Стробоскоп для установки зажигания: Стробоскопы для зажигания — купить стробоскоп для установки зажигания по выгодной цене в интернет-магазине ВсеИнструменты.Ру – интернет-магазин ВсеИнструменты.ру

Содержание

Стробоскоп для зажигания — как им пользоваться?

Автомобильные владельцы с солидным опытом знают ценность правильно выставленного начального момента зажигания и корректной работы вакуумного и центробежного регуляторов опережения зажигания. Если произвести неправильную установку момента зажигания (кстати значительная роль может быть сыграна даже минимальным, казалось бы, отклонением на 2-3 градуса), это может стать причиной повышенного расхода топлива, потери мощности и перегреву силового агрегата и даже сокращению его эксплуатационного срока. Поэтому умение осуществлять проверку и регулировать систему зажигания – это очень ценные навыки для водителей, хотя данные процессы вполне относятся к категории достаточно сложных.

Если автовладелец всё же решился реализовывать данную операцию, то первым инструментом, который ему пригодится, будет стробоскоп, для установки зажигания, призванный упрощать процесс обслуживания вышеуказанной системы.

Как работает стробоскоп для зажигания?

Стробоскоп зажигания – очень простой и доступный для приобретения прибор, который можно достать в любом специализированном магазине, к тому же он существенно облегчит Вам жизнь, как автовладельцу. Ведь имея в наличии такой прибор, даже начинающий водитель проверит и отрегулирует начальную установку момента зажигания за считанные минуты, а также проверит центробежный и вакуумный регуляторы на наличие каких-либо повреждений.

Данный прибор работает по принципу стробоскопического эффекта, суть которого поясняется примерно так: если объект, который движется в темноте, осветить кратковременной яркой вспышкой, то он покажется визуально застывшим в положении, в котором его и застала вспышка.

Принцип работы данного прибора заключается в стробоскопическом эффекте, суть которого можно пояснить примерно таким образом:

если движущийся темноте объект осветить яркой и при этом короткой вспышкой, то он начнет визуально казаться застывшим именно в том положении, в котором вспышка его и застала. Например, если освещать вспышками колесо, которое вращается с частотой, равной его вращательной частоте, то можно визуально его запечатлеть. Это легко заметно благодаря положению определённой метки.

Для установки момента зажигания запустите двигатель на холостых оборотах, а с помощью стробоскопа осветите ранее обговоренные метки. Одна из них, именуемая подвижной расположена на коленвале, хотя может на шкиве привода генератора или на маховике, а другая на корпусе двигателя. Вспышки случаются одновременно с моментом искрообразования в запальной свече цилиндра.

Во время вспыхивания должно быть видно обе метки. Причём здесь действуют следующие условия: если метки располагаются точно друг напротив друга, тогда угол опережения зажигания будет наиболее оптимальным, а если произойдёт смещение подвижной метки, то положение прерывательно-распределительного механизма необходимо откорректировать пока не совпадут метки.

Основным элементом стробоскопа является импульсная стробоскопическая лампа безынерционного типа. Данный механизм построен таким образом, что вспышки происходят в момент появления искры в свече первого цилиндра. Результатом этого будет расположение установочных меток вместе с другими элементами мотора, вращающимися с синхронно с коленчатым валом, в результате освещения их стробоскопической лампой кажутся недвижимыми. Благодаря этому можно осуществлять контроль над правильной установкой изначального момента зажигания.

Из всего описанного и сказанного выше уже складывается представление о характеристике работы стробоскопа для зажигания. Заодно объясним и его устройство: после подключения выводов к аккумулятору, заработает преобразователь напряжения, являющий собой мультивибратор симметрического типа. Изначальное напряжение распределяется далее с делителей на транзисторной базе, которые начинают приоткрываться, но один из них всегда делает это гораздо быстрее другого.

А это влияет на поведение другого транзистора, который в результате этого закрывается, что объясняется прикладыванием запирающего напряжения с обмоток к его базе. Затем транзисторы начинают открываться друг за другом, а это становится причиной подключения к аккумуляторной батареи одной или другой трансформаторной обмотки поочерёдно. В данный момент во вторичных обмотках возникает напряжение с прямоугольной формой и частотой около 800 Герц. Его значение прямо пропорционально количеству витков, имещихся в обмотке.

В момент происхождения непосредственного искрообразования, высоковольтный импульс первого цилиндра поступает на электроды, которые расположены на лампе стробоскопа, путём конденсаторов и специальной вилки разрядника от распределительного гнезда.

При всём этом, накопленная конденсатором энергия, преобразовывается в световую от вспышки лампы. После разряда конденсаторов затухает лампа, но они получают заряд от резисторов до напряжения около 450 Вольт. Таким путём закончена подготовка к очередной вспышке.

Резисторы служат ещё и для предотвращения закорачивания в обмотках в момент вспыхивания лампы. Призвание диода – защищать транзистор преобразователя, если стробоскоп подключен в неверной полярности. Благодаря разряднику обеспечивается получение необходимого напряжения высоковольтного импульса, во избежание осуществления возгорания лампы. При этом ни расстояние, ни давление в камере сгорания, ни свечи не играют никакой роли. Благодаря именно разряднику обеспечивается бесперебойная работа стробоскопа даже с закороченными электродами в свече зажигания.

Как видно, принцип работы, достаточно простого с виду механизма довольно сложен. Но это ни в коем случае не означает, что в нём нельзя разобраться. Также важно понять, как выставить зажигание при помощи стробоскопа и попробовать самолично осуществить данный процесс.

Характеристики стробоскопа для установки зажигания

Стробоскоп наделён определённым набором характеристик, который отличает его от других приборов, делая его поистине уникальным и необходимым. Среди уникальности, к примеру, можно назвать следующее:

источником питания для стробоскопа могут быть собственные элементы питания и бортовая автомобильная сеть. Отсюда автоматически вытекает вопрос, какой же способ является лучшим – автономное питание или за счёт сети автомобиля.

Скажем лишь то, что эта данность абсолютно не принципиальная, но всё же первый способ ограничивает Вас от необходимости протягивания проводов за прибором. Ещё одной отличительной характеристикой стробоскопа является значение минимальной частоты вспышек, которые он выдаёт.

Она должна быть аналогичной с частотой вращения коленчатого вала, вращающегося на максимальных оборотах. Наиболее распространённые стробоскопы с частотой в 50Гц. Как правило, стробоскоп не может долго функционировать, осуществляя вспышки, а связано это с особенной конструкцией ламп. Зачастую, он способен корректно непрерывно работать не более десяти минут. Эти показатели указываются в инструкции к прибору.

Во избежание непредвиденных ситуаций, стробоскопу и, в первую очередь, его лампам, необходимо давать отдых продолжительностью равной времени его работы за один сеанс.

Регулировка зажигания с помощью стробоскопа

Итак, если у Вас имеется сей уникальный инструмент, для выставления зажигания, тогда не стоит всё откладывать «в долгий ящик», а пора приступать к проверке и регулировке зажигания. У каждого трамблёра есть две системы корректировки – центробежный и вакуумный корректоры. Во время работы силового агрегата угол опережения зажигания не постоянен, на что влияет количество оборотов и нагрузка. Это необходимо для оптимального процесса сгорания топлива, а оптимально значит мощно и максимально экономично. Итак начинаем нашу проверку. Поехали.

1. Прогрейте двигатель и нормально отрегулируйте холостые обороты или чуть ниже. Снимите вакуумную трубку, которая идёт от вакуумника трамблёра к карбюратору. В таком режиме проверьте и отрегулируйте установку начального угла опережения зажигания. Подробные данные об этом Вы найдёте в мануале к Вашему транспортному средству.

2. Увеличив обороты двигателя до двух тысяч, Вы должны будете наблюдать и увеличение угла напряжения примерно на семь градусов, если этого не произошло, значит проблема с центробежным регулятором. Основной причиной, зачастую, может быть заклинивание центробежного механизма, что зачастую случается в следствии его окисления. Кроме этого часто происходит поломка пружин механизма.

3. Проверить работу вакуумного регулятора опережения зажигания будет посложнее из-за того, что его работа связана с работой карбюратора. Основным условием корректной работы вакуумного регулятора является отсутствие (на холостых оборотах) разряжения в трубке, пролегающей между вакуумником и карбюратором. Оно должно возникать только с повышением оборотов двигателя.

Своевременное появление разряжения в трубке проверяется кончиком языка к концу трубки, который соединяется с вакуумником трамблёра. Если карбюратор не в состоянии обеспечить своевременное появление разряда в трубке, то вакуумный корректор попросту не сможет нормально функционировать, даже если механизм трамблёра полностью исправен.

При правильной работе карбюратора и своевременном разряжении, соответственно, приступайте к проверке работоспособности самого вакуумника. Подсоедините вакуумную трубку снова к трамблёру и осветите метку стробоскопом. С увеличивающимися оборотами метка будет уходить выше в два раза, чем до этого с отсоединённой трубкой.

Суммарный угол опережения включает в себя три величины: начальный угол опережения зажигания, дополнительное опережение, которое создаётся центробежным регулятором, и дополнительное опережение от вакуумника. Он может достигать и 30 градусов. Всё зависит от режима работы силового агрегата, его модели и характеристик трамблёра.

У распределителей зажигания имеются свои определённые заданные характеристики функционирования. Определить их параметры точно и соответсвие их стандарту можно определить лишь на специальных стендах. В проделываемом Вами случае можно лишь определить работает или нет та либо иная схема. Конечно, опытный профессионал может и визуально определить насколько правильны характеристики работы трамблёра, а в случае чего и отрегулировать их, но это не так просто и для этого нужен определённый опыт, который нарабатывается долгими годами практики.

И последнее, что мы хотим сказать по данной теме. Если одна из систем коррекции опережения зажигания или обе не работают, то автомобиль заметно теряет в разгонной динамике, могут появиться «провалы» и увеличиться топливный расход.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Как работает стробоскоп для установки зажигания

Опытный автомобилист знает ценность правильной установки начального момента зажигания, а также исправной работы таких регуляторов опережения зажигания, как вакуумный и центробежный. Если установить момент зажигания неправильно (причем значительную роль может сыграть отклонение даже на 2-3°), это может стать поводом к повышенному расходу топлива, потере мощности и перегреву двигателя и даже сокращению его срока службы. Поэтому для каждого водителя является очень ценным умение осуществлять проверку и регулировку системы зажигания, хотя эти процессы и относятся к категории довольно сложных. Но если уж автовладелец решился на реализацию данных операций, то первым, чем он должен вооружиться, – это стробоскоп для установки зажигания, который призван упростить процесс обслуживания описываемой системы.

Содержание статьи

Как работает стробоскоп

Автомобильный стробоскоп – это тот простой и доступный прибор, который без труда можно приобрести в магазине и который значительно облегчает жизнь автовладельцу. Ведь при наличии этого механизма даже водитель-новичок сможет проверить и отрегулировать начальную установку момента зажигания не более чем за десять минут, а также проверить оба вида регуляторов (центробежный и вакуумный) на предмет каких-либо повреждений.

Принцип работы данного прибора заключается в стробоскопическом эффекте, суть которого можно пояснить примерно таким образом: если движущийся темноте объект осветить яркой и при этом короткой вспышкой, то он начнет визуально казаться застывшим именно в том положении, в котором вспышка его и застала. К примеру, если освещать вспышками вращающееся колесо с той частотой, которая равна частоте его вращения, то можно так же визуально остановить его. Это легко заметить благодаря положению какой-то метки.

Для того чтобы установить момент зажигания, следует запустить двигатель на холостые обороты, а тем временем при помощи стробоскопа осветить ранее упомянутые метки. Одна из них, которая имеет название «подвижная», располагается на коленчатом валу (альтернативный вариант – на шкиве привода генератора или на маховике), а другая заняла место на корпусе мотора. Вспышки происходят практически одновременно с тем моментом, когда в запальной свече одного из цилиндров происходит искрообразование. Чтобы это происходило, емкостный датчик описываемого устройства крепят к высоковольтному проводу запальной свечи.

В процессе вспышек должны быть видны обе метки. Причем тут действуют такие условия: если метки с точностью расположены друг против друга, то угол опережения зажигания будет оптимальным, а если же подвижная метка сместилась, то положение прерывателя-распределителя нужно откорректировать до совпадения меток.

Основной элемент стробоскопа – это импульсная стробоскопическая лампа безынерционного типа. В данном механизме вспышки осуществляются в тот момент, когда в свече первого цилиндра появляется искра. Как результат: установочные метки вместе с другими элементами двигателя, которые вращаются с коленчатым валом синхронно, в процессе освещения их ранее упомянутой лампой кажутся неподвижными. Данное позволяет осуществлять контролирование правильности установки начального момента зажигания.

Из всего вышесказанного возможным представляется характеристика работы стробоскопа таким образом (вместе с тем объяснится и его устройство): после того, как к аккумулятору подключить выводы, начнет работать преобразователь напряжения, который являет собой мультивибратор симметрического типа. Первоначальное напряжение подается с делителей на базе транзисторов, которые начинают открываться, причем какой-то из них обязательно делает это гораздо быстрее другого. Это становится причиной закрытия другого транзистора, что объясняется прикладыванием с обмоток запирающего напряжения к его базе. После этого транзисторы открываются друг за другом, что становится причиной подключения к АкБ то одной, то другой половины обмотки от трансформатора. В этот же момент в обмотках вторичного типа возникает напряжение, имеющее прямоугольную форму и частоту около 800 Гц, значение чего является пропорциональным количеству витков в обмотке.

В тот момент, когда происходит непосредственно искрообразование, в первом цилиндре импульс высоковольтного типа поступает на поджигающие электроды, расположенные на стробоскопической лампе, через конденсаторы и специальную вилку разрядника от гнезда распределителя. При всем этом энергия, которую накапливает конденсатор, трансформируется в световую энергию от вспышки лампы. После того, как происходит разряд конденсаторов, тухнет и лампа, но конденсаторы получают заряд благодаря резисторам до напряжения примерно в 450 В. Таким образом заканчивается подготовка к еще одной вспышке.

