, поэтому системе необходимо хранить немного водорода в качестве буфера на случай, если он потребляет больше, чем может произвести электролизер.
Обычные автомобили на водородных топливных элементах (такие как Toyota Mirai) хранят водород в виде сильно сжатого газа при давлении около 8000 фунтов на квадратный дюйм. Но со сжатым газом возникают самые разные проблемы. Для сжатия газа требуется много энергии, для этого требуется собственная специализированная инфраструктура, заправочные станции для сжатого газа очень дороги в строительстве, а сжатый водород, ну, взрывоопасен, поэтому каждый полный его бак — потенциальная бомба.
Джонсон не хочет иметь с этим ничего общего. Итак, он пошел другим путем.Его система хранит водород, слабо связанный с металлами в виде «гидридов», в инертном жидком растворе без давления (~ 200 фунтов на квадратный дюйм).
Проблема с гидридами была двоякой: а) создание связи, достаточно слабой, чтобы ее можно было разорвать без излишней энергии, когда необходимо высвободить водород, и б) увеличение плотности энергии образующейся жидкости. (На сегодняшний день большинство гидридных жидкостей обладают меньшей энергетической плотностью, чем сжатый водород, и намного меньше ископаемого топлива. Они весят слишком много для энергии, которую они обеспечивают.)
Джонсон думает, что решил обе проблемы. Он не раскрывает подробностей о задействованных гидридах, но у него достаточно высокое соотношение мощности к весу, чтобы побить литий-ионные батареи (которые очень тяжелые), и достаточно слабую гидридную связь, чтобы ее можно было разорвать, используя только перенаправляем отработанное тепло от двигателя (не требуется дополнительного тепла или давления).
Более того, он работает с командой над наноматериалами для гидридов и ожидает «огромного скачка» в соотношении мощности к весу в ближайшие годы; в конечном итоге, по его словам, он хочет, чтобы плотность энергии была конкурентоспособной с ископаемым топливом.
Эффективный электролиз плюс эффективное накопление гидридов означает, что в результате модернизации Hy-Tech будет создан автомобиль с нулевым уровнем выбросов (ZEV) со средней дальностью полета 300 миль, сравнимый с электромобилями высокого класса, но способный работать с любым существующим транспортным средством. Когда я посетил завод HyTech в Редмонде, Джонсон отвез меня на обед в гигантском пикапе Ford Raptor, работающем на водороде.
Ford Raptor, работающий на чистом водороде. HyTech PowerЕсть два способа «заправить» автомобиль.Медленный способ — включить его на ночь, чтобы электролизер мог заполнить бак. Самый быстрый способ — заполнить его раствором гидрида, который можно получить на месте, дома или на заправочной станции, не имея ничего, кроме электролизера, немного дистиллированной воды и резервуара.
Инфраструктуры для поддержки такой быстрой дозаправки пока не существует, но это не похоже на сжатый водород под высоким давлением, подчеркивает Джонсон. Это не опасно; не производит токсичных побочных продуктов; он не требует множества государственных правил безопасности и правоприменения; Теоретически, на заправочных станциях «мама и папа» можно было бы довольно дешево запустить насос.
Несколько утопическое видение Джонсона состоит в том, что в конечном итоге в каждом доме и на предприятии будет электролизер и полный бак связанного водорода, который можно будет использовать либо для выработки электроэнергии для здания (подробнее об этом в третьем этапе), либо для топлива водородных транспортных средств.
По словам Джонсона, цель — оставить двигатели внутреннего сгорания, но «это все равно что бросить курить — каждый хочет остыть индейки». Этого просто не произойдет «. Модернизация существующих транспортных средств за небольшую часть стоимости нового автомобиля с нулевым уровнем выбросов позволит компании быстро начать сокращение транспортных выбросов.
Святой Грааль HyTech: долгосрочное и доступное хранилище энергии
Наконец, получив финансирование и капитализацию за счет продуктов для модернизации, HyTech приступит к производству аккумуляторов энергии. Его масштабируемое хранилище энергии (SES) предназначено для конкуренции с большими батареями, такими как Tesla’s Powerwall, либо в качестве локального хранилища для домов и предприятий, либо в качестве хранилища в масштабе сети, подключенного к крупным солнечным и ветряным электростанциям.
Идея хранения водородной энергии заключается в том, что когда-нибудь скоро будут регулярные периоды, когда ветер и солнце вырабатывают электроэнергию, значительно превышающую потребность.Этот излишек энергии будет очень дешевым — фактически, мы будем искать способы не тратить ее зря.
Одна из все более популярных идей — «энергия в газ», то есть преобразование этой избыточной энергии в водород и его хранение. «Водород — это, наверное, самое простое, что вы можете сделать при низких ценах на электроэнергию», — говорит Вебер.