Резисторы также служат для того, чтобы предотвращать закорачивание обмоток в тот момент, когда лампа вспыхивает. А диод призван защищать транзистор преобразователя в случае подключения стробоскопа в неправильной полярности.

Разрядник, который включается свечей зажигания и распределителем, обеспечивает получение нужного напряжения высоковольтного импульса для того, чтобы было осуществлено поджигание лампы. При этом расстояние давление в камере сгорания, между электродами свечи и другие факторы не играют роли. Именно благодаря разряднику становится возможной бесперебойная работа стробоскопа даже при факте закороченных электродов в свече зажигания.

Как видим, принцип работы анализируемого механизма довольно сложен, но это не значит, что в нем невозможно разобраться. Поэтому так же важно понять, как выставить зажигание стробоскопом, и попробовать самостоятельно осуществить этот процесс.

Характеристики стробоскопа для установки зажигания

Стробоскоп имеет определенный набор характеристик, которые отличают его от остальных приборов, делая его таким уникальным и необходимым. Среди таких, к примеру, то, что источником питания для данного устройства могут быть как собственные элементы питания (мини-аккумуляторы или батарейки), так и бортовая сеть автомобиля. Отсюда следует вопрос, что же является лучшим способом – питание автономного типа или все-таки за счет его сети. Я скажу лишь то, что данное не является таким уж принципиальным, но при этом нужно указать то, что первый способ лишает необходимости проводов тянуться за прибором.

Еще одна отличительная характеристика стробоскопа заключается в том, что минимальная частота вспышек, которые он может выдавать, должна совпадать с частотой вращения коленчатого вала, который вращается на максимальном уровне. Наиболее часто можно встретить стробоскоп, имеющий частоту в 50 Гц.

Также стробоскоп, как правило, не может работать долго в режиме осуществления вспышек, что связано с уникальной конструкцией ламп. Чаще всего этот прибор способен на работу, которая длится не более чем десять минут. Данные показатели должны указываться в инструкции. Чтобы не допустить непредвиденных ситуаций, стробоскопу, а прежде всего его лампам, нужно давать отдыхать, продолжительность чего равна времени эксплуатации.

Самодельный стробоскоп

Прежде чем приступать к процессу создания самодельного стробоскопа, я рекомендую вспомнить о правилах техники безопасности. Это очень важно, так как все детали данного устройства находятся под напряжением сети.

Поэтому нельзя допускать того, чтобы какая-то деталь касалась стенок корпуса (в том случае, если он металлический), а провода импульсной лампы соединялись с рефлекторами. Также идеально было бы, если бы на переменный резистор была надета пластмассовая ручка. Что касается проводов для включения, то они обязательно должны иметь на концах вилку и находиться в хорошей изоляции.

Все детали будущего стробоскопа (естественно, помимо импульсивного трансформатора и лампы) нужно монтировать на плате, которая сделана из изоляционного материала. Их взаимное расположение не играет существенной роли, но обязательно условие заключается в том, чтобы монтаж был выполнен по принципиальной схеме. Импульсивную лампу вместе с трансформатором следует устанавливать внутри рефлектора, который можно использовать больших размеров.

Если отсутствует динистор, то его можно заменить стартером, который раньше служил для люминесцентной лампы. А если учесть то, что стартер способен срабатывать при более высоком уровне напряжение, чем динистор, то в устройство надо будет ввести еще один диод для того, чтобы получить выпрямитель с напряжением удвоенного типа. При этом энергия вспышки также возрастет. Также вместо динистора можно использовать тиратрон, имеющий холодный катод.

Всем автовладельцам, которые приняли твердое решение самостоятельно сделать стробоскоп, я рекомендую для начала сделать детальную схему, чтобы в процессе монтажа устройства руководствоваться ею и ни на что не отвлекаться. 

Познавайте свое авто, разбирайтесь в его устройстве, и тогда проблем в процессе его эксплуатации значительно поубавится.

Видео “Автомобильный стробоскоп своими руками”

На видео показано, как сделать самостоятельно и как пользоваться стробоскопом для автомобиля.

 

Какие бывают автомобильные стробоскопы?

△

▽

    На сегодняшний день на рынке представлены различные автомобильные стробоскопы, Вы можете даже сделать стробоскоп своими руками, но это не совсем безопасно. Автомобильные стробоскопы предназначены для установки уоз (угла опережения зажигания) и для выставления зажигания. Мы расскажем Вам о наиболее известных марках, таких как: Квазар, Джет, СТ-01, Ст-02 и Ст-03 и поможем Вам выбрать автомобильный стробоскоп.

                        

    Итак, автомобильный стробоскоп Квазар проверяет и регулирует установку начального угла опережения зажигания (уоз). А также проверяет работоспособность центробежного и вакуумного регуляторов опережения зажигания карбюраторных двигателей внутреннего сгорания всех типов легковых автомобилях, которые были выпущены в СНГ. Верхний предел частоты следования световых импульсов 50Гц.

    Автомобильный стробоскоп Джет своевременно обнаруживает и устраняет неполадки в работе важнейших систем транспортного средства. Покупать автомобильный стробоскоп стоит владельцам легковых автомобилей дизельного типа. Предназначен прибор для корректной установки момента впрыска топлива в дизельных силовых агрегатах. Автомобильный стробоскоп Джет взаимодействует с любыми типами штатных систем зажигания – контактными и электронными. 


    Автомобильный стробоскоп СТ – 02 измеряет и правильно устанавливает уоз (угол опережения зажигания) на карбюраторных и инжекторных двигателях и оперативно контролирует работу основных узлов автомобиля при проведении диагностических и ремонтных работ. В автомобильный стробоскоп СТ-02 встроен вольтметр, измеряющий напряжение бортовой сети автомобиля и тахометр. Также автомобильный стробоскоп СТ-02 измеряет и показывает обороты коленвала двухтактных и 2-8 цилиндровых четырехтактных двигателей внутреннего сгорания. Автомобильный стробоскоп СТ-02 обладает возможностью выбора соотношения количества импульсов зажигания на оборот. А также как и все автомобильные стробоскопы измеряет и устанавливает уоз (угол опережения зажигания).

    Автомобильный стробоскоп СТ-02 подходит для любого числа цилиндров. К особенностям автомобильного стробоскопа СТ-02 относятся: фокусированный луч повышенной яркости, четырехразрядный светодиодный индикатор и синхронизация лампы-вспышки.  Питается от аккумулятора автомобиля.
   
    Автомобильный стробоскоп СТ-01 предназначен для измерения и правильной установки уоз (угла опережения зажигания). По своим функциям он практически не отличается от автомобильного стробоскопа СТ-02. Диапазон рабочих температур варьируется от -25Cº до +60Сº. Напряжение питания составляет 10-16 В.


    Автомобильный стробоскоп СТ-03 проверяет, правильно ли установлен угол опережения впрыска топлива на дизельном двигателе автомобиля во время проведения ремонтных и диагностических работ. Излучатель — ксеноновая лампа вспышка. Питается от аккумулятора автомобиля от 10 до 32 В. К особенностям автомобильного стробоскопа относится автоматическая подстройка под уровень сигнала снимаемого с пьезодатчика.

    Если Вас заинтересовала продукция фирмы «НПП ОРИОН», заходите на сайт нашего Интернет-магазина «НПП ОРИОН», где Вы сможете купить автомобильный стробоскоп отличного качества и по доступным ценам. Мы ждем Вас!

Делаем простой стробоскоп для установки зажигания своими руками

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью выставлять оптимальный угол опережения зажигания (УОЗ) в автомобиле. Данный параметр играет важную роль в корректной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности, вследствие возросшего расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленно выпускаемых приборов для проверки и установки УОЗ, актуальность создания стробоскопа своими руками не потеряла смысл и в наши дни. Представленная схема самодельного стробоскопа для автомобиля не требует наладки после сборки и изготавливается из доступных деталей.

Принципиальная схема стробоскопа

Схема разработана и представлена в девятом издании журнала «Радио» в далеком 2000 году. Однако, благодаря своей простоте и надежности, остается актуальной и в наши дни.

В принципиальной электрической схеме стробоскопа для авто можно условно выделить 4 части:
  1. Цепь питания, состоящая из выключателя SA1, диода VD1 и конденсатора С2. VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для подачи и отключения питания используется выключатель SA1, для этого подойдет любой компактный выключатель или тумблер.
  2. Входная цепь, которая состоит из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закрепляется на высоковольтном проводе первого цилиндра. Элементы С1, R1, R2 представляют собой простейшую дифференцирующую цепь.
  3. Микросхема триггера, собранная по схеме двух однотипных одновибраторов, которые формируют на выходе импульсы заданной частоты. Частотозадающими элементами являются резисторы R3, R4 и конденсаторы С3, С4.
  4. Выходной каскад, собранный на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задаёт ток базы первого транзистора, а R9 – исключает сбои в работе мощного VT3. R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от компании Cree с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более прецизионных импортных элементах. Ниже представлена плата с применением отечественных компонентов для штыревого монтажа.

Плата в файле Sprint Layout 6.0: plata.lay6

Диод VD1 – КД2999В или любой другой с малым падением прямого напряжения. Конденсатор С1 должен быть высоковольтным с емкостью в 47 пФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 на 0,068 мкФ 16 В. Все резисторы, кроме R4, типа МЛТ или планарные с номиналами, указанными на схеме. Подстроечный резистор R4 типа СП-3 или СП-5 на 33 кОм.

Триггер ТМ2 лучше использовать 561 серии, которая отличается высокой помехоустойчивостью и надёжностью. Но можно заменить его микросхемой 176 и 564 серии, учитывая их распиновку. Транзисторы VT1-VT2 подойдут КТ315 Б, В, Г или КТ3102 с большим коэффициентом усиления. Выходной транзистор – КТ815, КТ817 с любой буквенной приставкой. Светодиоды HL1-HL9 лучше взять сверхъяркие с малым углом рассеивания. Их располагают на отдельной плате по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить более современными аналогами, немного усовершенствовав плату.

Готовую плату управления стробоскопа и плату со светодиодами удобно разместить в корпусе переносного фонарика. При этом необходимо предусмотреть отверстие в корпусе под регулятор R4, а в качестве SA1 можно использовать штатный выключатель.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Установка УОЗ стробоскопом

Прежде чем рассмотреть работу автомобильного стробоскопа, нужно понять суть стробоскопического эффекта. Если движущийся в темноте объект на мгновение осветить вспышкой, то он будет казаться застывшим в месте, где произошла вспышка. Если на вращающееся колесо нанести яркую метку и освещать его яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент вспышек можно зрительно фиксировать местоположение метки.

Перед регулировкой момента зажигания автомобиля наносят две метки: подвижную на коленчатом валу (маховике) и стационарную – на корпусе двигателя. Затем присоединяют датчик, подают питание на стробоскоп и включают двигатель в режим холостого хода. Если во время вспышек метки совпадают, то УОЗ выставлен оптимально. В противном случае следует произвести корректировку до полного их совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате корректировки вырастет КПД двигателя и увеличится срок его службы.

как пользоваться, настройки угла опережения

Автор: Виктор

Правильная настройка угла опережения зажигания (УОЗ) — это один из основных аспектов регулировки, позволяющий добиться правильной работы двигателя. Из-за неверно выставленного УОЗ мотор будет работать с перебоями, а в некоторых случаях и вовсе не будет запускаться. Для регулировки можно использовать стробоскоп. Как соорудить стробоскоп для установки зажигания своими руками — узнайте из этого материала.

Содержание

Открытьполное содержание

[ Скрыть]

Описание стробоскопа

Как сделать простой стробоскоп для настройки УОЗ на светодиодах, из каких элементов будет состоять схема девайса? Сначала рассмотрим основные характеристики устройства.

Рабочая схема

Основные составляющие элементы на примере вышеописанной схемы:

  1. Из переключателя SA1, диодного элемента VD1 и конденсаторного устройства С2 состоит цепь питания. Диод применяется для защиты других составляющих частей от ошибочной перемены полярности. Непосредственно сам конденсатор применяется для блокировки возможных помех, таким образом предотвращая выход из строя триггера. Предназначение переключателя SA1 заключается в активации и деактивации питания.
  2. Не менее важной составляющей является входная цепь, в состав которой входят контроллер, резисторные элементы R1 и R2 и конденсаторное устройство С1. Роль контроллера здесь выполняет зажим девайса, который зовется крокодилом, он фиксируется на высоковольтном проводе первого цилиндра. Если подключение будет правильным, то вышеописанные элементы образуют простую дифференциальную цепь.
  3. Схема триггера. Эта составляющая состоит из двух одиночных вибраторов, применяющихся для образования сигнала нужной частоты на выходе. Эти компоненты выполняют функцию частотозадающих.
  4. На резисторных элемента R5-R9 изготовляется выходной каскад, также для этой цели применяются транзисторы VT1. VT2 и VT3. Эти устройства необходимы для увеличения выходного тока триггерной платы. Резисторное устройство R5 задает определенный ток базы транзисторного элемента под номером 1 (видео снял Максим Соколов).

Принцип действия

Девайс для выставления угла опережения работает от встроенного аккумулятора либо автомобильной батареи. При активации переключателя первым начинает работать триггер. На выходах 2 и 12 платы происходит образование повышенного потенциала, а низкий формируется на контактах 1 и 13. В этот момент конденсаторные детали С3 и С4 получают питание от резисторов.

Сигнал с контроллера идет через дифференциальную цепь и в конечном счете подается на вход DD1.1. Поскольку он является одновибратором, в результате это способствует переключению девайса. Затем в схеме осуществляется переразряд С1, что опять же, способствует переключению триггера.

Элемент DD1.1 будет реагировать на импульсы, подающиеся с контроллера, таким образом формируя новые прямоугольные импульсы на первом выводе. В случае со вторым одновибратором DD1.2 принцип действия будет идентичным — благодаря этому устройству длительность импульса на контакте 13 уменьшается в 10 раз. Этот элемент функционирует под нагрузкой, подающейся с усилительного каскада транзисторов, которые открываются на время импульса. Благодаря резисторным компонентам R6, R7 и R8 ток ограничивается, его величина в общей сложности должна быть не выше 0.8 ампер.

Значение тока не высокое, это обусловлено следующими факторами:

  • длительность импульса составляет не больше 1 сек;
  • обычно для настройки УОЗ автовладельцам требуется не больше 10 минут, за такое время кристаллы не перегреются;
  • диоды, использующиеся сегодня, обладают более улучшенными характеристиками и особенностями, если сравнивать с устройствами, применявшимися более 10 лет назад.

Печатная плата и детали сборки

Для того, чтобы соорудить своими руками стробоскоп, потребуется плата со всеми необходимыми элементами.

В качестве примера:

  1. На рассматриваемой нами плате функцию диода выполняет контроллер КД2999В. В принципе, можно использовать любой другой, только нужно учитывать, что диодный элемент должен иметь минимальное падение напряжения.
  2. Также используются конденсаторы. Важно, чтобы они были рассчитаны на 0.068 мкФ. Что касается основного конденсаторного устройства С1, то он представляет собой высоковольтную деталь, напряжение на которой составляет 400 В.
  3. Триггерное устройство — ТМ2 — обладает отличной устойчивостью к возможным помехам.
  4. Необходимо, чтобы используемые транзисторы VT1, а также VT2 имели большой показатель усиления.
  5. Что касается диодов, отмеченных символами HL1-HL9, то они должны иметь максимальную яркость, а также желательно, чтобы угол рассеивания был небольшим. Диодные компоненты монтируются на отдельной схеме, их количество должно составить 3 в ряду.

Нюансы настройки устройства

Прежде чем использовать самодельный стробоскоп на авто, его надо правильно настроить. Изначально следует осуществить регулировку подстроечного резисторного компонента, это даст возможность обеспечить нужный визуальный эффект. Во время перемещения регулятора вы можете увидеть, что из-за падения импульса освещение меток будет неэффективным, а если импульс будет слишком высоким, то освещение будет размытым. На данном этапе вам надо правильно отрегулировать эффективность вспышек света (видео снял Serj ZP).

Установка УОЗ стробоскопом

Как пользоваться самодельным девайсом для регулировки УОЗ:

  1. Для начала следует завести мотор и прогреть его до рабочей температуры. Для этого дайте поработать агрегату на холостых оборотах.
  2. Затем вам надо будет подсоединить самодельное устройство к источнику питания. Это может быть либо встроенный аккумулятор, либо аккумуляторная батарея автомобиля.
  3. Далее, к жиле цилиндра 1 следует подсоединить медный датчик, для этого намотайте его на жилу.
  4. После этого диодную лампочку следует направить на метку, нанесенную на корпус распределительного механизма.
  5. Когда эти действия будут выполнены, вам нужно найти неподвижную точку, она расположена на шкиве маховика.
  6. Для того, чтобы обеспечить совпадение этих точек, нужно вращать корпус распределительного устройства. А когда точки совпадут, корпус нужно зафиксировать в этом положении. При совпадении точек диоды должны загореться.

Как самостоятельно изготовить прибор?

На сегодняшний день существует множество различных вариантов схем для изготовления стробоскопа. Мы рекомендуем ознакомиться с одним из самых простых и наименее затратных с финансовой точки зрения способов изготовления.

Для его реализации вам потребуются следующие составляющие:

  • транзисторное устройство КТ315;
  • тиристорный элемент КУ112А, а также резисторные компоненты, рассчитанные на 0.125 Вт;
  • диодные лампочки или фонарик на светодиодах, который будет использоваться в качестве корпуса, при этом количество диодных элементов должно быть не меньше 6 штук;
  • конденсаторные устройства С1;
  • V2 на схеме — это низкочастотный диодный компонент;
  • также вам потребуется реле, его индекс должен составлять RWH-SH-112D;
  • кабель питания, длина его должна составить не менее одного метра;
  • зажимы;
  • также понадобится кусочек медного провода длиной примерно 10 см.

Все эти составляющие можно купить в любом тематическом магазине или на радиорынке.

Как соорудить такое устройство самостоятельно:

  1. Для начала на задней стороне подготовленного корпуса следует дрелью просверлить дырку, через нее вы уложите кабель питания.
  2. Затем к концам приготовленных шнуров необходимо подпаять подготовленные зажимы. Желательно заранее отметить на них, какой будет плюсовым, а какой — отрицательный, будет лучше, если цвета зажимов будут разными.
  3. Сам датчик монтируется слева или справа на корпусе. На боковой части корпуса надо проделать еще одно отверстие, оно будет использоваться для укладки шнура к контакту Х1.
  4. Затем к основной жиле кабеля следует подпаять подготовленный кусок медной проволоки. Данный провод считается одним из основных, поскольку он будет использоваться в качестве датчика девайса.
  5. Остается только заизолировать соединения изолентой или термотрубками.

Фотогалерея «Собираем стробоскоп своими руками»

Заключение

Как видите, в целом соорудить такой девайс — не проблема. Достаточно иметь определенные знания в области электроники и следовать действиям, описанным в инструкции. Если в ходе сборки вы допустите ошибки, то возможно, устройство будет работать некорректно. Если у вас нет опыта в изготовлении подобных устройств, то возможно, есть смысл задуматься над покупкой нового стробоскопа.

 Загрузка …

Видео «Наглядная инструкция по регулировке УОЗ стробоскопом»

Что нужно знать об эксплуатации данного девайса, и какие нюансы следует учитывать при настройке — узнайте из ролика (видео снято Владиславом Чиковым).

Пособие по изготовлению стробоскопа для установки зажигания (УОЗ) своими руками

С необходимостью регулировки угла зажигания (УЗ) сталкиваются многие современные автолюбители. Порой эта процедура может вызвать определенные трудности у автомобилиста, поэтому на рынке в последнее время появляется множество устройств для выполнения этой задачи. К примеру, можно использовать стробоскоп для проведения процедуры установки зажигания своими руками, о чем мы расскажем ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Характеристика стробоскопа

Итак, вы решили произвести настройки зажигания на своем авто, но понятия не имеете, как выставлять и производить регулировку УОЗ. Для того, чтобы выставленный угол не приносил дискомфорта водителю во время езды, можно использовать стробоскоп для зажигания.

Принципиальная схема

Принципиальная схема для разработки стробоскопа

Ниже представлена схема стробоскопа. Если вы не знаете, как сделать стробоскоп своими силами на светодиодах, можете воспользоваться этой схемой. В конечном итоге получится самый простой стробоскоп, однако сделанный девайс позволит в полной мере произвести регулировку всех необходимых параметров.

В схеме устройства необходимо выделить несколько основных частей:

  1. Цепь питания, которая состоит из компонентов — SA1, являющегося выключателем, диода VD1, а также конденсатора С2. Сделанная своими руками схема обязательно должна включать в себя диод, предназначенный для защиты остальных компонентов от ошибочной смены полярности. Конденсатор выполняет функцию блокировки импульсных помех, способствуя предотвращению сбоев в работе триггера. Что касается выключателя, то он может быть заменен тумблером, главное, чтобы компонент могу включать и отключать питание.
  2. Самодельный стробоскоп для установки УЗ должен включать в себя входную цепь, состоящую из контроллера, резисторов R1, R2, а также конденсатора С1. Опцию контроллера в данном случае исполняет зажим типа «крокодила», фиксирующийся на высоковольтном кабеле первого цилиндра. Что касается компонентов С1, R1 и R2, то они образуют простую дифференцирующую цепь.
  3. Еще один немаловажный компонент используемого стробоскопа — это плата триггера, которая собирается с применением двух одновибраторов, предназначенных для формирования на выходе сигнала заданной частоты. Конденсаторы и резисторы в данном случае являются частотозадающими компонентами.
  4. Еще одна составляющая — выходной каскад, который собирается на резисторах R5-R9 и транзисторах VT1-VT3. Сами транзисторы предназначены для усиления выходного тока триггера. Резистор R5 позволяет задавать ток базы первого транзистора. А благодаря резистору R9 вероятность сбоев в работе VT3 исключается.

Принцип работы

Итак, в чем заключается принцип работы. Стробоскоп для установки зажигания своими руками в любом случае питается от батареи АКБ. Когда происходит замыкание выключателя, триггер вступает в работу. В это время на инверсных выводах 2 и 12 в соответствии со схемой образуется высокий потенциал, а на прямых выводах 1 и 13 — низкий. Сами конденсаторы С3 и С4 питаются от резисторов.

Стробоскоп для регулировки угла зажигания

Сигнал с контроллера, проходя через дифференцирующую цепь, передается на вход DD1.1, который является одновибратором, что в конечном итоге способствует его переключению. Поле этого начинается переразряд С1, заканчивающийся переключением триггера. В конечном итоге, одновибратор начинает реагировать на сигналы с контроллера, образовывая не первом выводе прямоугольные сигналы.

Что касается второго одновибратора DD1.2, то его принцип работы аналогичный — он позволяет снизить длительность сигнала в десять раз на выходе 13. Данный компонент работает под нагрузкой от усилительного каскада транзисторов, открывающихся на время сигнала. Что касается тока, проходящего через эти элементы, то он ограничивается с помощью резисторов R6-R8, его показатель должен быть не более 0.8 ампер.

Этот показатель не особо большой, поскольку:

  • сам сигнал длится не более одной секунды;
  • как правило, эксплуатация данного прибора для выставления угла зажигания длится не более десяти минут, соответственно, за столь короткое время вряд ли случится перегрев кристаллов;
  • современные диоды характеризуются более оптимальными техническими особенностями по сравнению с теми, которые использовались в конструкциях стробоскопов десять лет назад.

Соответственно, эксплуатация более ярких диодных элементов даст возможность во многом понизить ток нагрузки в результате повышения показателя сопротивления. Это сопротивление увеличивается на компонентах схемы R6-R8.

Печатная плата и детали сборки

Пример печатной платы для сборки устройства

Собрать свой собственный стробоскоп — не проблема. При небольшом бюджете можно использовать недорогие детали, не при необходимости вы можете создать более современное устройство.

  1. На приведенной выше плате в качестве диодного элемента VD1 используется КД2999В, можно применять другой, в этом случае важно, чтобы диод был с небольшим падением прямого напряжения.
  2. Конденсаторные устройства С2-С4 должны быть рассчитаны на 0.068 мкФ, а С1 — это высоковольтный компонент с напряжением 400 вольт.
  3. ТМ2 — это триггер, характеризующийся хорошей устойчивостью к помехам.
  4. Транзисторные компоненты VT1 и VT2 должны обладать высоким коэффициентом усиления.
  5. Диодные детали HL1-HL9 должны обладать наибольшей яркостью, при этом их угол рассеивания должен быть минимальным. Светодиоды необходимо установить на отдельной плате, при этом их должно быть три штуки в одном ряду.

После того, как плата для устройства будет готова, необходимо выбрать место для ее установки. К примеру, это может быть корпус переносного фонаря, но он должен быть оснащен отверстием в корпусе для монтажа регулятора R4. В принципе, можно использовать практически любой корпус, главное, чтобы на него можно было без проблем установить регулятор. Подробнее о том, как выглядит самодельный стробоскоп для настройки зажигания, сделанный на основе лазерной указки, вы можете узнать из видео (автор видео — Максим Соколов).

Особенности настройки устройства

Чтобы пользоваться девайсом, его необходимо отрегулировать. Стробоскоп для настройки должен быть отстроен должным образом, чтобы выдавать наиболее точные параметры. В первую очередь, производится регулировка подстроечного резистора R4, что позволяет выставить необходимый визуальный эффект. При вращении ручки регулятора вы заметите, что снижение сигнала может привести к недостаточному освещению меток, а если сигнал будет увеличен, то это приведет к размытости. Соответственно, в ходе первой настройки угла опережения зажигания своими руками следует правильно настроить наиболее оптимальную длительность световых вспышек.

Есть еще один момент, который необходимо учитывать — длина кабеля, который проходит от печатной платы к контроллеру, должна быть не более полуметра. Для контроллера можно использовать 10 см медного проводника, который следует припаять к центральной жиле кабеля. Когда осуществляется подключение, он наматывается на изолированную часть высоковольтника тремя витками.

Чтобы увеличить уровень помехозащищенности, процедура намотки осуществляется как можно ближе к самой свече зажигания. Если меди у вас нет, то можно использовать зажим крокодил — этот компонент припаивается к центральной жиле. При этом зубчики крокодила должны быть немного загнуты, в противном случае это может привести к повреждению изоляции.

 Загрузка …

Установка УОЗ стробоскопом

Теперь перейдем к вопросу настройки угла зажигания с применением собственного стробоскопа. Процедура установки угла актуальна как для самодельных, так и для купленных устройств. Но перед тем, как мы рассмотрим процедуру выставления УЗ, рекомендуем ознакомиться с сутью функционирования стробоскопического эффекта (автор видео о принципе работы стробоскопа и настройке зажигания с его помощью своими силами — канал Samodelkin).

Когда объект, который передвигается в темноте, вы осветите светом на долю секунды, вы сможете заметить, что он будто застыл на месте. Именно там, где произошла вспышка. К примеру, если на вращающийся диск вы нанесете метку и будете периодически освещать его с помощью вспышек, в сам момент ее появления можно будет заметить место расположения метки. При этом важно, чтобы вспышки совпадали по своей частоте с частотой вращения диска или вала.

Теперь подробнее о том, как установленный стробоскоп позволит произвести регулировку угла зажигания. Перед тем, как произвести настройку, в моторном отсеке необходимо нанести две метки. Подвижная метка будет располагаться на коленвале, в частности, на маховике. Вторая метка — стационарная — устанавливается на корпусе силового агрегата.