Часть этого водорода может быть закачана в существующие газопроводы, что снижает углеродоемкость газа. Некоторые из них могут быть объединены с диоксидом углерода для создания другого жидкого топлива. И некоторые из них можно было бы напрямую преобразовать обратно в энергию с помощью топливных элементов. «Стационарное хранение — это замечательных потенциальных возможностей для водородных топливных элементов», — говорит Леви Томпсон, директор Лаборатории технологий водородной энергии Мичиганского университета.
Проблема, опять же, заключалась в том, что сквозная эффективность накопления водородной энергии на основе электролиза обычно была меньше половины, чем достигается литий-ионной батареей.
Плохой рисунок, иллюстрирующий накопление водородной энергии. ShutterstockИ снова Джонсон думает, что сломал его.
Вот как работает система SES от HyTech: энергия поступает (в идеале от солнечных панелей или ветряных турбин) для запуска электролизера. Произведенный водород либо поступает в топливный элемент (да, Джонсон построил свой собственный), либо связывается в виде гидридов и хранится в резервуаре. Когда требуется энергия, гидридные связи разрываются с использованием отработанного тепла системы, высвобождая больше водорода для топливного элемента.
Избегая сжатия и обнаружив достаточно слабую гидридную связь, чтобы ее можно было разорвать отходящим теплом, Johnson заметно повысил эффективность.Он еще больше повысил эффективность с помощью другой умной техники. В большинстве хранилищ водорода используются огромные электролизеры и топливные элементы, которые не могут точно масштабировать производство энергии в соответствии с потребностями. Джонсон построил свою систему по модулям: она содержит стопки небольших электролизеров и топливных элементов, которые можно вводить в эксплуатацию по одному по мере роста спроса. «Глупо просто», — говорит он с улыбкой.
Внешне SES работает как большая батарея, но есть отличия и компромиссы.
С другой стороны, несмотря на то, что он значительно увеличил сквозную эффективность по сравнению с водородными конкурентами, Джонсон все еще не совсем соответствовал эффективности батарей. Он говорит, что на данный момент эффективность SES составляет около 80 процентов. По крайней мере, когда они новые, традиционные свинцово-кислотные батареи составляют около 90 процентов, а литий-ионные батареи — около 98 процентов или выше, хотя все батареи со временем разрушаются. (Джонсон ожидает, что эффективность SES будет продолжать расти по мере разработки новых материалов для своих электролизеров и топливных элементов — он думает, что 85 или 90 процентов находятся в пределах досягаемости.)
С другой стороны, SES прослужит намного дольше, чем батарея, пройдя более 10 000 циклов зарядки и разрядки, по сравнению с примерно 1 000 для литий-ионной батареи.Это приблизит срок ее службы к сроку службы типичной солнечной панели, что позволит более удобно соединять эти две батареи.
В отличие от аккумуляторов, которые нельзя полностью зарядить или разрядить из-за опасения ухудшения характеристик, SES может перейти от 100-процентной емкости до 0 и обратно без повреждений.
И когда он действительно изнашивается, в отличие от батарей, SES полностью подлежит переработке. Металлы плавятся, перетираются и используются повторно; вода перегоняется.
Лучше всего то, что раствор гидрида может храниться неограниченное время без обслуживания или потери потенциала.Его не нужно сжимать или охлаждать, как сжатый водород. Он не разлагается, как электрохимический заряд аккумуляторов. Гидриды можно хранить столько, сколько необходимо.
Это делает SES фантастическим кандидатом на долгосрочное хранение энергии, святым Граалем действительно устойчивой энергетической системы. Если бы электричество было дешевым и достаточно обильным, в принципе не было бы ограничений на количество резервной энергии, которую можно было бы накапливать.
Это также делает SES идеально подходящим для распределенной энергетической системы.Без движущихся частей, надежных компонентов, устойчивых к экстремальным температурам и погодным условиям, и 98-процентной возможности вторичной переработки, это был бы чрезвычайно простой способ для любого, у кого есть несколько солнечных батарей, получить степень энергетической независимости. Это может быть особенным благом для удаленных, автономных сообществ.
Жутко горящий электролизер. HyTech PowerКакой бы ни была судьба HyTech, потребность в водороде вызовет инновации.
Распределенная безуглеродная водородная экономика — это то, о чем размышляет Джонсон, когда дает себе время подумать.Но в наши дни перед нами стоит более неотложная задача: запустить HyTech.
Ни один из экспертов по водороду, с которым я разговаривал, не обнаружил каких-либо особых тревожных сигналов в технических заявлениях HyTech, но все они проявили с трудом завоеванный скептицизм «шоу-не-говори». В водородном мире произошло много новых событий. История усеяна трупами многообещающих стартапов, которые не смогли воплотить свои инновации в жизнеспособные рыночные продукты.
Тем не менее, Hytech, похоже, занимает хорошие позиции, имея надежную команду руководителей, некоторое раннее финансирование, положительные результаты испытаний, партнерские отношения с такими крупными игроками, как FedEx и Caterpillar, а также целевой рынок с продемонстрированным спросом на ее продукцию. Скорее всего, через год или два мы узнаем, удалось ли им это.