После того, как метки будут выставлены, необходимо осуществить подключение контроллера (датчика). Когда контроллер подключен, производится подача питания на собранное своими руками устройство. Далее, запускается мотор, он должен функционировать на холостых оборотах. В том случае, если в момент появления световых вспышек метки совпадают, это свидетельствует о том, что угол зажигания выставлен правильно. Если же эти метки не совпадают, то необходимо будет произвести настройку зажигания. Корректировка системы осуществляется до того момента, пока метки полностью не совпадут.

Видео «Наглядная инструкция по самостоятельной установке УЗ с помощью стробоскопа»

Как правильно произвести корректировку угла зажигания автомобиля с применением такого устройства, как стробоскоп, вы можете узнать из видео ниже (автор видео — Владислав Чиков).

Как выставить зажигание с помощью стробоскопа в автомобиле

Одна из весьма актуальных для отечественных автомобилистов тем – как в автомобиле грамотно выставить зажигание, применяя стробоскоп. Согласитесь, что этой методикой в совершенстве владеют лишь немногие опытные водители и механики. Для тех же, кто знаком с ней лишь понаслышке, специалисты рекомендуют детально ознакомиться, как именно функционирует стробоскоп, какие у него ключевые характеристики, как самостоятельно изготовить прибор для такой установки и, наконец, какой практический алгоритм регулировки зажигания с помощью прибора. Это поможет им не допускать перерасхода топлива, необоснованного перегрева двигателя и прочих нежелательных явлений, негативно влияющих на работу машины и сокращающих срок её эксплуатации.

Как работает стробоскоп для зажигания

Элементарными навыками обращения со стробоскопом должен владеть каждый уважающий себя водитель, поскольку это устройство выступает его надёжным помощником и союзником в деле экономного использования машины. Тем более что ничего слишком сложного в этом нет: научиться работать со стробоскопом под силу любому, так как это несложный прибор, приобрести который можно практически чуть ли не в каждом специализированном автомагазине.

Работает он на основе известного со школьных уроков физики стробоскопического эффекта. Суть этого эффекта проста. Так, при освещении движущегося в темноте предмета с помощью короткой яркой вспышки этот объект покажется неподвижным, застывшим именно в таком ракурсе, в каком он находился в момент вспышки. Дальше в ход должны вступят две особенные метки, которым придется синхронно сработать с стробоскопом. Место расположения первой, так называмой «подвижной» – коленвал, в иных вариантах – шкив привода генератора, а также маховик, а второй – корпус двигателя.

Светодиодный стробоскоп для регулировки угла опережения зажигания

Мотор включают на холостой режим и с помощью стробоскопа высвечивают эти метки во время вспышки, происходящей одновременно с возникновением искры в свече какого-то цилиндра. При этом следует фиксировать, как метки расположены относительно друг друга. Если они размещены точь-в-точь одна против другой, то это означает оптимальность угла опережения зажигания, т. е. двигатель будет запускаться отлично. Когда же метка «подвижная» смещена, прерыватель-распределитель требует корректировки таким образом, чтобы метки точно противостояли друг другу.

Характеристики стробоскопа для установки зажигания

Как и любой важный автомобильный прибор, стробоскоп имеет систему определённых характеристик, позволяющих ему чётко выполнять его миссию. Некоторые из них присущи только ему. Скажем, питаться он может двумя равноценными способами: за счёт собственных элементов питания или же бортовой энергосистемы машины. При этом первый способ, по мнению многих экспертов, является более практичным, так как не требует подключения к прибору проводов.

Отличительным свойством стробоскопа считают и величину минимальной частоты его вспышек — ей следует быть равной частоте вращения коленвала с максимальными оборотами. Самым распространённым является прибор с частотой 50 Герц. Стоит отметить также, что такой прибор способен эффективно работать лишь незначительное время – примерно 10 минут, что связано со специфической конструкцией ламп, что подчёркивает прилагающаяся к нему инструкция.

Инструкция по изготовлению прибора для установки зажигания

Самый просто способ обзавестись стробоскопом и с его помощью нормально отрегулировать авто – приобрести такой прибор в автомагазине. Единственным «но» в данном решении может быть только немалая цена приборов, которая способна ощутимо сказаться на домашнем бюджете водителя. Поэтому многие рачительные автомобилисты выбирают второй, экономный вариант – мастерят стробоскоп для установки зажигания своими руками. Как показывает практика, такие самодельные устройства, как правило, ничем не уступают промышленным образцам, независимо от того, какой формат смастерен. Будь-то устройство с применением отечественного или зарубежного таймера, самодельный стробоскоп на надёжных светодиодах или иной вариант.

В любом случае самоделка из простых и дешёвых материалов обойдётся в несколько раз дешевле, чем покупка прибора. Схемы сборки таких устройств можно без проблем найти в интернете или у тех опытных водителей, которые уже смастерили такой прибор в корпусе от старого фотоаппарата или радиоприёмника самостоятельно и успешно используют его не только для установки зажигания, но и проверки свечей и других контрольных целей. Таких схем множество, и из них всегда можно выбрать для себя несколько самых простых, не требующих большого объёма работы.

Регулировка зажигания с помощью стробоскопа

Рабочий алгоритм того, как оптимально выставить зажигание купленным стробоскопом (или сделанным своими силами) прибором, несложен. Настроить зажигание можно следующим поэтапным путем:

  1. Включить мотор и дать ему некоторое время поработать в холостом режиме.
  2. Подключить имеющийся стробоскоп (промышленный или самодельный) к избранному источнику питания. Это может быть как автономный вариант, так и подключение к бортовой или иной энергосистеме.
  3. Подсоединение медного датчика к жиле первого из цилиндров: чаще всего, датчик просто наматывают на жилу.
  4. Источником света освещают ту метку, которая находится на корпусе.
  5. Одновременно визуально фиксируется, где на шкиве маховика находится неподвижная точка.
  6. Для нужного соединения двух найденных точек вращают корпус зажигания. Когда же требуемое положение найдено, его фиксируют.

Ознакомившись с советами экспертов, теперь вы сможете без труда разобраться с особенностями выставления зажигания с помощью стробоскопа.

Powerdynamo, стробоскоп — синхронизатор

Что и зачем такое стробоскоп и как использовать

Википедия сообщит нам, что стробоскоп:

— это инструмент, с помощью которого появляется циклически движущийся объект (наш маховик). быть медленным или неподвижным. Стробоскопы используются в таймерных огнях, чтобы динамически установить угол зажигания двигателя внутреннего сгорания с циклом Отто.

Световой индикатор времени подключен к цепи зажигания (в основном индуктивно) и используется для подсветки меток ГРМ с двигателем. Бег.Видимое положение меток, замороженных стробоскопом. эффект, указывает текущую синхронизацию искры по отношению к поршню позиция.


Эти инструменты бывают разных форм, в основном пистолетные. или форму факела.

Всем нужен источник питания (230 В или 12 В), и у них есть пикап (в основном индукционный зажим поставить вокруг кабеля HT для импульсного датчика)


Для стробирования двигателя вы устанавливаете стробоскоп (мощность питания и зажима HT) и запустите двигатель.Строб будет быстро мигать. Если он не мигает, поверните зажим на 180 градусов (т. Е. В сторону раньше в сторону свечи зажигания теперь должна быть направлена ​​в сторону зажигания катушка).

Теперь направьте вспышку на маркировка на маховике и двигателе. В связи с описанным выше стробоскопический эффект: метки кажутся неподвижными или в случае системы с опережающими механизмами, перемещающимися в зависимости от оборотов двигателя.

Вы заметите все еще мерцает положение штриховой маркировки — и это НЕ какой-то неисправность зажигания.Строб действует как в начале, так и в конце Искра. Иногда он использует начало, иногда конец, чтобы вызвать вспышку. следовательно мерцает. Кроме того, когда вы пробуете стробоскоп 3 разных марок на на одном и том же движке вы можете получить 3 разных результата. Стробоскопы не на 100% точный — но все же лучшее, что вы можете получить, и лучше, чем статическое время что в магнито-системах в любом случае невозможно (за исключением следующих настроек правила по доверию)

Практически:


Проверьте, есть ли на вашем двигателе заводская метка ГРМ.Старый BMW, например. имеют их (см. рисунок здесь с маркировкой OT = ВМТ).

В противном случае вам придется установить эти отметки, как описано ниже.

Обратите внимание, что хотя большинство наших систем имеют маркировку, они для статического времени, и они не очень полезны для динамических (стробоскопических) сроки.


Вы получите необходимые данные о зажигании из руководства по эксплуатации вашего мотоцикла. В виде справка: 2 удара из 60-80-х годов будут использовать около 27 градусов, что равно 2.От 5 до 3,5 мм до верхней мертвой точки (ВМТ — это самая высокая точка пистион может дойти). Моторные навыки 30-х годов потребовали бы гораздо большего прогресса (5-7мм). Старые 4 хода требуют более 40 градусов для ранней установки и около 2 или 8 за опоздание.

Вынуть свечу (свечи) зажигания. Найдите ВМТ (для 4-х тактов тот, что по мощности Инсульт). Поверните кривошип (лучше всего используя маховик в качестве ручки) назад. (проверьте, есть ли у вас маховики, вращающиеся по часовой стрелке или против часовой стрелки!) пока поршень не опустится до необходимого значения.

Конечно, работать придется точно. Теоретически до 0,1 мм или меньше точность. Для этого вы используете какой-то датчик.

В качестве импровизированного устройства, чтобы вообще запустить работу, используйте карандаш или вставьте отвертку в отверстие для пробки, чтобы проверить положение поршня.



Теперь вам нужно пометить маховик с положением кривошипа в зажигании положение (2 хода) или (4 хода) раннее и позднее зажигание против какая-то неподвижная точка на двигателе.

Немного скобы двигателя, как на картинке, или винт и т. Д.

Всегда делайте это, когда кривошип находится в нужном положении зажигания. позиция.


Вставьте свечу (свечи) зажигания обратно. Подключите стробоскоп согласно инструкции прилагается к инструменту, и запустите двигатель.

Вещь должна быстро мигать.

Если он не мигает или мигает только с перерывами, снимите зажим с Провод HT, переверните его (сторона, которая раньше была по направлению к вилке, теперь обращена к катушка зажигания).



Теперь направьте вспышку на маркировка на маховике и двигателе.

Из-за описанного выше стробоскопического эффекта маркировка кажется стационарный

ВНИМАНИЕ: Даже если маховик кажется быть в состоянии покоя, это определенно не так. Он вращается с некоторой скоростью, и вы следует воздерживаться от прикосновения к этому ротору, если он, казалось бы, невинно остановился!


Следующее будет зависеть от того, есть ли у вас 2-тактный двигатель, 4-тактный, вращающийся по часовой стрелке или против часовой стрелки маховик.Однако принцип всегда один и тот же.
Проверьте, совпадает ли маркировка на роторе с ориентиром на двигатель, как он находился в статическом положении во время настройки.

На картинке здесь (для маховика, вращающегося по часовой стрелке) совмещение с светло-зеленая линия означает ОК.

Выравнивание больше с красной линией означает, что искра опаздывает, в любом случае позже чем хотел.

Выравнивание больше с синей линией означает, что искра слишком рано, в любом случае раньше, чем хотелось.

Пример для вала, вращающегося по часовой стрелке!


Если отметки не совпадают на 100%, не паникуйте. Как уже упоминалось, стробоскопы не на 100% точны, возможно, вы читаете немного сбоку и большинство старых двигателей довольно снисходительны.

Если это утешает:
старые данные производителя тоже определенно не точны. Они часто использовались бензин с бензином низкого качества (68-88 октан).Сегодня у нас 94 или около того. Следовательно, развитие пламени происходит намного быстрее и нужно меньше аванса, но насколько меньше, только вы можете узнать эксперимент.

Примечание для 4-х тактов с доступом только к распределительному валу:

Поскольку кулачок вращается на половину скорости кривошипа, углы фаз газораспределения сдачи уменьшаются вдвое.


Важно, чтобы двигатель работал плавно и имел тяговое усилие.ЕСЛИ в этом случае перестаньте возиться с зажиганием. Вы только усугубляете ситуацию.

Если вы хотите изменить настройки после стробирования, вы следующим образом:

a) Запишите, сколько (мм) и в каком направлении вы сделали разметку на маховике появляется сдвинутая вспышка.

b) Если опорная плита не допускает изменений, вам придется тянуть ротор. (без изменения положения кривошипа) и сбросьте его таким образом, чтобы исправить смещение, которое вы заметили во время стробирования.

c) Надежно закрепите ротор и снова стробируйте. Надеюсь, теперь у вас есть то, что вы хотел, в противном случае повторите упражнение (тесто в этом случае сначала выпейте пива)

За 4 такта маркировка смещается с ускорением двигателя (из-за автоматическое продвижение)

Маркировка должна постепенно меняться от поздней до ранней отметки.

Вы можете посмотреть короткое видео о это здесь

к базе знаний

Как сделать стробоскопы своими руками.Самодельный стробоскоп для регулировки зажигания. Сборка строба своими руками пошагово, самый простой вариант

Светодиодный стробоскоп для установки зажигания позволяет быстро и с высокой точностью установить оптимальный угол опережения зажигания (УАЗ) в автомобиле. Этот параметр играет важную роль в правильной работе двигателя. Небольшое смещение в момент зажигания приводит к потере мощности из-за повышенного расхода топлива и перегрева двигателя.

Несмотря на большой ассортимент промышленных устройств для проверки и установки женщин, актуальность создания стробоскопа не потеряла смысла и сегодня.Представленная схема самодельного стробоскопа для автомобиля не требует настройки после сборки и изготовлена ​​из имеющихся деталей.

Концепция Strobeconopa

Схема разработана и представлена ​​в девятом выпуске журнала «Радио» в далеком 2000 году. Однако благодаря своей простоте и надежности она остается актуальной и сейчас.

В принципиальной электрической схеме Стробоскоп для автомобиля условно можно выделить 4 части:

  1. Силовая цепь, состоящая из переключателя SA1, диода VD1 и конденсатора С2.VD1 защищает элементы схемы от ошибочной смены полярности. С2 блокирует частотные помехи, предотвращая сбои в работе триггера. Для питания и выключения питания используется переключатель SA1, для этого подойдет любой компактный переключатель или тумблер.
  2. Входная цепь, состоящая из датчика, конденсатора С1 и резисторов R1, R2. Функцию датчика выполняет зажим «крокодил», который закреплен на высоковольтном проводе первого цилиндра. Элементы C1, R1, R2 представляют собой простейшую дифференцирующую схему.
  3. Микросхема триггера, собранная по схеме из двух однотипных блоков, формирующих на выходе импульсы заданной частоты. Грузовые элементы — резисторы R3, R4 и конденсаторы C3, C4.
  4. Выходной каскад собран на транзисторах VT1-VT3 и резисторах R5-R9. Транзисторы усиливают выходной ток триггера, что отражается в виде ярких вспышек светодиодов. R5 задает ток БД первого транзистора, а R9 — устраняет сбои в работе мощного VT3.R6-R8 ограничивают ток нагрузки, протекающий через светодиоды.

Принцип действия

Цепь стробоскопа питается от автомобильного аккумулятора. При срабатывании выключателя SA1 триггер DD1 переходит в исходное состояние. При этом на обратных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) — низкий. Конденсаторы С3, С4 заряжаются через соответствующие резисторы.

Импульс с датчика, проходя через дифференцирующую цепь, поступает на тактовый вход первого однотракторного DD1.1, что приводит к его переключению. Начинается перезагрузка C3, которая через 15 мс заканчивается еще одним переключением триггера. Таким образом, симулятор реагирует на импульсы с датчика, формируя на выходе прямоугольные импульсы (1). Длительность выходных импульсов с DD1.1 определяется скоростями R3 и C3.

Второй программный DD1.2 работает аналогично, уменьшая длительность импульса на выходе (13) в 10 раз (примерно на 1,5 мс). Нагрузка для DD1.2 представляет собой усилительный каскад транзисторов, открывающихся в момент импульса.Импульсный ток через светодиоды ограничивается исключительно резисторами R6-R8 и в этом случае достигает значения 0,8 А.

Не бойтесь такого большого тока. Во-первых, его импульс не превышает 1 мс, при штатном режиме работы не менее 15. Во-вторых, современные светодиоды имеют гораздо лучшие технические характеристики по сравнению с предшественниками 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было искать светодиоды с мощностью света в 2000 мк.Теперь белый светодиод (от англ. Light-Emitting DIODE) типа C512A-5 мм от фирмы с углом рассеяния 25 ° способен выдавать 18 000 мкД при постоянном токе 20 мА. Поэтому использование супервоенных светодиодов позволит значительно снизить ток нагрузки за счет увеличения сопротивления R6-R8. В-третьих, время использования стробоскопа обычно не превышает 5-10 минут, что не вызывает перегрева кристаллов излучающих диодов.

Печатная плата и детали сборки

Самодельный стробоскоп для установки зажигания можно собрать как на недорогих отечественных радиоэлементах, так и на более точных импортных элементах.Ниже указана плата с использованием отечественных комплектующих для штифтового крепления.

Доска в досье. Макет спринта. 6.0: Plata.Lay6.

Диод VD1 — CD2999B или любой другой с небольшим падением постоянного напряжения. Конденсатор С1 должен быть высоковольтным емкостью 47 ПФ и напряжением 400 В. Конденсаторы С2-С4 неполярные серии КМ-5, К73-9 по 0,068 мкФ 16 В. Все резисторы, кроме R4, такие как MLF или планарный со ставками, указанными на схеме. R4 Тип SP-3 или SP-5 резистор смачивания на 33 ком.

Триггер

TM2 лучше использовать 561 серию, которая отличается высокой помехозащищенностью и надежностью. Но можно заменить на микросхему 176 и 564 серий с учетом их распиновки. Транзисторы VT1-VT2 подойдут CT315 b, B, g или CT3102 с большим коэффициентом усиления. Выходной транзистор — КТ815, КТ817 с любой буквенной консолью. Светодиоды HL1-HL9 лучше брать superwear с малым углом рассеивания. Они размещаются на отдельной доске по три в ряд. При отсутствии каких-либо деталей схемы их можно заменить на более современные аналоги, немного улучшенную плату.

Готовая плата управления стробоскопом и плата со светодиодами удобно размещены в корпусе переносного фонаря. В этом случае необходимо предусмотреть отверстие в корпусе под контроллер R4, а штатный выключатель можно использовать как SA1.

Настройка

На схеме установлен резистор хода R4, регулировкой которого можно добиться визуального эффекта. Вращая ручку регулятора, можно заметить, что уменьшение импульса тока приводит к недостаточной подсветке этикеток, а увеличение — к размытию.Поэтому при первом запуске стробоскопа необходимо выбрать оптимальную продолжительность вспышек.

Длина экранированного провода от печатной платы Датчик не должен превышать 0,5 м. В качестве датчика подойдет медный провод 0,1 м, припаянный к центральному корпусу экранированного провода. В момент подключения он наматывается на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехозащищенности обмотку производят как можно ближе к свече.Вместо медного проводника можно взять зажим типа «крокодил», который тоже следует припаять к центральному жилью, а его зубцы будут слегка загнуты внутрь, чтобы не повредить изоляцию.

Установка стробоскопа Узень

Прежде чем рассматривать работу автомобильного стробоскопа, необходимо понять суть стробоскопического эффекта. Если объект, движущийся в темноте, на мгновение засветится вспышкой, то он будет казаться застывшим в том месте, где произошла вспышка.Если наклеить на вращающееся колесо яркую метку и осветить ее яркими вспышками, совпадающими по частоте с частотой вращения колеса, то в момент мигания можно визуально зафиксировать расположение метки.

Перед регулировкой борта автомобиля наносятся две метки: подвижный вал (маховик) и неподвижный — на картере двигателя. Затем включите датчик, подайте питание на стробоскоп и включите двигатель на холостой ход. Если во время вспышек метки совпадают, то узлы обнажены оптимально.В противном случае следует довести до их полного совпадения.

Представленный стробоскоп для установки зажигания, собранный своими руками, позволит за несколько минут отладить систему зажигания автомобиля. В результате регулировка повысит КПД двигателя и увеличится срок службы.

Читать так же

Очень мощный светодиодный стробоскоп, который прекрасно дополнит любой дискотечный танцпол. Стробоскоп построен на трех светодиодных матрицах общей мощностью 150 Вт.

Принцип работы устройства заключается в подаче очень коротких световых импульсов (вспышек) в заданный промежуток времени. По действию он очень сильно напоминает застежку-молнию во время дождя, когда совершенно темная комната на миллисекунды освещает ярким светом.
Во время дискотеки это выглядит особенно завораживающе.
Детали:

  • Светодиодная матрица —
  • Источник 12 В —
  • Транзистор K2543 —
  • Диодный мост —
  • Микросхема NE555 —
  • Резисторы и конденсаторы —
светодиодов на сетевое напряжение со встроенным драйвером:

Схема конструктора строба


Я бы не сказал, что схема сложная, достаточно простая.Но у него нет гальванического натяжного спая, а значит — нельзя прикасаться к каким-либо элементам схемы во время ее работы и при сборке, чтобы быть особенно внимательными.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.

Рабочий Стрелобоскоп

Генератор коротких импульсов собран на микросхеме NE555. Время между импульсами можно изменять вращением ручки переменного резистора R3.
Ключ к выходу этого генератора подключен к полю транзистора, коммутирующего напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу.Светодиодные матрицы
питаются от постоянного тока, выпрямляющего диодный мост. Это необходимо для того, чтобы переключить цепь полевого транзистора, который работает только с постоянным напряжением.

Сборка строба

Стробоскоп собирается в кабельный кабель. Светодиоды прикручиваются к широкой стороне, без радиаторов. Поскольку светодиод используется где-то на 2-5% своей мощности (импульсная работа), необходимость в радиаторах отпадает.


Боковые стенки вырезаны из того же кабеля и приклеены.Сверху выведен переменный резистор для регулировки частоты мерцания.

Схема блоков в корпусе:

Внимание Светодиоды

очень мощные и могут повредить глаза, поэтому смотреть на них не рекомендуется. Особенно опасны стробирующие вспышки, так как в темноте глаз расслабляется, а яркий пульс проникает прямо на сетчатку.
Также не забываем, что вся схема находится под угрозой для жизни в сети.

Результат работы

Работа стробоскопа, к сожалению, не проходит ни через фото, ни через видео. Так как даже видеокамера очень плохо проходит короткий импульс и он просто кричит.
Но от себя могу сказать, что стробоскоп отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в целом все как надо.

Carburetor владельцы автомобилей не знакомы со сложностями процесса регулировки зажигания.Обычно это делается на слух, что не очень удобно. С помощью стробоскопа можно облегчить этот процесс. Однако промышленные устройства довольно дороги, поэтому многие делают стробоскоп для розжига своими руками.

Недостатки промышленных моделей

Промышленные устройства часто имеют определенные недостатки, из-за которых полезность устройства весьма сомнительна.

Начнем с того, что цена на них довольно значительная. Например, современные цифровые модели обойдутся автомобилисту в 1000 р.Более функциональные модели уже из 1700. Продвинутые стробоскопы стоят порядка 5 500 р. Надо сказать, что стробоскоп автомобильный (сделанный своими руками) обойдется автомобилисту в 100-200 рублей.

Часто в заводских устройствах производитель применяет особо дорогие газоразрядные лампы. У лампы есть определенный ресурс, и через какое-то время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.

Зачем делать стробоскоп самому?

Недостатки заводских и технологических устройств подталкивают автолюбителя к самостоятельному изготовлению данного устройства.К тому же намного дешевле за счет оснащения этого оборудования светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обычная лазерная указка или фонарик.

Остальные подробности тоже будут в копейке. Специальных инструментов не будет. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.

Как сделать стробоскоп своими руками?

Схем и вариантов изготовления существует огромное количество.Однако в большинстве своем все проекты по созданию этого гаджета похожи. Посмотрим, что понадобится для сборки.

Нам понадобится простой транзистор КТ315. Его легко найти в старой советской магнитоле. Обозначение может немного отличаться, но это не беда. Тиристор КУ112А без проблем извлекается из блока питания старого телевизора. Также можно найти небольшие резисторы. Поскольку светодиодный стробоскоп мы делаем своими руками, то, естественно, вам понадобится светодиодный фонарик.Для этого лучше покупать самые дешевые, в Китае. Кроме того, необходимо запастись конденсатором на 16 в любой низкочастотный диод, маленькое реле на 12 А, провода-крокодилы, экранированные проводом длиной 0,5 м, а также небольшой кусок медной проволоки.

Соберите прибор

Схема небольшая, и разместить ее можно прямо в том самом китайском фонарике. Итак, через отверстие в фонарике желательно пропустить провода для питания устройства. На концах проводов лучше насыпать крокодилов.В боковой стенке нужно проделать дырку, если китайцы ее еще не сделали. Через это отверстие будет пропущен экранированный провод. На противоположном конце необходимо заизолировать оплетку и припаять сам кусок медной проволоки к основной опоре провода. Это будет датчик.

Схема устройства и принцип работы

После прохождения тока по проводам питания конденсатор очень быстро заряжается через резистор. Когда будет достигнут определенный порог заряда, резистор напряжения потечет на размыкающий контакт транзистора.Здесь будет работать реле. Когда реле замкнуто, оно образует цепочку из тиристора, светодиода и конденсатора. Тогда через делитель импульс попадет на управляющий выход тиристора. Далее тиристор открывается, и конденсатор разряжается на светодиоды. В результате стробоскоп, сделанный своими руками, ярко мигает.

Через резистор и тиристор база транзистора подключается к общему проводу. Из-за этого транзистор закрывается, а реле выключится.Увеличивается время свечения светодиодов, так как контакт разводится не сразу. Но контакт разорвется, и тиристор обесточится. Схема вернется в исходное положение до тех пор, пока не пойдет новый импульс.

Изменяя емкость конденсатора, можно изменять время свечения. Если выбрать конденсатор большей емкости, то светодиод стробоскоп, своими руками, будет ярче и светиться дольше.

Устройство на микросхеме

Основной частью этой несложной схемы является микросхема DD1.Это так называемый атигнер 155Ag1. В этой схеме он запускается только от отрицательных импульсов. Управляющий сигнал пойдет на транзистор CT315, и он будет формировать эти отрицательные импульсы. Резисторы 150 к ОМ, 1 к ОМ, 10 к ОМ, а также Стабилитрон КС139 работают как ограничители амплитуды входящего сигнала от зажигания автомобиля.

Конденсатору 0,1 МПа вместе с сопротивлением 20 кОм будет придана желаемая длительность импульса, которую будет формировать микросхема. При такой емкости конденсатора длительность импульса будет примерно до 2 мс.

Тогда с 6-го плеча микросхемы импульсы, которые будут синхронизированы с зажиганием автомата до этой точки, попадут на базовый вывод транзистора CT 829. Он здесь как ключ. Результат — импульсный ток через светодиоды.

Как работает этот стробоскоп для автомобилей? Своими руками нам нужно провести пару проводов к клеммам автомобильного аккумулятора. Необходимо следить за уровнем заряда аккумулятора.

Если вы наверняка соберете эту простую схему, вы сразу увидите, как работает устройство.Если вдруг яркости не хватит, это регулируется подбором соответствующего сопротивления.

В качестве устройства для устройства можно использовать старый или китайский фонарик.

Еще одна схема стробоскопа

Этот стробоскоп на светодиодах, своими руками сделанный по этому принципу, также может питаться от автомобильного аккумулятора. Диоды позволят защитить от неправильной полярности. В качестве застежки здесь используется обычный крокодил. Его необходимо прикрепить к высоковольтному контакту первой свечи на моторе.Далее импульс пройдет через резисторы и конденсатор и поступит на вход триггера. К тому времени эта запись уже будет включена симулятором.