В любом случае, по мере всестороннего развития устойчивой энергетической системы потребность в водороде будет только расти. Нам нужно топливо с нулевым выбросом углерода и нам нужно долгосрочное хранение энергии. Водород подходит обоим счетам.
Когда есть большая социальная потребность и деньги, люди становятся умными. Если Джонсон сможет добиться нескольких поэтапных достижений в водородной технологии, совершая покупки в Интернете и возясь в своей лаборатории, то скоро другие сделают то же самое.А по мере выхода продуктов на рынок масштабирование приведет к снижению затрат, как это произошло с ветровой и солнечной энергией.
Во многих отношениях доступный водород — это последняя часть головоломки устойчивой энергетики, энергоноситель, который может заполнить трещины в системе, работающей преимущественно на ветровой и солнечной энергии. За прошедшие годы его несколько раз оставляли умирать, но, поскольку мир серьезно относится к декарбонизации, водород может наконец выиграть свой день на солнце.
Водородное топливонабирает обороты, но вот почему оно не стало массовым • Журнал Trojan Family
Водородное топливо, которое запускает ракеты НАСА в космос и обеспечивает электроэнергией через топливные элементы, производит только один продукт отходов: воду, настолько чистую, что экипаж астронавтов может ее пить.
Здесь, на Земле, первые автомобили, работающие на водородных топливных элементах, появятся на рынке в 2015 году, обещая более чистый воздух и более здоровую планету. Но если вы еще не видели его на дороге, вы не одиноки. В США их меньше 7000. Так почему же водород не стал популярной альтернативой бензиновым двигателям?
Пол Ронни, профессор аэрокосмической и механической инженерии Университета Калифорнии в Витерби, изучающий горение и движение, говорит, что водород имеет некоторые препятствия, включая эффективность и стоимость.Он изучает, что нужно, чтобы преодолеть некоторые из них. Здесь он рассказывает о роли водорода в области альтернативных видов топлива.
Какие преимущества предлагают автомобили на водородных топливных элементах?
Они не выделяют парниковые газы из выхлопной трубы, поэтому могут уменьшить загрязнение в городских районах с плохой циркуляцией воздуха, таких как Южная Калифорния в США и многие крупные города Индии и Китая.
Автомобили, работающие на водороде, безупречно чисты. Почему мы все не ведем их?
Чистого водорода на Земле практически нет, потому что он очень реактивный.Большая часть водорода производится из метана [природного газа] в процессе производства двуокиси углерода и других парниковых газов. Водород также можно получить из воды с помощью электролиза, но для этого требуется электроэнергия. Чтобы добиться этого, мы вернемся к сжиганию ископаемого топлива.
Можно ли производить водород, не создавая парниковых газов?
Солнечное электричество можно использовать для разделения воды на водород и кислород с помощью электролиза. Поскольку солнечная энергия обеспечивает лишь часть всей электроэнергии, вырабатываемой в США. S., использование солнечной электроэнергии для производства водорода не снижает выбросы парниковых газов. Это может измениться, если в будущем будет наращиваться производство электроэнергии на основе солнечной энергии.
Чистота водорода зависит от энергии, используемой для его производства. Есть ли другие ограничения?
Водород в транспортных средствах должен сжиматься в дорогих резервуарах высокого давления, для чего, как вы уже догадались, требуется энергия. Современные водородные автомобили используют топливные элементы для преобразования химической энергии в энергию. Топливные элементы очень дороги, потому что они сложны и требуют дорогих материалов, таких как платина.
Можем ли мы это обойти?
Топливные элементы привлекательны, потому что теоретически они преодолевают ограничения эффективности, связанные с традиционными двигателями внутреннего сгорания. Думайте о потраченной впустую энергии как о тепле и шумах в традиционном автомобиле. В то время как многие ученые изучают способы сделать более дешевые топливные элементы, в моих исследованиях используется другой подход: повышение эффективности двигателей внутреннего сгорания, использующих водород.
Каковы преимущества сжигания водорода?
Прежде всего, двигатели внутреннего сгорания дешевы в изготовлении и могут быть легко модифицированы для работы на водороде.Как и в случае с топливными элементами, основными отходами являются вода, а не двуокись углерода. Кроме того, в отличие от бензина, водород хорошо сгорает в «условиях обеднения топлива», когда кислорода намного больше, чем топлива. Это хорошо для экономии топлива, а также значительно снижает выбросы оксидов азота.
Как насчет использования водорода в стационарных установках?
Транспортному сектору было поручено нести основную ответственность за сокращение выбросов парниковых газов, хотя его вклад составляет лишь треть.Если мы серьезно настроены противодействовать изменению климата, нам необходимо также отказаться от ископаемого топлива в неавтомобильных приложениях. Идея прокачки водорода в дома или на предприятия кажется надуманной, но это возможно. Существующая инфраструктура сжиженного природного газа может быть модифицирована для использования водорода.