Пульс в обычном режиме. Доходность прямого срабатывания триггера имеет низкий уровень. Обратный вход, соответственно — высокий. Конденсатор, подключенный плюсом к инверсному выводу, заряжается через резистор.

Импульс высокого уровня запускает симулятор, который включает триггер и служит для зарядки конденсатора через резистор.Через 15 мс конденсатор полностью зарядится, и курок перейдет в нормальный режим.

В результате симулятор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью около 15 мс. Продолжительность можно отрегулировать, заменив резистор и конденсатор.

Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, являющиеся электронным переключателем. Затем ток течет через светодиоды. По такому принципу работает стробоскоп для автомобиля (изготовлен он своими руками или нет, неважно — оба прибора светятся одинаково).

Ток, проходящий через светодиоды, намного больше паспортного. Но, поскольку вспышки короткие, то и светодиоды не выйдут из строя. Яркости хватит, чтобы пользоваться этим полезным устройством даже днем.

Этот стробоскоп можно собрать в футляр от того же многострадального карманного фонарика.

Как работать с устройством?

Собрав на одной из схем схемы, легко и просто, а главное точно отрегулировать зажигание на карбюраторных двигателях, проверить правильность работы свечей и катушек, проконтролировать работу опережения регуляторы угла.

Чтобы максимально выставить зажигание, обычно исходят из того, что смесь зажигается на пару градусов до того, как поршень подойдет к верхней точке. Этот угол называется «Угловым углом». При увеличении оборота коленчатого вала угол тоже должен увеличиваться. Итак, этот угол выставляется на холостом ходу, после чего необходимо контролировать правильность настройки на всех режимах работы агрегата.

Выставляю зажигание

Запустить и прогреть двигатель. Теперь запитываем наш стробоскоп на светодиоды и подключаем датчик.Теперь нужно отправить прибор на этикетку на корпусе GDM и найти этикетку на маховике. Если момент сорвался, метки будут достаточно далеко друг от друга. Способ вращения корпуса MRR, добиться отметок. Когда вы нашли это положение, зафиксируйте резину.

Тогда пора наращивать обороты. Теги разойдутся, но это вполне нормальная ситуация. Так выполняется настройка зажигания с помощью строба.

Итак, мы выяснили, как делается стробоскоп на светодиодах своими руками.

Стробоскоп — это оборудование, способное непрерывно воспроизводить световые импульсы. В настоящее время самым распространенным является стробоскоп на светодиодах. Он нашел свое широкое применение в самых разных сферах нашей жизни. Например, это устройство незаменимо в сфере строительства и ремонта (выделение домов, зданий и сооружений), в индустрии рекламы, машиностроении, а также при проектировании ресторанных и гостиничных комплексов, кафе, ночных клубов и прочего. .

Благодаря довольно простой конструкции стробоскоп на светодиодах легко сделать своими руками.Для этого требуется только принципиальная схема, микроконтроллер, защитное устройство, а также датчики в зависимости от функционального назначения устройства.


Этот автомобильный стробоскоп достаточно мощный и может содержать несколько светодиодов. Для сборки устройства следует купить таймер на микросхеме NE555 и полевой транзистор. Наиболее подходящими могут быть транзисторы типа IRFZ44, IRF3205, KP812B1 и ряд других.



Искомое устройство получается достаточно компактным и мощным.Кроме того, вы можете регулировать частоту мигания светодиодов. Из-за того, что на переходе происходит небольшой спад напряжений, лучше всего применять диод Шоттки. Также необходимо создать необходимую герметичность пластикового корпуса, в котором находится борт. В этом случае незаменимым будет синтетический силикон.




Полевой транзистор при длительной работе обычно перегревается, поэтому его следует устанавливать на радиатор. Схема может питать светодиоды, напряжение которых не превышает 12 вольт.Иначе горит проводка.

Самодельный стробоскоп изготавливает достаточно большое количество автолюбителей и профессионалов, так как эта процедура практически не требует особых знаний и навыков. Чтобы сделать стробоскоп своими руками и при этом соответствовать всем требованиям и предпочтениям, необходимо получить качественный способ выбора светодиода. В настоящее время наибольшей популярностью пользуются светодиодные устройства, так как их срок службы, а также яркость свечения значительно превосходит любые другие типы излучателей.

В интернете очень долго пытался найти схему светодиодного стробоскопа. Понимающие в электронике люди теперь скажут: «Подумай, стробоскоп, а что там сложного». Стробоскопы разные, и все ранее известные схемы мне не подходили, так как единственной целью было получить эффект полицейского стробоскопа. Может не все заметили, но мигалка Militia работает очень интересно — каждая лампочка несколько раз мигает, потом переключается. В результате мы получаем эффект, более известный под названием «Полицейская вспышка».

Стробоскоп можно собрать по разным схемам с помощью мультивибратора, но ни один из них не обеспечивает желаемого эффекта или эффект нестабильный. Эта задача вполне выполнима, если можно перенести МК, но в моем случае такой возможности не было (недружелюбно к микроконтроллерам). Оставалось найти альтернативу на простых и доступных элементах. На зарубежных сайтах была обнаружена очень интересная скорость электрического молота с использованием таймера серии 555. Микросхема работает как генератор прямоугольных импульсов.

В схеме также использован счетчик К561И8 (в моем случае используется импортный аналог, в общем не критично). Чип представляет собой счетчик десятичного делителя, то есть имеет 10 расшифрованных выходов. Он состоит из высокоскоростных счетчиков и декодеров. Работа счетчика, думаю, всем понятна, объяснять не буду. Чтобы получить эффект мигания, когда каждый светодиод мигает дважды, необходимо использовать два близких выхода измерителя. Когда сигнал поступает на счетчик, на выходах поочередно формируются импульсы.Сначала на первом выходе формируется импульс, затем переключается на второй, третий и так до конца, затем процесс повторяется первым. Частоту и интенсивность вспышек можно регулировать, если регулировать их номиналом резистора от 6 до 7 выходов таймера. В выходном каскаде можно использовать практически любые мощные питающие транзисторы проводимости, в моей версии использовалось 13007 (сброшено с платы Балласта LDS).


Вы также можете настроить количество миганий для каждой лампы (1-5 миганий перед переключением).Для этого просто добавляем диоды на выходы микросхемы. Например, один канал — это выводы 4 и 2, а второй, соответственно, 7 и 9, для тройной вспышки одного канала, просто нужны выводы 1,3,5 (Первый канал) и 6.8.0 (второй канал) диоды для подключения друг. Мощность подключенной нагрузки зависит от силовых клавиш. Если планируется маломощный стробоскоп на светодиодах, можно на выходе использовать маломощный CT315, при более мощных нагрузках в качестве выходных ключей следует использовать полевые транзисторы.


Устройство имеет достаточно широкий диапазон входных напряжений, начинает работать с 4,5-5 вольт, при этом частота миганий не меняется в зависимости от номинального входного напряжения. Такой стробоскоп стоил всего 1,5 доллара (транзисторы были). Из схемы также можно исключить стабилизатор напряжения на 5 вольт, микросхема отлично работает от автомобильного аккумулятора. Если вы планируете использовать светодиоды, не забудьте про ограничительные резисторы, и вы увидите помутнение кристалла светодиода.


Вся установка выполнена в алюминиевом корпусе от китайского электронного трансформатора Для питания галогена от 12 вольт.


Корпус оказался очень подходящим. Девайс прям с завода не отличить, хотя установка комплектующих производилась на самосвальной плате.

22.87 EUR Стробоскоп времени зажигания Лампа 12 В Ксеноновая лампа Индуктивный датчик

Пистолет для установки угла опережения зажигания для бензиновых двигателей со стандартной или транзисторной системой зажигания.Зажигание можно отрегулировать как на 6 вольт, так и на 12 вольт. (Для зажигания с напряжением 6 В требуется внешний источник питания с напряжением 12 В.) Очень яркая ксеноновая лампа и специальная собирающая линза обеспечивают оптимальную видимость стационарной метки времени даже при скорости вращения выше 8000 об / мин в ближнем поле.

Подключите световой хронограф к 12-вольтовой батарее с помощью зажимов типа «крокодил» и индуктивного зажима непосредственно к кабелю зажигания в непосредственной близости от штекерного разъема.

Установка правильного угла опережения зажигания

Регулировка угла опережения зажигания всегда должна производиться при прогретом двигателе и полностью открытой заслонке холодного воздуха карбюратора.
При измерении и настройке двигатель должен работать на исходной частоте вращения холостого хода (обычно соответствует примерно 850 ± 50 об / мин).
Если это не так, сначала необходимо скорректировать холостой ход.

Соедините индуктивный датчик / фиксатор лампы газораспределения с кабелем свечи зажигания / зажигания 1-го цилиндра, подсоедините зажимы типа «крокодил» для 12 В +/- к 12 В аккумуляторной батарее автомобиля.
Правильная установка угла опережения зажигания указана в руководстве по эксплуатации автомобиля или в руководстве по ремонту.В соответствии с этими спецификациями теперь направьте индикатор синхронизации (стробоскоп) прямо на метку синхронизации на шкиве клинового ремня под углом 90 °, если это возможно. Метка синхронизации должна точно совпадать (если смотреть сквозь стробоскоп) с линией разделения блока цилиндров.

Если зажигание установлено неправильно, распределитель необходимо отрегулировать, как указано в руководстве по ремонту, пока не будет достигнуто совпадение метки времени. (Для большей задержки искры вращайте по часовой стрелке, а для большего опережения зажигания вращайте против часовой стрелки.) Плотно прикрутите распределитель и еще раз проверьте с помощью светового пистолета для опережения зажигания и, при необходимости, исправьте.

Как проверить и отрегулировать время зажигания на классическом автомобиле

В данном руководстве содержится совет « bygone» о том, как проверять и регулировать угол опережения зажигания на классическом автомобиле. Это часть создаваемой мной серии статей, в которых описывается, что делать с базовым сервисом для классических автомобилей.

Полезная информация для любителей классических автомобилей и ретро-автомобилей , так как многие из этих задач больше не требуются на современных автомобилях.

Помните, ребята, это «давно минувшие руководства»… полезно, но меры безопасности и средства индивидуальной защиты отражают давно забытое понимание. Оставайся в безопасности.

Если вы торопитесь, вы можете скачать это руководство в формате PDF

Что помогает финансировать этот сайт



Как проверить угол опережения зажигания

Прежде чем мы продолжим, вы можете получить здесь общее представление об основах синхронизации зажигания.

Перед началом работ по установке угла опережения зажигания необходимо знать три вещи:

  1. Какой из ваших цилиндров No.1.
  2. Какой цилиндр используется для процедуры синхронизации. (Почти во всех случаях это № 1, но есть редкие исключения, когда вместо него используется самый задний цилиндр (№ 4, № 6 или № 8).)
  3. В какой момент (то есть… сколько градусов вращения коленчатого вала перед ВМТ — цилиндр ГРМ должен сработать) (Это зависит от автомобиля к автомобилю, а также для одного и того же автомобиля в разных странах, где действуют строгие правила контроля выбросов, и в странах, где их нет.)

Так что соберите свои факты из соответствующих инструкций по ремонту для конкретной страны.Не следует просто гуглить, используя марку и модель автомобиля, так как вы можете получить неверную информацию.

Фактическая работа состоит из четырех этапов :

  1. Установление на неподвижной части двигателя отметки, соответствующей ВМТ.
  2. Нанесение метки на вращающуюся часть двигателя, такую ​​как шкив вентилятора или маховик, на ВМТ.
  3. Также устанавливают на вращающемся элементе еще одну отметку «опережающую отметку», представляющую количество градусов до ВМТ, при котором должно происходить сгорание.
  4. Регулировка распределителя таким образом, чтобы цилиндр № 1 (или другой соответствующий) срабатывал точно так, как метка продвижения на шкиве вентилятора или маховике совпадает с фиксированной меткой, соответствующей ВМТ, которую вы сделали на двигателе.

Где найти метки момента зажигания

Первый шаг в определении времени зажигания — это найти метки синхронизации или, если производитель не предоставил их, сделать их. На рисунках ниже показаны наиболее вероятные места появления меток.

Метки синхронизации зажигания можно найти на шкиве коленчатого вала в передней части двигателя. Здесь на шкиве нанесена шкала

Если метки ГРМ находятся на маховике, их обычно можно увидеть, сняв небольшую пластину, прикрепленную болтами к кожуху колокола в задней части двигателя. Эта пластина обычно находится сверху или сбоку, но на некоторых автомобилях она находится внизу.

На некоторых автомобилях с поперечным расположением двигателя следы можно увидеть только с помощью небольшого ручного зеркала и фонарика. Во время работы приклейте зеркало к кожуху маховика с помощью жевательной резинки и подходящей опоры.

Метки синхронизации могут быть на маховике. виден через отверстие в верхней, боковой или нижней части раструба вокруг муфты Некоторые автомобили оснащены гасителями колебаний на коленчатом валу. Они установлены за шкивом и могут иметь временную шкалу.

В качестве альтернативы, метки синхронизации могут быть на шкиве вентилятора или на автомобилях с гасителями колебаний коленчатого вала за шкивом вентилятора на глушителях.



Что такое ВМТ или верхняя мертвая точка

Следующий шаг — определить, что идентифицируют метки.

На шкиве вентилятора или где-либо еще вы можете найти только одну отметку. Если на нем написано «Верх», «ВМТ» «Нет. 1 ‘или «0 °», то это, безусловно, отметка ВМТ — та, которая обозначает, что цилиндр, используемый для хронометража, находится в положении «огонь».

Если на нем нет идентифицирующих символов, это почти наверняка знак ВМТ, за исключением поздних автомобилей Volkswagen, где, чтобы не усложнять задачу, это предварительный знак.

Если вы обнаружите две линии на расстоянии примерно 2,5 см или 1 дюйма друг от друга, то первая, которая появляется при вращении двигателя, является меткой опережения, а другая — меткой ВМТ.

На некоторых двигателях две метки опережения установлены близко друг к другу. Они используются, когда двигатель работает на разных сортах топлива. Чем выше октановое число (или звездочка) топлива, тем более точным будет время. Полезно знать в наше время.

На шкиве или демпфере некоторые производители предоставляют сложную шкалу, показывающую 24 ° перед верхней мертвой точкой (ВМТ) и 16 ° после верхней мертвой точки (ВМТ), а также фактическую отметку ВМТ.

Другие имеют только одну канавку на фитинге коленчатого вала, но калиброванную шкалу, прикрепленную болтами к рациональной части двигателя.В обоих случаях шкала позволяет изменять время в зависимости от условий, в которых может работать автомобиль, высоты над уровнем моря, например, или жаркого или холодного климата.

Какие бы отметки ни использовались, рекомендуется тщательно заполнить их белой краской, чтобы упростить поиск.


Что делать, если на вашем автомобиле нет временных меток ВМТ

Если метки времени отсутствуют, необходимо рассчитать и отметить правильные позиции.

Для отметки ВМТ процедура заключается в том, чтобы подвести поршень в цилиндре привода ГРМ (обычно № 1) точно к верхней точке его хода сжатия. Затем вы делаете узкую канавку на ободе шкива вентилятора или демпфера и делаете соответствующую отметку точно на одной линии с ней на соседней неподвижной части двигателя.

Для этого двигатель необходимо повернуть в правильном направлении вращения. Проще всего это сделать при снятых свечах зажигания, но сначала пометьте каждый вывод свечи номером, чтобы в дальнейшем избежать путаницы.

Есть несколько способов медленно повернуть двигатель. Один из них — использовать кривошипную ручку в том маловероятном, но счастливом случае, когда она есть в вашем автомобиле.

Другой способ — повернуть двигатель, потянув за ремень вентилятора, хотя это сложно для больших двигателей объемом 3 литра и более, и двигатели с вентиляторами с электрической или вязкостной муфтой не должны поворачиваться таким образом.

Еще один метод — использовать подходящую головку и длинную ведущую штангу на гайке, крепящей шкив или демпфер к коленчатому валу.Последняя альтернатива, хотя и не на автомобилях с автоматической коробкой передач, — это включить высшую передачу, включить рулевое управление до упора и толкнуть автомобиль за одну из выступающих шин.

Никогда не переворачивайте двигатель назад; вы получите ложное показание.

Поскольку для создания отметки ВМТ требуется, чтобы цилиндр № 1 находился на такте сжатия (когда впускной и выпускной клапаны закрыты одновременно), крышка коромысла должна быть снята, чтобы вы могли видеть, когда это происходит.

На двигателях с верхним распределительным валом необходимо снять крышку распределительного вала. Поршень № 1 находится на такте сжатия, когда пружины соответствующих клапанов не сжаты, но имеют нормальную длину. Вы можете убедиться в этом, просто посмотрев на соседние пружины, некоторые из которых будут в заметном состоянии сжатия.



Для получения точных показаний ВМТ необходимо смазать резьбу отверстия свечи зажигания цилиндра № 1 хорошей жидкостью для выдувания пузырьков, например, моющим средством или сильным мыльным раствором.Чтобы пузырек оставался приемлемого размера, вкрутите свечу зажигания примерно от половины до одного оборота или, в качестве альтернативы, используйте коническую деревянную свечу с канавкой, вырезанной на одной стороне.

По мере вращения двигателя пузырь будет увеличиваться все время, пока поршень поднимается на такте сжатия. После прохождения ВМТ пузырек сожмется или лопнет.

Повторите процедуру создания пузырей несколько раз, чтобы почувствовать, где находится ВМТ. Вам нужно будет повернуть двигатель так, чтобы другие поршни достигли ВМТ до No.1 вернется в это положение.

Убедившись, что пузырек находится на максимальной высоте, сделайте начальные отметки, как описано выше.

Нанесение метки времени

Затем вам нужно установить временную метку на нужное количество градусов (как объяснялось ранее) перед ВМТ.

Это можно сделать двумя способами. Один из них — измерить диаметр шкива вентилятора с помощью линейки и вырезать из карты круг точно такого же размера, как и шкив. Затем вы отмеряете угол наклона транспортиром и переносите временную метку на шкив.

Карту синхронизации можно сделать, просто вырезав из нее круг того же размера, что и шкив, и отметив на нем угол опережения.

Для другого метода начните с измерения диаметра шкива.

Умножьте это на 22. Затем умножьте на необходимое количество градусов опережения зажигания. Разделите результат на 7 x 360 (2520). Это обеспечит необходимое расстояние вокруг обода шкива. Формула:

Рассчитать положение установочных меток шкива

Наконец, используйте гибкую стальную ленту, чтобы измерить расстояние вокруг обода шкива.

Какой бы метод вы ни использовали, помните, что при вращении двигателя метка синхронизации должна располагаться перед меткой ВМТ. Если смотреть на двигатель со стороны вентилятора, например, направление вращения будет по часовой стрелке, поэтому новая отметка будет справа от ВМТ. Новая отметка — BTDC, перед верхней мертвой точкой.


Как установить время зажигания

Существует три метода установки угла опережения зажигания:

  1. Статический метод , выполняемый при остановленном двигателе.Этот метод можно использовать с любым автомобилем, но он не точен, и окончательную настройку необходимо провести позже в условиях дорожных испытаний.
  2. Метод стробоскопического освещения , выполняемый с двигателем, работающим на заранее определенном количестве оборотов. Он более точен, чем статический таймер, но работает только на автомобилях с тахометром (тахометром).
  3. Монолитный ГРМ . Этот относительно новый метод работает только на более поздних классических автомобилях, коленчатые валы которых сделаны специально для этого.

Регулировка точек

Перед тем, как вы начнете проверять угол опережения зажигания, необходимо отрегулировать точки размыкателя контактов.


Как настроить синхронизацию с помощью метода статического зажигания

Статический метод определения угла опережения зажигания использует лампочку на 12 В в середине участка электрического кабеля;

Подключается через точки прерывателя контакта в распределителе. или катушка. При включенном зажигании двигатель проворачивается вручную, так что лампочка загорается в тот момент, когда соответствующая свеча зажигания обычно дает искру.

Таким образом, можно продолжать регулировку распределителя до тех пор, пока не загорится индикатор, когда отметка BTDC на маховике (или где-либо еще) точно совпадает с фиксированной контрольной отметкой.

Если лампочка загорается до того, как поршень достигает ВМТ, зажигание продвигается вперед и должно быть замедлено; если он загорается после BTDC, зажигание замедляется и должно быть увеличено.

Готовые комплекты лампочек на 12 В можно (или можно было бы купить) в большинстве магазинов моторных аксессуаров.В качестве альтернативы вы можете сделать свой собственный, припаяв кусок электрического кабеля к каждой клемме 12-вольтовой лампочки, а затем припаяв зажим «крокодил» к другому концу каждого провода.

Процедура статической синхронизации показана на рисунках ниже, но следует учитывать два дополнительных аспекта.

Если метки газораспределения находятся на маховике или если двигатель нужно вращать, раскачивая автомобиль на передаче, вам, вероятно, понадобится помощник.



Когда вы приступаете к окончательной регулировке времени с помощью шкалы нониуса (точной настройки) на распределителе, все, что разрешено, — это максимум шесть щелчков в любом направлении, даже если большинство дистрибьюторов перемещаются на 11.Если больше шести, следует вернуться к вращению корпуса распределителя.

Пронумеровав и отсоединив провода свечи зажигания, отверните гайки или винты, крепящие крышку коромысла, и осторожно снимите ее. Если прокладка изогнута, протекает или повреждена, ее необходимо заменить. Найти ВМТ. снимите свечу зажигания № 1 и смазать отверстие хорошей жидкостью для выдувания пузырей. В этом случае крепкий мыльный раствор. Убедитесь, что в отверстии для свечи зажигания нет песка. Если жидкость не образует очень эластичный пузырь, может не потребоваться вставлять свечу зажигания для контроля объема пузырька, но с более тонкими растворами будьте осторожны, чтобы не лопнуть его. на максимальной громкости.Ни в коем случае нельзя переворачивать двигатель назад, так как это приведет к неверным показаниям. Выберите подходящую неподвижную часть двигателя рядом со шкивом коленчатого вала (вместо этого вам, возможно, придется сделать отметку), а затем отметьте обод шкива точно напротив этого с помощью ножовки. Выровняв установочные метки и отцентрировав нониусную шкалу (если таковая имеется), ослабьте зажимной болт распределителя, расположенный в основании распределителя рядом с двигателем. Индикатор должен загореться, когда отметки совпадают. Если он не поворачивает распределитель, пока он не повернется.Теперь снова затяните зажим на основании. Выполните окончательную точную настройку с помощью нониусной шкалы. Снимите бакелитовый колпачок с распределителя и подсоедините один зажим типа «крокодил» к клемме LT на распределителе, а другой — к клемме на катушке. При включенном зажигании лампочка может загореться. Стрелка указывает на вакуумную трубку, которую необходимо снять для проверки при использовании метода стробоскопа.

Как настроить синхронизацию с помощью метода проблескового маячка

В стробоскопической лампе для хронометража используется неоновая или аналогичная высоковольтная лампа, которая вызывает очень короткую вспышку практически мгновенно.Эта вспышка вызывается током в высоковольтном проводе свечи зажигания №1. Таким образом, каждый раз, когда появляется искра №1, загорается лампочка.

Чтобы использовать стробоскоп, вы направите его на метки синхронизации (на шкиве коленчатого вала, демпфере или маховике) при работающем двигателе. Поскольку стробоскоп мигает только при срабатывании № 1, он заставляет шкив (или что-то еще) казаться неподвижным.

Таким образом, легко увидеть, совпадает ли метка продвижения на шкиве с фиксированной меткой на двигателе.

Но есть одна небольшая проблема. Число градусов BTDC, которые выстреливает № 1, не является постоянным; это зависит от скорости двигателя. (Два механизма, центробежное опережение и опережение вакуума, управляют этим изменением.) Итак, чтобы использовать стробоскоп, вам необходимо знать правильную динамическую синхронизацию зажигания при заданной скорости.

Например, 7 ° ВМТ при 1000 об / мин — и для работы двигателя с правильным числом об / мин. По этой причине в автомобиле должен быть тахометр. (Как установить счетчик REV)


Вот самые популярные Timing Lights на eBay.Не поддавайтесь соблазну потратить целое состояние, Power Spark или Accuspark идеально подойдут для простого классического автомобиля.


Руководства по ремонту сообщат вам правильный угол опережения и соответствующие обороты для динамической синхронизации, и этот угол должен быть отмечен на шкиве вентилятора так же, как и для статической синхронизации.

Процедура синхронизации по стробоскопу показана ниже. Но прежде чем вы начнете, важно отсоединить трубу подачи вакуума (обозначена стрелкой на рисунке ниже).

Изображение показано только для того, чтобы помочь идентифицировать вакуумную трубу. Стробоскопическая установка угла опережения зажигания производится при работающем двигателе. Поэтому необходимо убедиться, что метка синхронизации шкива выделяется. Выделите его тонкой линией белой краски Метка стационарного газораспределения на передней части двигателя или кожухе колокола должна быть выделена белой краской. Когда стробоскоп направлен на две метки на скорости, они должны отображаться как одна линия. Некоторые стробоскопы имеют только два провода, а некоторые — четыре. Стробоскопы с четырьмя выводами могут иметь специальные триггеры, которые позволяют одному человеку запустить двигатель с помощью дистанционного управления.Будьте осторожны при установке. Подключите стробоскоп к свече зажигания № 1, один вывод — к свече, другой — к колпачку. После снятия вакуумной трубки с карбюратора запустите двигатель с правильной динамической частотой вращения. Если вентилятор не был снят, осторожно посветите стробоскопом на метки синхронизации. Если они не выравниваются на правильной скорости, попросите помощника повернуть распределитель в любом направлении, пока они не выровняются.

Меры предосторожности и полезные советы

У некоторых стробоскопов есть провода, которые подключаются как к батарее, так и к No.1 свеча зажигания. При их использовании всегда подключайтесь сначала к батарее, а затем к вилке №1.

При отсоединении всегда отсоединяйте сначала штекерный провод № 1, а затем провода аккумуляторной батареи. Таким образом вы избежите поражения электрическим током, если дотронетесь до разъемов аккумулятора.

Стробоскоп заставляет все, что вращается с высокой скоростью, казаться неподвижным. Так что держитесь подальше от движущихся частей.

Снятие ремня вентилятора во время регулировки является разумной мерой предосторожности, поскольку вентилятор будет практически незаметен.Не забудьте заменить его, когда операция будет завершена.

Еще одна мера предосторожности, хотя и не связанная с безопасностью, — убедиться, что метка ВМТ на шкиве, демпфере или маховике четче, чем все остальные (например, метка ВМТ). Это предотвратит установку неправильной отметки времени.

Если у вашего автомобиля есть метки ГРМ на маховике (если у него нет поперечного двигателя), вам понадобится помощь помощника.


Монолитный момент зажигания

Монолитный механизм хронометража был более поздней разработкой компании Ford в США.В нем используется обработанный индикатор, встроенный в коленчатый вал во время производства.

При вращении коленчатого вала индикатор посылает электромагнитный импульс на монолитное оборудование для измерения времени, установленное на двигателе. Этот импульс запускает световой индикатор, и регулировка выполняется таким же образом, как и со стробоскопом — путем поворота распределителя до совмещения временных меток.

Этот метод считается более точным, чем использование меток на шкиве вентилятора или демпфере, поскольку он основан на самом коленчатом валу, а не на компоненте, отделенном от коленчатого вала резиновым кольцом, которое может деформироваться на скорости.


Электронное управление зажиганием

Я предоставлю более подробное объяснение времени электронного зажигания и преобразования в более позднем посте. Однако вот основы.

Существует два основных типа электронного зажигания

Более простой и дешевый вид, в котором используется существующий контактный прерыватель в системе зажигания, и более дорогой, более сложный вид, известный как «бесконтактный».

Если сохранен существующий контакт-прерыватель, можно установить время зажигания статически, но большинство производителей рекомендуют стробоскопическое измерение времени.

С электронным зажиганием можно установить зажигание до предела, рекомендованного производителем автомобиля, из-за точности, которую этот тип зажигания может поддерживать во всем диапазоне оборотов двигателя. Следовательно, чтобы получить от этого максимальную пользу, требуется действительно точное время.

Бесконтактные системы зажигания также могут быть синхронизированы по времени только с помощью стробоскопа. Однако некоторые системы, такие как Kenlowe Kenlomatic, имеют собственный индикатор времени.Это работает так же, как лампочка на 12 В при обычном статическом отсчете времени.


Дорожные испытания Момент зажигания

Дорожные испытания — заключительный этап установки угла опережения зажигания.

Перед тем, как начать, убедитесь, что все провода свечей зажигания были заменены в правильном порядке, и если вы удалите их, замените вентилятор.

Сначала прогрейте двигатель до нормальной рабочей температуры.

Затем увеличьте скорость на высшей передаче и полностью открытой дроссельной заслонке, примерно с 40 км / ч до 65 км / ч (от 25 до 40 миль в час), при этом прислушиваясь к любому звуку розыгрыша (легкий металлический стук.


Что такое Pinking и как его решить на классическом автомобиле

Если появляется какое-либо заметное розовое пятно, значит, двигатель слишком далеко продвинулся.

Его следует замедлить, повернув ручку регулятора нониуса в соответствующем направлении до тех пор, пока не будет слышен только самый слабый след.

Еще лучший тест, для которого вам понадобится помощник, — это измерить время разгона на высшей передаче на полном газу между двумя фиксированными ориентирами.

Немного увеличьте зажигание, то есть на один или два щелчка — и повторите попытку.Когда время, необходимое для ускорения между двумя точками, будет самым коротким и с легким намеком на розоватость, время вашего автомобиля будет оптимальным.



Об этом сайте

Посетите библиотеку поставщиков SCOTTYS для поставщиков запчастей для классических автомобилей.

Посетите техническую библиотеку SCOTTYS для получения руководств и руководств по запчастям.

Посетите Художественную библиотеку SCOTTYS, чтобы найти специализированную компанию.

С уважением СКОТТИ


Автомобильные фары времени на продажу

С помощью автомобильных фары времени можно увидеть диагностику вашего автомобиля более четко комплексный инструмент анализа двигателя.Свет может быть стробоскопом, который может использовать простую неоновую лампу, или ксеноновую стробоскопическую лампу, которая обеспечивает более яркий свет и более удобное использование при дневном свете или при освещении магазинов. Свет питается от автомобиля, который используется для тестирования.

Как работает индикатор времени?

Индуктивные индикаторы времени, при правильном подключении к двигателю автомобиля и аккумуляторной батарее, обнаруживают электричество каждый раз, когда загорается вилка, и каждый раз, когда зажигается вилка, лампочка хронометража испускает луч света. Направив этот стробоскоп в нужное место, обычно на шкив коленчатого вала, вы сможете прочитать отметки на нем, которые указывают на то, где находится коленчатый вал при его вращении, и соответствующие поршни.Знание этого позволяет производить регулировку, манипулируя крышкой распределителя, чтобы свечи зажигания зажигались до или после того, как поршень достиг верхней мертвой точки, в зависимости от неисправности или проблемы, которую необходимо устранить.

Функции, доступные для индикаторов времени
  • Стандартные индикаторы времени поставляются с ксеноновой лампой, которая может считывать время, когда двигатель автомобиля работает на холостом ходу. Он должен уметь читать как двухтактные, так и четырехтактные двигатели.
  • Регулировочные ручки, позволяющие считывать время при разных оборотах, доступны на некоторых моделях.
  • Регулировочные ручки в сочетании с тахометром позволяют более точно измерять время при разных оборотах.
  • Агрегаты с измерителем выдержки измеряют, как долго катушка заряжается, и позволяют предотвратить точечную коррозию или горение из-за точно установленного зазора.
Как индикаторы времени помогают нескольким системам распределения искры (MSD)?

Обычно распределитель обеспечивает только одну искру для последовательности зажигания, но в системах MSD есть их серия, которая излучается в определенное время.Чтобы правильно измерить эту последовательность, индикатор времени должен показывать начало последовательности. Не каждый индикатор времени совместим с системами MSD, поэтому перед покупкой убедитесь, что тот, который вам нужен, соответствует этим требованиям.

Какие бренды производители предлагают автомобильные фары времени?

Автомобильные индикаторы времени бывают трех типов: индуктивные, цифровые и с автономным питанием. Все они служат для одной и той же цели, но предлагают разные диапазоны оборотов в минуту, возможность работы с многоискровой системой и такие функции, как ручное опережение по времени, измеритель выдержки и возможный вариант для работы с четырехцилиндровым, шести или восьми цилиндров -цилиндровые двигатели.Бренды, которые предлагают эти индикаторы времени, включают:

  • Craftsman
  • Innova
  • Actron
  • Equus
  • Matco Tools
  • Sunpro
  • Delphi
  • Electronic Specialties

Цветной стробоскоп Arduino RGB | Elektor Magazine

Почему бы нам не превратить что-нибудь полезное, например, стробоскоп, во что-то бесполезное, но познавательное и интересное для просмотра! Посмотрите видео.

В 80-х годах и до сих пор стробоскопы обычно использовались для проверки и установки угла опережения зажигания автомобильных двигателей путем регулировки положения выключателя.Их также называли таймерными огнями. Чтобы проверить угол опережения зажигания, стробоскоп был подсоединен к свече зажигания цилиндра, которая является эталоном опережения зажигания.

Это соединение выполняется с помощью индуктивного датчика, который зажимается на кабеле свечи зажигания и таким образом улавливает импульс высокого напряжения, который используется для генерации искры зажигания. Каждый раз, когда зажигается свеча зажигания, стробоскоп кратковременно мигает ксеноновой или неоновой лампой-вспышкой. Эта вспышка стробоскопа указывает на временную метку на шкиве коленчатого вала двигателя.

Также имеется фиксированный указатель, который находится на кронштейне, установленном над шкивом. Когда импульс зажигания приходит точно в нужный момент, стробоскоп будет мигать каждый раз в тот момент, когда вращающаяся метка времени на шкиве находится рядом с неподвижным указателем. Кажется, что вращающаяся метка времени неподвижно стоит рядом с неподвижным указателем. Это означает, что момент зажигания в порядке. Когда метка времени кажется стоящей перед неподвижным указателем или позади него, необходимо отрегулировать зажигание, отрегулировав распределитель.

В таких приложениях стробоскопа входной сигнал используется для синхронизации стробоскопа с вращением, которое мы хотим измерить. Но вы также можете использовать стробоскоп без использования триггерного сигнала. В этом случае мы регулируем частоту вспышек до тех пор, пока метка на вращающемся объекте не будет казаться (почти) неподвижной, и будет видна только одна метка. Когда несколько меток видны и (почти) неподвижны, это означает, что частота мигания либо кратна скорости вращения, либо скорость вращения кратна частоте мигания.

Если вращение происходит по часовой стрелке, а метка медленно движется по часовой стрелке, это означает, что частота вспышек немного занижена. Вспышка срабатывает слишком поздно, значит, метка перемещается в направлении вращения. Если вращение происходит против часовой стрелки, а метка медленно движется против часовой стрелки, это означает, что частота вспышек немного завышена. В этом случае вспышка срабатывает слишком рано, поэтому метка перемещается против направления вращения.

Таким образом, скорость вращения можно измерить, регулируя частоту вспышки стробоскопа до тех пор, пока метка на вращающемся объекте не будет казаться неподвижной, и будет четко видна только одна метка.Ширина вспышки должна быть достаточно короткой по отношению к частоте, чтобы мы получили четкое отражение. Когда ширина вспышки будет слишком большой, отражение будет размытым, и вместо четкого отражения мы получим своего рода размытое отражение.

Но давайте превратим стробоскоп во что-нибудь более увлекательное.

Что, если мы сгенерируем несколько вспышек с одинаковой частотой, но с разными цветами и со сдвигом фазы между разными вспышками? Что, если мы воспользуемся красивым блестящим отражающим белым объектом, который вращается с помощью двигателя постоянного тока с постоянной скоростью, и изменим частоту, фазовый сдвиг или ширину вспышек разного цвета?

Что ж, все это легко сделать с помощью микроконтроллера, так что давайте попробуем.Когда можно использовать светодиод RGB для генерации цветных вспышек. Мы можем использовать несколько светодиодов RGB параллельно, чтобы увеличить мощность вспышки и получить хорошее видимое отражение.

Чтобы контролировать частоту, фазу и ширину вспышек, мы используем Arduino Pro Mini, потому что у него достаточно ввода-вывода, чтобы играть с ним, он более чем достаточно быстр для наших целей. Мы могли бы использовать три выделенных модуля PWM Arduino Pro Mini для выполнения этой работы, но эти модули PWM работают на трех разных таймерах, что затрудняет их синхронизацию или программирование фазовых сдвигов между ними.Кроме того, нам нужны достаточно низкочастотные ШИМ-сигналы и нет необходимости в разрешении до 16 бит.

Более адекватным методом генерации сигналов ШИМ является так называемая программная ШИМ или softPWM. С softPWM мы генерируем сигналы ШИМ, используя общие цифровые выходы, которые мы устанавливаем и сбрасываем, используя значение счетчика, которое обновляется с помощью прерывания переполнения таймера. Переполнение таймера устанавливается на временной интервал, который достаточно мал, чтобы приспособиться к наименьшему временному интервалу, который нам нужен для точной настройки ширины или фазового сдвига сигнала ШИМ.

В нашем случае двигатель вращается со скоростью около 2000 об / мин, что соответствует частоте вращения 2000/60 = 33,3 Гц. Это означает, что нам нужна частота вспышки около 33,3 Гц. Но тогда наши глаза увидели бы мерцание мигающих светодиодов. Поэтому мы выбрали двойную частоту около 67 Гц, чтобы светодиоды не мерцали. Это означает, что сигнал ШИМ имеет период 1/67 Гц = 14,9 мс. Чтобы получить четкое отражение без слишком сильного размытия, нам нужен рабочий цикл около 5%, что означает ширину импульса 14.9 * 5/100 = около 0,8 мс. Когда наш таймер PWM установлен на интервал 0,1 мс, этого достаточно, чтобы установить любую необходимую ширину импульса (рабочий цикл) или фазовый сдвиг.

Ниже вы можете найти видеоролик на YouTube, в котором вы можете увидеть три сигнала ШИМ красного, зеленого и синего светодиодов на осциллографе вместе с вращающимся объектом, так что вы можете увидеть, как различные эффекты реализуются путем изменения частоты, рабочий цикл и фаза трех сигналов ШИМ.

SECU-3 Micro Инструкция по установке — МПСЗ SECU-3 / Система зажигания и впрыска топлива

Инструкция по установке

SECU-3 Micro включает следующие разделы:

Проводка заземления

Заземление должно быть подключено к блоку SECU-3 Micro, как показано ниже:

Различные схемы подключения (примеры)


Более полные примеры подключения можно найти здесь.

Подключение датчика Холла

Подключение датчика VR CKP

Подключение датчика температуры охлаждающей жидкости

Подключение TPS или концевого выключателя дроссельной заслонки

Вход для переключения между наборами таблиц

Подключение датчика IAT (MAT)

Ручная коррекция угла опережения зажигания

Подключение встроенного датчика MAP

Использование встроенного стробоскопа

Если IGN_OUT2 свободен, его можно использовать для стробоскопа (SECU-3 имеет встроенную функцию стробоскопа).В качестве стробоскопа используется светодиод мощностью 1-3 Вт (или несколько ярких маломощных светодиодов), который подключается к выходу IGN_OUT2 (J3 / 5):

IGN_OUT2 следует переназначить на STROBE (см. Руководство пользователя SECU-3 Manager).

Обратите внимание, что светодиод будет гореть постоянно с небольшой яркостью, потому что на выходе IGN_OUT2 установлен подтягивающий резистор 1 кОм до 5 В. Это нормально. Если не нравится, то снимаем резистор R7.

Подключение к тахометру

Если вы используете одиночный выход зажигания и / или высоковольтный распределитель, вход тахометра (если он высоковольтный) должен быть подключен к первичной обмотке катушки зажигания.Если вы используете конфигурацию Wasted Spark, вы можете попробовать подключить тахометр по одной из следующих схем:

BIP373 проводка


Учтите, что по умолчанию выходы IGN_OUT1 и IGN_OUT2 блока SECU-3 Micro подтянуты резисторами 1 кОм. При больших токах (с некоторыми катушками) транзисторы BIP373 могут выйти из режима насыщения, и в результате искра может стать слишком слабой и нестабильной. В этом случае нужно уменьшить сопротивление резисторов R6, R7 до 330 Ом:

Подключение драйвера SECU-IGN-DRV4

Пример подключения драйвера SECU-IGN-DRV4 для управления зажиганием 4-цилиндрового двигателя в режиме «потраченная искра» показан ниже.

Подключение исполнительного механизма воздушной заслонки (шаговый мотор-редуктор)

Поставка агрегата

В большинстве случаев блок SECU-3 Micro хорошо работает при прямом подключении питания (J3 / 12) к сети платы. Если вы устанавливаете его на автомобили / двигатели с плохим качеством напряжения на плате (пульсации, разрывы), то вам может потребоваться питание блока по следующей схеме:

Емкость может быть и больше, например 2200… 4700 мкФ. Также можно попробовать использовать 10… 20 Ом, 0.Резистор 25 Вт вместо диода (тем не менее, обычно диод дает лучший результат). Обратите внимание, что в новые блоки уже встроен конденсатор емкостью 100 мкФ, который помогает улучшить качество питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *