Роторный двигатель: принцип работы
Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.
Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).
Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.
В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.
Принцип работы роторного двигателя.
Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива.
В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.
Роторный двигательРотор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.
Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.
Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.
Mazda RX-8
Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.
Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.
Ротор
Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.
На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.
Камера
Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности).
В каждой части камеры происходит один из четырех тактов:
- Впуск
- Сжатие
- Сгорание
- Выпуск
Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.
Выходной вал
Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.
Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.
Строение роторного двигателя
Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.
Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.
Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.
Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.
В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя.
Мощность роторного двигателя
Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.
Сердце роторного двигателя — это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.
В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.
Подача
Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.
Компрессия
В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.
Возгорание
Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.
Выхлоп
После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.
Разница и Проблемы
У роторного двигателя достаточно много различий с обычным поршневым двигателем.
Меньше движущихся частей
Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.
Мягкость
Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.
Неспешность
В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.
Проблемы
Самые главные проблемы при производстве роторных двигателей:
Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
Источник: Авто Релиз.ру.устройство, принцип работы, преимущества и недостатки
Роторный двигатель (РПД или роторно-поршневой двигатель), в отличие от традиционного поршневого ДВС, проще в плане конструкции. Также данный тип силовой установки имеет более высокий КПД. Соответственно, даже при небольшом рабочем объеме «отдача» от такого мотора достаточно высокая.
При этом РПД не получил широкого распространения в автомобильной индустрии. К сожалению, даже с учетом всех преимуществ, агрегат также имеет целый ряд недостатков. Далее мы рассмотрим, как устроен и работает роторный мотор, а также его сильные и слабые стороны.
Содержание статьи
Роторный двигатель: устройство и принцип работы РПД
Итак, роторный двигатель, который также называют двигатель Ванкеля в честь его создателя, представляет собой достаточно обособленный тип ДВС. При этом данный вид двигателей устанавливался на разные авто (например, роторный двигатель ВАЗ, роторный двигатель Мазда и т.д.), однако в большей степени популяризировали агрегат именно Mazda благодаря спорткару Мазда RX‑8 с роторным двигателем 13B-MSP.
Если коротко, в обычном поршневом моторе энергию от сгорания топлива в цилиндрах преобразует в возвратно-поступательное движение громоздкая поршневая группа, после чего происходит дальнейшее преобразование во вращательное движение (вращение коленвала).
В свою очередь, в роторном моторе нет ЦПГ, преобразование энергии происходит фактически «напрямую», то есть практически без потерь. Само собой, на Мазда роторный двигатель стал достаточно мощным «сердцем» с выдающимися характеристиками.Примечательно то, что бензиновый атмосферный роторный мотор с рабочим объемом всего лишь 1.3 литра (13B-MSP) с 2 роторами в виде секций выдавал 192 лошадиных силы. В то же время его форсированная версия позволяла снять уже 231 «лошадку».
- Если рассматривать конструкцию, двигатель получил 5 корпусов, в результате чего были образованы 2 камеры. Указанные камеры, подобно цилиндрам, предназначены для сгорания топливно-воздушной смеси. Энергия сгорания топлива вращает роторы, которые закреплены на эксцентриковом валу, который напоминает коленвал обычного ДВС.
При этом движение ротора сложное, так как ротор не вращается, а фактически «обкатывается» своей внутренней шестерней вокруг стационарной шестерни, которая прикреплена в центре одной из боковых стенок камеры. Сам эксцентриковый вал проходит через все корпуса и стационарные шестерни. Вращение ротора, точнее, его вращательное движение происходит так, что на 1 его оборот приходится 3 оборота эксцентрикового вала.
Еще примечательно то, что хотя в роторном моторе также есть циклы впуска, сжатия, рабочего такта и выпуска, механизм ГРМ максимально упрощен. Отсутствует привод газораспределительного механизма, нет распределительных валов, а также и самих клапанов.
Все необходимые функции реализованы счет впускных и выпускных окон, которые выполнены в боковых стенках. На деле, ротор во время вращения открывает, а также закрывает эти окна. Чтобы было понятно, давайте рассмотрим принцип работы роторного двигателя на примере агрегата с одной секцией.
- Итак, боковые стороны ротора вместе со стенками корпусов формируют рабочую полость. Кода ротор двигателя находится в начальном положении, по объему полость небольшая (это начало такта впуска). Далее, вращаясь, ротор, открывает впускные окна, в результате в камеру попадает рабочая топливная смесь. Когда полость достигает максимального объема, ротор перекроет впускные окна, после чего начнется такт сжатия (полость начнет уменьшаться).
В момент, когда объем полости снова минимален, за счет искры от свечи произойдет воспламенение смеси и начнется рабочий такт. Далее энергия сгорания топлива вращает ротор, после чего ротор перейдет в положение, при котором открываются выпускные окна (осуществляется выпуск отработавших газов). После выпуска весь цикл повторяется.
Другие полости будут работать точно так же. С учетом того, что полостей 3, за один оборот ротора произойдет 3 рабочих такта. Более того, эксцентриковый вал вращается быстрее ротора в 3 раза. Результат — по одному рабочему такту на один оборот вала мотора с одной секцией. Вполне очевидно, что поршневой четырехтактный ДВС с одним цилиндром имеет соотношение в 2 раза ниже по сравнению с роторным.
Получается, если сопоставить число рабочих тактов на оборот вала, тогда двухсекционный 13B-MSP напоминает обычный поршневой мотор на 4 цилиндра, однако при объеме 1. 3 л двигатель такой же мощный, как и поршневой агрегат с объемом чуть более 2.5 литров. Еще добавим, что роторный мотор имеет намного более высокую детонационную стойкость, что позволяет превратить этот мотор в двигатель на водороде.
Конструктивные особенности роторного мотора
Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).
Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.
Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.
- На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.
Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время угловые уплотнители чугунные. Дополнительно имеются уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.
Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.
Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.
Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.
Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси, используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.
Недостатки роторного двигателя
На старте продаж роторная Мазда пользовалась активным спросом, так как автомобиль привлекал автолюбителей своим необычным и мощным двигателем (особенно форсированные версии с мощностью около 500 л. с.). Однако немного позже владельцы уже на относительно небольших пробегах столкнулись с первыми проблемами и минусами данного типа ДВС.
Основные недостатки — большой расход топлива и относительно низкий ресурс роторного двигателя 13B-MSP. В идеальных условиях силовая установка данного типа способна выходить около 100 тыс. км пробега. Что касается реальной эксплуатации, часто моторы приходили в негодность уже к 50-60 тыс. км. пробега.
Обычно первыми выходят из строя уплотнения ротора. Причина вполне очевидна, так как уплотнения находятся под высокими нагрузками и сильно нагреваются. Также дает о себе знать и детонация, износ подшипников эксцентрикового вала, роторов и т.д.
- Примечательно то, что первыми сдаются апексы (уплотнения на торцах), тогда как боковые уплотнители ходят намного дольше. В результате износа апексов, а также их установочных мест на роторе, в двигателе падает компрессия, углы уплотнителей могут отваливаться, повреждая поверхности статора.
Также следует отметить быстрый выход из строя коренных вкладышей эксцентрикового вала. С учетом того, что вал осуществляет вращение в 3 раза быстрее роторов, роторы несколько смещаются по отношению к стенкам статора, причем вершины роторов должны всегда быть удалены на одно расстояние от стенок.
Рекомендуем также прочитать статью о том, что такое гибридный двигатель автомобиля. Из этой статьи вы узнаете, как устроен и работает двигатель гибрид, а также что нужно знать о гибридном двигателе перед покупкой автомобиля с силовой установкой данного типа.В результате, когда углы апексов выпадают, на поверхности статора неизбежно появляются задиры. При этом диагностика роторного двигателя сильно затруднена, так как, в отличие от обычного мотора, роторный двигатель не стучит в случае износа вкладышей.
Параллельно отметим, что на версиях данного мотора с наддувом работа агрегата на обедненной смеси приводит к перегреву апекса. Далее пружина, прижимающая апекс, просто гнет его и компрессия сильно снижается. Еще форсированные (роторные двигатели с наддувом) отличаются неравномерным нагревом корпуса.
В верхней части ДВС, где происходят такты впуска и сжатия, более холодные. В то же время нижняя часть, где протекает процесс сгорания смеси и выпуска раскаленных газов, нагревается намного сильнее. Результат – деформация корпуса форсированных версий.
- Также отметим, что отдельно проявились и проблемы системы смазки. На практике, масляные форсунки в статоре часто загрязняются и перестают работать. При этом промыть клапаны форсунок не получается, то есть нужна замена. Если же вовремя проблема не была установлена, масляное голодание становится причиной сильного износа целого ряда элементов роторного двигателя.
При этом во всех случаях и независимо от причины, статор на практике восстановить практически не представляется возможным, а также следует отметить отсутствие ремонтных запчастей. Это значит, что если статор поврежден, восстановить двигатель очень сложно и дорого. То же самое касается и ротора. Если пазы под апексы повреждены, отремонтировать деталь практически невозможно.
Все это означает, что мотор фактически «одноразовый» и качественно его отремонтировать нет возможности. Единственный выход – покупка и установка нового двигателя, так как контрактные варианты в большинстве случаев тоже будут изношены и долго не прослужат. Само собой, купить роторный двигатель без пробега можно, но цена роторного двигателя будет высокой.
Советы и рекомендации
Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.
Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».
Также замену масла нужно производить часто, масло в роторном моторе меняют каждые 4-5 тыс. км. Еще важно своевременно менять воздушный фильтр двигателя, так как его загрязнение может привести к закоксовке масляных форсунок системы смазки. Что касается свечей зажигания, лучше производить их замену каждые 10-15 тыс. км.
- Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.
В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время в СНГ появилось несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя с гарантией.
Как правило, в рамках ремонта выполняется замена статоров, уплотнений роторов, самих роторов и т. д. Конечно, ремонт не дешевый, но однозначно более доступный по сравнению с покупкой нового силового агрегата.
Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.
Подведем итоги
С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс, необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.
Рекомендуем также прочитать статью о том, что такое двигатель на водороде. Из этой статьи вы узнаете, какие особенности имеет водородный двигатель, а также какие перспективы имеет двигатель на водороде.По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.
Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).
Роторный двигатель (принцип работы, достоинства, недостатки, перспективы)
Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.
Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень), поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.
Принцип работы роторно-поршневого двигателя
Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе.
Забор топливно-воздушной смеси в роторном двигателе
Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.
Сжигание топливно-воздушной смеси
Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.
Выброс отработавших выхлопных газов
Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.
Узлы (детали) роторного двигателя
swf» alt=»роторный двигатель»/>Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.
Ротор роторного двигателя
Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем. На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя. Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.
Корпус роторного двигателя
Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
А теперь мы расскажем о рабочих камерах корпуса роторного двигателя.
Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)
удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.
Выходной вал роторного двигателя
Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.
Достоинства роторного двигателя
Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т. д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.
Недостатки роторных двигателей
Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
Двигатели намного сильнее нагреваются чем поршневые двигатели.
Всемирно известные автомобили, выпускающиеся с роторными двигателями
(На фото Mazda Cosmo Sport и Mazda RX8)
Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем. И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.
Перспективы роторных двигателей
Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.
Роторный двигатель, принцип работы и техника применения | Халва
Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.
Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень), поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.
Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе.
Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.
Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.
Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.
Узлы (детали) роторного двигателяДалее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.
Ротор роторного двигателяРотор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем. На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя. Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.
Корпус роторного двигателяКорпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
А теперь мы расскажем о рабочих камерах корпуса роторного двигателя.
Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)
удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.
Выходной вал роторного двигателяВыходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.
Достоинства роторного двигателяКак мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т.д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.
Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
Двигатели намного сильнее нагреваются чем поршневые двигатели.
(На фото Mazda Cosmo Sport и Mazda RX8)
Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение — Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем. И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.
Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.
Принцип работы роторного двигателя — особенности работы
Роторный двигатель довольно редкая вещь, о которой некоторые люди даже не подозревают. Кто-то что-то слышал, но никто толком не может объяснить хотя бы то, как он выглядит. По мощности роторный двигатель не уступает двигателю с поршнями.
Где можно встретить
Двигатель Мазда
Для начала немного истории. Роторный двигатель был изобретен уже давно, аж в 1957 году. И с тех пор его активно начали устанавливать на автомобили, но на рынке автомобилей их доля ничтожно мала. Через семь лет после выпуска первого роторного двигателя его начали устанавливать на такие автомобили, как Мерседес-Бенц, Ситроен и другие известные марки. Но эти самые фирмы вскоре начали отказываться от роторных двигателей. Такие двигатели, а называются они, кстати, двигатели Ванкеля, устанавливали долгие годы даже на ВАЗ небольшими партиями. Но со временем его заменили и сейчас даже старожилы волжского автозавода не могут вспомнить то время. Единственная марка, которая с 1967 года и до сих пор выпускает двигатели с роторным двигателем в немалых партиях, – это Мазда. До сих пор роторный двигатель устанавливают на Мазду RX-8 – это двигатель модели 13B-MSP. Про этот автомобиль можно не стесняясь сказать, что он легенда. И стал он легендой именно благодаря своему роторному двигателю.
Мазда RX-8
Принципы работы ДВС и роторного двигателя
Принцип работы двигателя внутреннего сгорания (ДВС) с поршнями, который еще называют поршневым, сильно отличается от роторного и не только по принципу работы, но и по принципу передачи момента и потерям энергии. Энергия, выделяемая при сгорании топлива в поршневом двигателе, сначала приводит в движение поршневую группу, которая, в свою очередь, приводит в движение коленчатый вал. То есть передача момента энергии происходит в два этапа.
Принцип работы ДВС
Принцип работы роторного двигателя намного проще, он выполняет всю работу в один этап. Если объяснять простым языком, то в таком двигателей в центре находится эксцентриковый вал, который вращает сам ротор. Вращается ротор внутри двигателя и выполняет те же функции, что и четырехтактный поршневой агрегат: впуск, сжатие, рабочий такт, выпуск. Но при этом нет сложных механизмов, таких как газораспределительный механизм (ГРМ), распределительные валы, клапаны, поршни. Здесь все эти функции выполняет сам ротор. Полость внутри двигателя, в которой вращается ротор, сама в себе несет все эти функции, но работают они как бы по очереди. Электронные «мозги» управляют «окнами» – это прорези в стенках двигателя – и открывают их по очереди так, что ротор, прокатываясь по шестерне вала, выполняет сразу четыре функции. Легендарный двигатель Мазды RX-8 13B-MPS представлял собой бутерброд из пяти таких двигателей, соединенных двумя герметичными камерами.
Фазы работы роторного двигателя
Достоинства и недостатки
Главное отличие роторного двигателя от поршневого – это то, что вал всегда движется в одну сторону, вращающихся масс в несколько раз меньше и, в отличие от поршневого, роторный двигатель не тратит мощность на газораспределительный механизм. Именно поэтому с атмосферного двигателя 13B-MPS, объемом 1300 кубических сантиметров сняли 192 лошадиные силы. А с форсированного 231 лошадиную силу. Для сравнения, такую мощность у поршневого двигателя снимают с объема 2600 кубических сантиметров.
Мощность двигателя больше
К сожалению, у такого уникального мотора есть свои минусы, и они перевешивают большинство плюсов данной модели двигателя. Первый минус – это небольшой ресурс двигателя всего 100 тысяч километров. По современным меркам это совсем мало, особенно это заметно на фоне самого народного двигателя Тойоты Короллы, ресурс двигателя которого 1 миллион километров. Второй и самый основной минус – это то, что двигатель не поддается капитальному ремонту. Не существует запчастей на замену увеличенных размеров, и расточить детали двигателя тоже не получится, так как очень сложно найти такое оборудование в нашей стране. К тому же в нашей стране сложно найти настоящий 98-й бензин, а использование некачественного топлива приближает кончину роторного мотора. Стоимость нового двигателя на Мазду RX-8 настолько огромна, что ставит под сомнение практичность покупки.
Малый ресурс
Вот в основном и все, что нужно знать о роторном двигателе. Он необычен по конструкции и интересен в работе, но обладает двумя большими минусами, из-за которых использовать данный автомобиль с практической точки зрения невыгодно.
Видео
Устройство роторного двигателя в следующем видео рассмотрено на примере движка Mazda RX-8:
Читайте также:
Роторный двигатель — устройство, особенности и принцип работы
Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.
Немного истории
В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.
Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.
Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.
В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.
В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.
Основы устройства роторного двигателя
Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.
Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.
- На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
- Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
- На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
- При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).
Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.
Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.
Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.
Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.
Типы роторных двигателей
Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:
- герметично закрыта;
- постоянно контактировать с внешней средой.
Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.
- Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
- Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
- Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
- Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
- Двигатели с ротором, совершающим планетарное движение.
Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.
Преимущества РПД
Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.
РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.
Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.
Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.
Высокий расход топлива РПД
Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.
Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.
В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.
Другие важные недостатки
Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.
В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.
Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.
Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.
В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.
На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.
Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.
Достоинства | Недостатки |
Хорошая сбалансированность | Высокий расход топлива, особенно на малых оборотах |
Минимальные вибрации | Нарушение герметичности из-за перегрева |
Быстрый разгон | Требует частой замены масла (каждые 5 тысяч км) |
Компактные размеры | Быстрый износ уплотнителей |
Высокая мощность | Дороговизна производства некоторых деталей |
Небольшое количество основных деталей | Повышенный уровень выброса CO2 |
Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.
Роторно-поршневые двигатели Мазды
В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.
Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.
С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.
На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.
В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.
Московский инновационный кластер
Область техники: Изобретение относится к сфере двигателестроения, а именно к области роторных двигателей внутреннего сгорания.
Уровень техники: В настоящее время наиболее широко в качестве стационарных энергоустановок и силовых приводов транспортных средств используются поршневые двигатели внутреннего сгорания (ДВС), газотурбинные двигатели (ГТД) и паровые турбины. Классические поршневые ДВС двухтактного и четырехтактного цикла известны с 60-х и 70-х годов XIX века (С. Балдин, «Двигатели внутреннего горения», Прага, Имка-пресс, 1923 г). Подвижный цилиндрический поршень совершает линейные возвратно-поступательные движения внутри неподвижного цилиндра. Поршень соединен шатуном с коленчатым валом. При горении предварительно сжатой смеси паров топлива и воздуха в герметично замкнутом пространстве между поршнем и цилиндром за счет повышения давления горячих газов осуществляется одновременное с процессом горения линейное рабочее движение поршня, которое кривошипно-шатунным механизмом превращается во вращательное движение коленвала. Поршневые двигатели с объемным расширением рабочей камеры (в которых на сегодняшний момент степень сжатия равна степени расширения) характеризуются недостаточно высокими начальными параметрами давления и температуры рабочих газов в процессе сгорания сильно сжатой рабочей смеси. Чем сильнее сжимается 1 ВС, тем быстрее и лучше она сгорает. Но сжимать ТВС удается только до определенного предела, после которого появляется взрывоподобное сгорание ТВС, называемое детонацией. При детонации возникают огромные механические нагрузки на детали кривошипно-шатунного механизма и цилиндрово-поршневой группы, приводящие к их механическому разрушению. Плюс к этому получается в 2 раза большая температура рабочих газов, от которой сгорает смазка с трущихся поверхностей деталей, происходит их оплавление, заклинивание или прогар. Ясно, что детонационное сгорание если и возможно, то только в каком-то отдельном, замкнутом до определенного момента объеме, прочность и термостойкость которого позволяет выдержать такие нагрузки и отсутствуют подвижные детали, требующие смазки. Однозначно, поршневой ДВС не может претендовать на определение «эффективный двигатель» по конструктивным признакам. Но он не в состоянии претендовать на это и по показателю параметров рабочего тела как в результате сгорания ТВС, так и на выходе из двигателя, потому что во всех существующих ныне конструкциях двигателей внутреннего сгорания на выхлоп идут газы при температуре от 800 до 1100 С°. По этой причине тепловой баланс современного поршневого двигателя внутреннего сгорания в среднем варианте конструктивного исполнения получается таким: 30% — тепло, переводимое в полезную работу; 30% — тепло, отводимое во вне через систему охлаждения; 40% — тепло, отводимое во вне с выпуском отработавших газов горения. Т.е. средний термодинамический КПД современных двигателей внутреннего сгорания не превышает 30-35%. И если варианты по снижению температуры выходящих газов периодически появляются, то вариантов по увеличению начального давления рабочего тела нет — мешает детонация.
«При детонационном сгорании сжатой и перегретой ТВС происходят сложные процессы во время которых образуются разные виды чередующегося пламени». (С. Соколик, Сгорание в транспортных поршневых двигателях. Изд. АН СССР, 1951 г, стр 37). Скорость распространения пламени увеличивается с 20-40 до 2000 м/сек при температуре до 4000 гр. С.
Известно, что при высокой (порядка 2000 гр С) температуре можно успешно сжигать даже очень бедную ТВС, даже при сравнительно небольшом ее сжатии и топливе невысокого качества. «Детонационное горение дает заметно больше энергии тепла и давления рабочих газов, чем обычное медленное горение», www.rotor-motor.ru. «Детонация-двигатель».
По законам термодинамики, тепловой двигатель, чтобы иметь высокий термодинамический КПД, должен наиболее эффективно использовать энергию горения топлива, чтобы получить как можно более высокие начальные параметры рабочего тела (давление и температуру) и низкие конечные такие параметры на выходе из ДВС.
Таким образом получается, что при проектировании теплового двигателя мы должны стремиться к получению в нем мгновенного, взрывного сгорания ТВС для получения наиболее высоких начальных параметров рабочего тела.
Но как, конструктивно, поставить детонацию на службу эффективности ДВС?
Из сказанного выше вытекает ответ. Нужно сжигать ТВС в высокотемпературной, высокопрочной, не имеющей подвижных трущихся частей (не нуждающихся в смазке) и запирающейся на время горения, камере сгорания. Вариант конструктивного решения этой важнейшей инженерной задачи предлагается впервые.
Ближайшим аналогом, по конструктивным особенностям, предлагаемого в качестве изобретения Роторного Детонационного Двигателя Внутреннего Сгорания, является роторный двигатель Уайдла. Совпадающими существенными признаками между заявляемым изобретением и рассматриваемым ближайшим аналогом, является наличие в их конструкции двух секций с лопаточными роторами, закрепленными на одном общем валу, одна из которых служит только для всасывания, сжатия и подачи ТВС в КС, а другая секция превращает энергию рабочего тела во вращательное движение рабочего вала.
Отличительными существенными признаками является то, что в двигателе Уайдла КС представляет собой канал в стенке между секциями, ограниченный ближайшими лопатками секций, а в заявляемом Роторном Детонационном Двигателе Внутреннего Сгорания стенка между секциями выполнена в виде еще одной неподвижной секции, в которой выполняется прочная, выдерживающая механические и температурные нагрузки взрывного сгорания ТВС, со стенками или покрытием этих стенок, материалом, выдерживающим длительно температуру до 4000 гр С, камера сгорания, которая соединена каналами с боковыми секциями, а каналы имеют возможность перекрываться клапанами впуска и выпуска по принципу действия лепестковых, т.е. под действием разности давлений (или управляемых). Кроме них в КС должен быть еще один управляемый клапан, который служит для стравливания избыточного давления рабочего тела из КС в атмосферу непосредственно перед впуском свежей порции ТВС в КС.
Такая отдельная, прочная, высокотемпературная КС необходима, по теории теплового двигателя, для получения максимально высоких начальных параметров рабочего тела (давления и температуры газов горения), что ведет к КПД, стремящемуся к максимальному значению из-за максимально высокого значения давления рабочего тела. Такая КС приводит к получению не только существенно увеличенного давления рабочего тела, к чему мы стремимся в первую очередь, но при этом получаем и сверхвысокую температуру рабочего тела, которая будет помехой для длительной и безаварийной работы ДВС.
Для безаварийной работы двигателя из-за высокой температуры, а также для получения еще большего КПД, в таком Роторном Детонационном Двигателе Внутреннего Сгорания есть возможность и необходимость применения охлаждения уже полностью сгоревшей рабочей смеси в КС и сильно перегретого рабочего тела, впрыском воды в рабочую секцию перед выстрелом очередной порции рабочего тела по принципу, описанному в Патенте на изобретение RU 2491431 «Способ работы роторного двигателя внутреннего сгорания».
Таким образом, применяя в Роторном Детонационном Двигателе Внутреннего Сгорания детонационную КС, охлаждение водой рабочего тела и поверхностей деталей рабочей секции с целью перевода внутренней энергии рабочего тела в потенциальную энергию давления водяного пара, при температуре парогазовой среды на выходе из двигателя стремящейся к температуре окружающей среды, реально получить КПД, стремящийся к 100%.
Сущность изобретения.
Задачей изобретения, которая реализована в этой конструкции, является создание высокоэффективной конструкции роторного двигателя внутреннего сгорания, с КПД более 50%, в котором появляется возможность просто, с минимальными затратами и с предельно малым усложнением конструкции, встроить в технологический цикл двигателя отдельную, детонационную, высокотемпературную, запираемую на время горения ТВС камеру сгорания, повышая начальные параметры рабочего тела для более эффективной работы теплового ДВС.
Особенность изобретения — именно возможность изготовления и встраивания в конструкцию роторного двигателя отдельной, запираемой, высокотемпературной КС любых размеров и формы, из любого, доступного для этих параметров рабочего тела, материала или материала покрытия стенок для полного и эффективного сжигания поступающего топлива.
Техническим результатом применения такого инженерного решения является максимальное упрощение конструкции всего ДВС, технологии изготовления КС, в которой возможно эффективное сжигание очень бедной ТВС с получением максимально высоких параметров рабочего тела и КПД Роторного Детонационного Двигателя Внутреннего Сгорания, повышения удельной мощности, экономичности и экологичности ДВС. При этом, впервые в рабочий цикл ДВС удается включить процесс детонационного сжигания ТВС, который всегда в истории двигателестроения был бичом ДВС, его бедой, от которой старались избавиться всеми способами. Предлагаемое техническое решение позволит извлечь в разы большую энергию из скрытой в топливе энергии химических связей, сведет к нулю выброс несгоревших вредных веществ.
Таким образом, конструкция Роторного Детонационного Двигателя Внутреннего Сгорания, состоящего из трех секций, в промежуточной секции которого располагается камера сгорания, запираемая на время горения ТВС клапанами, изготовленная из материала, выдерживающего механические нагрузки и высокую температуру, возникающие при детонационном сгорании ТВС, позволяет получить значительное увеличение начальных параметров рабочего тела (давления рабочих газов).
Для достижения еще большего эффекта работы теплового двигателя и для безаварийной работы ДВС необходимо и возможно применить охлаждение рабочей секции изнутри впрыскиванием необходимого количества воды, скажем, на одну из лопаток рабочей секции для получения паровой фазы рабочего цикла и внутреннего охлаждения рабочей секции двигателя (паровая фаза), тогда как на другую лопатку будут воздействовать газы горения. Т.е. на один оборот рабочего вала такого ДВС будет 1 такт в 180 градусов от воздействия сгоревшего топлива и 1 такт 180 градусов паровой фазы от испарения воды от горячих стенок рабочей секции.
Есть возможность использовать в этом ДВС другой вариант подачи воды в рабочую секцию описанный в изобретения RU 2491431 «Способ работы роторного двигателя внутреннего сгорания», т.е. подача воды в рабочую секцию до момента входа в нее очередной порции раскаленного рабочего тела под большим давлением из КС, но уже под каждую из двух лопаток рабочей секции или 2 раза за 1 оборот рабочего вала.
В. СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Реализация, заявленного изобретением, конструкции Роторного Детонационного Двигателя Внутреннего Сгорания, возможна к осуществлению через применение известных и новых материалов и технологий их обработки для возможности изготовления КС, в которой возможно использовать детонационное сгорание ТВС.
Принцип работы и сама работа крайних секций этого Д ВС известна в механике достаточно давно и успешно применяется в пневмомашинах, например пневматический инструмент, компрессоры.
Реализация практического исполнения предлагаемой встраиваемой в конструкцию роторного двигателя КС, возможна на условиях применения известных на сегодняшний день технологиях и современных материалов, например керамики.
На прилагаемых к данному разделу патентной заявки чертежах представлены продольный разрез (Фиг. 1) и три сечения двигателя (Фиг. 2) по трем его секциям (входной, камеры сгорания и рабочей) с элементами: рабочим валом (элемент 1), насаженными на него роторами входной (элемент 2) и рабочей (элемент 12) секций, с установленными в роторах лопатками, соответственно, входной (элемент 14) и рабочей (элемент 11) секций. Корпуса секций входной (элемент 15), рабочей (элемент 13) и КС (элемент 16) разделены между собой стенками (элемент 3 и 9). В корпусе камеры сгорания выполнена непосредственно сама КС (элемент 5), которая имеет 3 клапана: впускной (элемент 4), выпускной (элемент 10). стравливающий (элемент 8) и свеча зажигания (элемент 7). На рабочем валу имеется кулачок (элемент 6), управляющий стравливающим клапаном. Впуск ТВС во входную секцию через впускное отверстие (элемент 17), а выпуск отработавших газов и пара из рабочей секции через выпускные отверстия (элементы 18 и 19). Вода в рабочую секцию подается через форсунку (элемент 20).
В такой конструкции двигателя, заявляемого изобретением, Роторный Детонационный Двигатель Внутреннего Сгорания, рабочий процесс может протекать по двум вариантам, следующим образом.
Работа двигателя по первому варианту: на 1 полный оборот рабочего вала — 1 такт 180 градусов поворота рабочего вала — сжигание ТВС и 1 такт 180 градусов поворота рабочего вала — паровой фазы.
При работе двигателя поворачивается рабочий вал вместе с роторами секций и находящимися в них лопатками. Лопатка входной секции начинает сжимать ТВС, всасываемую через впускное отверстие. Ее давление повышается, открывается впускной клапан и ТВС загоняется в КС, где происходит ее воспламенение разрядом свечи зажигания. КС, в этот момент заперта всеми тремя клапанами, а ее температура порядка 2000 гр. С, поэтому смесь сгорает взрывоподобно. Давление в КС резко поднимается, впускной клапан закрывается и открывается выпускной клапан. Рабочие газы выстреливаются в рабочую секцию и, через лопатку рабочей секции, приводят во вращение ротор рабочей секции с рабочим валом. На подходе к КС второй лопатки, в КС кулачком на рабочем валу открывается стравливающий клапан и избыточное давление в рабочей секции закрывает выпускной клапан, остаточное давление из КС стравливается в атмосферу, а ТВС со второй лопатки входной секции загоняется в КС. В это самое время в рабочей секции эту верхнюю точку проходит вторая лопатка и сюда впрыскивается порция воды через форсунку, которая, испаряясь от нагретых деталей рабочей секции увеличивает давление в рабочей секции, закрывается выпускной клапан КС, давление пара приводит во вращение ротор рабочей секции и охлаждает детали рабочей секции. Отработавшие газы и пар из рабочей секции выбрасываются в атмосферу через выходное отверстие, а при дальнейшем движении лопатки, через второе выходное отверстие.
Работа двигателя по второму варианту: на 1 оборот рабочего вала два такта сжигания ТВС в КС по 180 градусов поворота рабочего вала. С использованием изобретения RU 2491431 «Способ работы роторного двигателя внутреннего сгорания», наиболее предпочтительна.
При работе двигателя поворачивается рабочий вал вместе с роторами секций и находящимися в них лопатками. Лопатка входной секции начинает сжимать ТВС, всасываемую через впускное отверстие. Ее давление повышается и под его действием открывается впускной клапан и ТВС загоняется в КС, где происходит ее воспламенение разрядом свечи зажигания. КС, в этот момент заперта всеми тремя клапанами, а ее температура порядка 2000 гр. С, поэтому смесь сгорает взрывоподобно. В этот момент в рабочей секции происходит впрыск порции воды в рабочую секцию через форсунку, за рабочую лопатку, где давление невелико или есть разрежение. В КС поджигается ТВС и давление в КС резко поднимается, впускной клапан закрывается и открывается выпускной клапан. Рабочие газы выстреливаются в рабочую секцию и приводят во вращение ротор рабочей секции с рабочим валом. На подходе второй лопатки входной секции к КС открывается стравливающий клапан, и избыточное давление в рабочей секции закрывает выпускной клапан, а остаточное давление из КС стравливается в атмосферу, ТВС со второй лопатки загоняется в освободившуюся КС, а стравливающий «лапан закрывается. В этот момент в рабочую секцию поступает очередная порция воды, в КС поджигается ТВС, поступившая в КС со второй лопатки входной секции и процесс повторяется, т.е. в рабочую секцию поступает давление из КС, испаряется поступившая вода, еще больше увеличивается давление парогазовой смеси и вращает рабочий вал. Отработавшие газы и пар из рабочей секции выбрасываются в атмосферу через выходные отверстия.
Таким образом, отдельная «горячая» КС способствует быстрому и полному сгоранию ТВС, а роторная конструкция данного ДВС приводит к его конструктивному упрощению, позволяет ввести в рабочий цикл паровую фазу, увеличить максимальные обороты и мощность двигателя, улучшить экономичность и экологичность. Кроме этого, такой ДВС будет иметь высокий крутящий момент из-за относительного большого плеча действия силы давления рабочего тела, при малых габаритах и большой диапазон рабочих оборотов за счет уменьшения оборотов холостого хода и увеличения максимально допустимых оборотов..
Главная особенность изобретения — конструктивные особенности и расположение отдельной, запирающейся на время горения рабочей смеси, не имеющей сопряженных вращающихся деталей, камеры сгорания в отдельной секции, в которой ее можно выполнить из любого материала, любой формы для обеспечения возможности детонационного сгорания сильно обедненной ТВС.
Как работает роторный двигатель Ванкеля
Ну, вначале первый инженерный подход заключался в создании двигателя, отличного от архитектуры поршневого двигателя внутреннего сгорания. И первым, кто построил и запатентовал такой двигатель, был Felix Millet в 1888 году. Милле создал 5-цилиндровый роторный двигатель, встроенный в спицы заднего колеса велосипеда. Его конструкция силового агрегата была позже запущена в производство компанией Darracq в 1900 году.Ранние типы роторных двигателей имели нечетное количество цилиндров, смещенных по радиусу (обычно 7 или 9 цилиндров, поскольку эта нечетная конфигурация приводила к более плавной работе благодаря поршню). последовательность стрельбы).Начиная с этой конструкции, сначала двигатель имел неподвижный блок цилиндров, который непосредственно вращал коленчатый вал, расположенный в центре, и назывался радиальным двигателем. Радиальный двигатель теперь с винтом, прикрепленным к вращающемуся коленчатому валу, получил широкое применение в авиастроении.
Однако конструкция этого радиального двигателя вызвала проблему с охлаждением, особенно при работе в неподвижном состоянии, поскольку блок цилиндров не получал достаточного воздушного потока. Решение этой проблемы с охлаждением пришло в виде реверсирования роли вращающейся детали из ансамбля, что означало, что коленчатый вал теперь был прикреплен болтами к шасси, а пропеллер вращался вместе со всем блоком цилиндров.Так родился роторный двигатель . Положительным моментом было то, что охлаждение двигателя было улучшено, но недостатком было то, что самолет стал нестабильным и им было труднее управлять.
К началу 1920-х роторные двигатели (которые находили применение в основном в авиастроении) устарели, и интерес к дальнейшим разработкам двигателей этого типа резко упал. Но для роторного двигателя не все было потеряно, поскольку немецкий инженер Феликс Ванкель в 1957 году изобрел вращающуюся конструкцию, в которой использовался ротор треугольной формы, вращающийся внутри овального корпуса.Поскольку в конструкции не используются поршни, как в поршневом двигателе, роторный двигатель внутреннего сгорания Ванкеля считается разновидностью роторного двигателя без поршня. Исследования роторных двигателей действительно начались в 1960-х годах, но только японскому автомобилестроителю Mazda удалось успешно модифицировать его и интегрировать в фирменный стиль бренда, став единственным производителем автомобилей, способным выйти на массовое производство. Итак, как это работает
Двигатель Ванкеля работает в том же 4-тактном цикле, что и поршневой двигатель с возвратно-поступательным движением, при этом центральный ротор последовательно выполняет четыре процесса впуска, сжатия, зажигания (сгорания) и выпуска внутри трохоидной камеры.Таким образом, хотя оба типа двигателей полагаются на давление расширения, создаваемое сгоранием топливно-воздушной смеси, разница между ними заключается в том, как они используют его для преобразования
в механическую силу. В роторном двигателе внутреннего сгорания это давление расширения прилагается к боковой поверхности ротора. Из-за треугольной формы ротора внутреннее пространство корпуса всегда будет разделено на три рабочие камеры. Это принципиально отличается от поршневого двигателя, где в каждом цилиндре происходят четыре процесса.Первоначальная конструкцияВанкеля имела внешнее зубчатое колесо с 20 зубьями, в то время как более крупное внутреннее зубчатое колесо имело 30 зубцов. Из-за этого передаточного числа частота вращения между ротором и валом определяется как 1: 3 . Это означает, что в то время как меньшая шестерня совершает один оборот, большая шестерня с внутренними зубьями вращается три раза. Поскольку эксцентриковый вал , который аналогичен коленчатому валу в поршневом двигателе, соединен с меньшей зубчатой передачей, это означает, что с двигателем, работающим на 3000 об / мин, ротор будет вращаться только при 1000 об / мин.Это не только означает, что роторный двигатель внутреннего сгорания работает более плавно, но также позволяет достичь более высокой красной черты.
Рабочий объем роторного двигателя обычно выражается единичным объемом камеры и количеством роторов (например, 654 см3 x 2). Единичный объем камеры представляет собой разницу между максимальным объемом и минимальным объемом рабочей камеры, в то время как степень сжатия определяется как соотношение между максимальным объемом и минимальным объемом.
Мы рекомендуем вам внимательнее изучить схемы и трехмерное анимационное видео Мэтта Риттмана в конце руководства, чтобы лучше визуализировать и понять режим работы двигателя Ванкеля. Плюсы и минусы двигателя Ванкеля
В первую очередь в пользу двигателя Ванкеля можно отнести его небольшой размер и легкую конструкцию . Это может оказаться решающим при разработке легкого автомобиля с высокой выходной мощностью и небольшим рабочим объемом двигателя. Это также позволяет улучшить конструкции защиты от столкновений, увеличить рабочее пространство для аэродинамики или грузовых отсеков и улучшить распределение веса .
Второй благоприятной чертой роторного двигателя внутреннего сгорания является его плоская кривая крутящего момента во всем диапазоне скоростей. Результаты исследований показали, что при использовании конфигурации с двумя роторами колебания крутящего момента во время работы были на одном уровне с рядным 6-цилиндровым поршневым двигателем, в то время как схема с тремя роторами оказалась более плавной, чем поршневой двигатель V8.
Другими преимуществами роторного двигателя внутреннего сгорания являются простая конструкция, надежность и долговечность .Из-за отсутствия поршней, штоков, механизма приведения в действие клапана, ремня газораспределительного механизма и коромысла двигатель легче построить, и для него требуется гораздо меньше деталей. Кроме того, из-за отсутствия этих компонентов двигатель Ванкеля более надежен и долговечен при работе с высокими нагрузками. И помните, когда роторный двигатель работает со скоростью 8000 об / мин, ротор (который составляет большую часть всей совокупности) вращается только на одну треть от этой скорости. Недостатки
двигателя Ванкеля включают несовершенное уплотнение на концах камеры, которое учитывается на утечку между соседними камерами, и несгоревшую топливную смесь.Роторный двигатель внутреннего сгорания также имеет на продолжительность хода на 50% больше, чем у поршневого двигателя. Работа двигателя также допускает увеличение количества окиси углерода и несгоревших углеводородов в потоке выхлопных газов, что делает его очевидным изгоем среди любителей деревьев.
Самым большим недостатком, однако, является его значительный расход топлива . Сравнительные испытания показали, что Mazda RX8 потребляет больше топлива, чем более тяжелый двигатель V8 с рабочим объемом двигателя более чем в четыре раза, но с сопоставимыми характеристиками.Еще одним недостатком является то, что небольшое количество масла попадает в рабочую камеру, и в результате владельцы должны периодически добавлять масло, что увеличивает эксплуатационные расходы. Вклад Mazda в двигатель Ванкеля
После внедрения шестипортовой впускной системы для большей экономии топлива и мощности Mazda продолжила разработку роторного двигателя внутреннего сгорания для достижения низких выбросов. Индукционная система с шестью портами имела по три впускных отверстия на камеру ротора и позволяла снизить расход топлива за счет трехступенчатого управления. Еще одним примечательным событием стало внедрение двухступенчатого монолитного катализатора .
Следующая эра в эволюции двигателей Ванкеля Mazda ознаменовалась введением турбонагнетателей.В 1982 году Cosmo RE Turbo поступил в продажу как первый в мире автомобиль с роторным двигателем, оснащенный турбонагнетателем. Основываясь на этом достижении, Mazda позже применила турбонаддув с двойной прокруткой, чтобы минимизировать турбо-лаг двигателя.
Однако ключевым нововведением Mazda стала презентация двигателя RENESIS, который означает ГЕНЕЗИС RE (роторный двигатель). RENESIS — это двигатель объемом 654 куб. См x 2, который развивает мощность 250 л.с. при 8500 об / мин и 216 Нм крутящего момента при 5500 об / мин. Помимо плавной работы двигателя и четкого отклика, двигатель RENESIS обеспечивает значительные улучшения с точки зрения топливной экономичности и выбросов выхлопных газов.RENESIS от Mazda получил награды «Международный двигатель года» и «Лучший новый двигатель» в 2003 году. Вдохновленная международным успехом RENESIS, Mazda представила новый двигатель Ванкеля, способный работать как на водороде, так и на бензине. Однако этот водородный двигатель RE не смог вызвать такой же интерес, как бензиновый, возможно, из-за отсутствия водородной инфраструктуры в то время. В мае 2007 года японский производитель автомобилей Mazda отпраздновал 40-летие разработок двигателя Ванкеля.
Роторный двигатель внутреннего сгорания RENESIS следующего поколения уже находится в разработке и появился в концептуальном автомобиле Mazda Taiki. Двигатель следующего поколения обещает больший рабочий объем 1600 куб. См (800 куб. См x 2), что, как ожидается, увеличит крутящий момент на всех оборотах двигателя и увеличит тепловую эффективность. Но, несмотря на прогресс, достигнутый в отношении выбросов выхлопных газов, выходной мощности и уплотнения рабочей камеры, двигатель Ванкеля по-прежнему будет бороться с расходом масла и топлива из-за его особой конструкции функционирования.
Как работает двигатель Ванкеля? — MechStuff
Больше никаких скучных представлений, давайте начнем и разберемся, как работает двигатель Ванкеля и что это такое!
История: —
Первый двигатель Ванкеля был разработан немецким инженером — Феликсом Ванкелем . Ванкель получил свой первый патент на двигатель в 1929 году.
Однако конструкция двигателя Ванкеля, используемая сегодня, была разработана Ханнсом Дитером Пашке , который он использовал для создания современного двигателя!
Двигатель Ванкеля: —
Двигатель Ванкеля — это двигатель внутреннего сгорания, в отличие от поршневого цилиндра.В этом двигателе используется эксцентриковая конструкция ротора, которая напрямую преобразует энергию давления газов во вращательное движение. В устройстве поршень-цилиндр поступательное движение поршня используется для преобразования во вращательное движение коленчатого вала.
По сути, ротор просто вращается в корпусах, выполненных в виде толстой восьмерки .
Части механизма Ванкеля: —
Для этого слайд-шоу требуется JavaScript.
Ротор: — Ротор имеет три выпуклые поверхности, которые действуют как поршень.3 угла ротора образуют уплотнение снаружи камеры сгорания. Он также имеет внутренние зубья шестерни в центре с одной стороны. Это позволяет ротору вращаться вокруг фиксированного вала.
Корпус: — Корпус эпитрохоидальной формы (примерно овал). Корпус имеет продуманную конструкцию, так как 3 вершины или угла ротора всегда находятся в контакте с корпусом. Впускной и выпускной патрубки расположены в корпусе.
Впускные и выпускные патрубки: — Впускной патрубок позволяет свежей смеси поступать в камеру сгорания, а отработавшие газы выводятся через выпускное / выпускное отверстие.
Свеча зажигания: — Свеча зажигания подает электрический ток в камеру сгорания, которая воспламеняет топливовоздушную смесь, что приводит к резкому расширению газа.
Выходной вал: — Выходной вал имеет эксцентриковых выступов , установленных на нем, что означает, что они смещены на относительно оси
оси вала . Ротор не вращается в чистом виде, но нам нужны эти эксцентрические выступы для чистого вращения вала.
Примечание: — Выходной вал — вещь, которую нельзя полностью объяснить словами.Довольно сложно представить его вклад в работу. эта ссылка на видео может помочь вам понять это.
Рабочий: — Анимация двигателя Ванкеля. Впуск: —
Когда кончик ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Камера всасывает свежий воздух, пока вторая вершина не достигнет впускного отверстия и не закроет его. В настоящий момент свежая топливовоздушная смесь запаяна в первую камеру и отводится на сжигание.
Компрессия: —
Первая камера (между углом 1 и углом 2), содержащая свежий заряд, сжимается из-за формы двигателя к тому моменту, когда он достигает свечи зажигания.
При этом новая смесь начинает поступать во вторую камеру (между углом 2 и углом 3).
Сгорание: —
При воспламенении свечи зажигания сильно сжатая смесь взрывно расширяется. Давление расширения толкает ротор вперед.Это происходит до тех пор, пока первый угол не пройдет через выхлопное отверстие.
Выхлоп: —
Когда пиковый угол ИЛИ 1 проходит через выхлопное отверстие, горячие газы сгорания под высоким давлением могут свободно выходить из порта.
По мере того, как ротор продолжает двигаться, объем камеры продолжает уменьшаться, вытесняя оставшиеся газы из порта. К тому времени, когда угол 2 закрывает выпускное отверстие, угол 1 проходит мимо впускного отверстия, повторяя цикл.
Пока первая камера выпускает газы, вторая камера (между углом 2 и углом 3) находится под давлением .Одновременно камера 3 (между углом 3 и углом 1) всасывает свежую смесь .
В этом прелесть двигателя — четыре последовательности четырехтактного цикла, которые последовательно происходят в поршневом двигателе, происходят одновременно в двигателе Ванкеля, вырабатывая мощность в непрерывном потоке.
Преимущества: —
- Двигатель Ванкеля имеет очень мало подвижных частей; намного меньше, чем 4-тактный поршневой двигатель. Это делает конструкцию двигателя более простой, а двигатель — надежным.
- Это примерно 1/3 размера поршневых двигателей , обеспечивающих такую же выходную мощность.
- Может развивать более высокие обороты в минуту, чем поршневой двигатель.
- Двигатель Ванкеля весит почти 1/3 веса поршневых двигателей , обеспечивая такую же выходную мощность. Это приводит к более высокому соотношению мощности к весу.
Недостатки: —
- Поскольку каждая секция имеет разность температур, расширение материала корпуса различается в разных регионах.Поэтому ротор иногда не может полностью герметизировать камеру в области высоких температур.
- Горение происходит медленно, поскольку камера сгорания длинная, тонкая и подвижная. Следовательно, может существовать вероятность того, что свежий заряд разрядится, даже не сгорая.
- Поскольку несгоревшее топливо находится в потоке выхлопных газов, требования по выбросам трудно удовлетворить.
Общая информация о роторных двигателях
Роторный двигатель (также известный как двигатель Ванкеля или роторный двигатель Ванкеля) — это двигатель внутреннего сгорания, изобретенный в 1954 году немецким инженером-механиком Феликсом Генрихом Ванкелем в качестве альтернативы классическому поршневому двигателю.
После некоторых технических усовершенствований, внесенных инженером Хансом Дитером Пашке, роторный двигатель Ванкеля был впервые представлен специалистам и прессе на собрании Союза инженеров Германии в Мюнхене в 1960 году.
Благодаря своей простоте, отличному соотношению мощности к весу, а также плавности хода и хорошей работе моторы Ванкеля были у всех на слуху в автомобильной и мотоциклетной промышленности в 1960-х годах. В августе 1967 года NSU Motorenwerke AG привлекло большое внимание к очень современному NSU Ro 80, который имел 115-сильный двигатель Ванкеля с двумя роторами.Это был первый немецкий автомобиль, признанный «Автомобилем года» в 1968 году.
В течение следующих десятилетий ряд крупных производителей автомобилей подписали лицензионные соглашения на разработку роторных двигателей Ванкеля, включая Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda.
После дальнейших улучшений двигателя, включая решение проблемы с уплотнением верхушки, Mazda успешно использовала моторы Ванкеля в своих спортивных автомобилях серии RX до 2012 года.Технологическое превосходство роторных двигателей в автомобильной промышленности было подчеркнуто в гонке «24 часа Ле-Мана» 1991 года, когда автомобиль с 4-роторным двигателем Mazda 26B выиграл престижное соревнование.
В наши дни роторные двигатели Ванкеля, которые постоянно совершенствуются такими компаниями, как Wankel Supertec GmbH, можно найти в мотоциклах, гоночных автомобилях, самолетах, малых судах и генераторах энергии. Следующий этап развития относится к использованию роторных двигателей внутреннего сгорания в наступающую эру низкоуглеродистого, экологически безопасного, надежного и доступного энергоснабжения.Таким образом, успешное испытание роторного двигателя Hydrogen 20 сентября 2019 года позволяет Wankel Supertec с уверенностью смотреть в будущее.
Роторный двигатель — это двигатель внутреннего сгорания, в котором используется один или несколько треугольных роторов для преобразования давления, создаваемого при сгорании топливовоздушной смеси, в кинетическую энергию. Объемы газа, транспортируемые в пространствах между торцами ротора и корпусом, поочередно выполняют четыре разные работы: а) всасывание; б) Компрессия; в) горение и г) выхлоп.Эти стадии известны как такты, что делает двигатель Ванкеля 4-тактным двигателем, похожим на поршневой двигатель Отто.
ВПУСКНОЙ
Во время этой фазы падение давления, вызванное движением ротора, втягивает воздушно-топливную смесь. Эта смесь втягивается вокруг ротора и нагнетается во второй такт цикла.
СЖАТИЕ
По мере того как ротор продолжает вращаться, захваченный (заштрихованный) объем, заключенный между ротором и корпусом, уменьшается, сжимая топливно-воздушную смесь.
ГОРЕНИЕ
Когда активный объем смеси минимален, одна или несколько свечей зажигания инициируют горение, вызывая быстрое повышение давления и температуры. Внезапное расширение газообразной топливной смеси передает усилие на эксцентрик через ротор.
ВЫХЛОПНОЙ
По мере вращения расширяющиеся газы приводят в движение ротор до тех пор, пока выхлопное отверстие не откроется, выпуская их.Процесс выпуска продолжается, когда впускное отверстие открывается, чтобы начать новый цикл.
Благодаря своей конструкции двигатель Ванкеля намного легче, компактнее и проще классического поршневого двигателя. Нет ни возвратно-поступательной массы, ни кривошипов, клапанов, штоков или других сложных деталей, подверженных поломкам. Двигатели Ванкеля содержат всего три движущихся части, что делает их более надежными, долговечными и удобными в обслуживании, чем их соперники с возвратно-поступательным движением.Кроме того, эти движущиеся части непрерывно вращаются в одном направлении, что обеспечивает более высокие рабочие скорости, простоту балансировки и низкий уровень вибрации. Благодаря беспрецедентному соотношению мощности к габаритам и мощности к массе, двигатели Ванкеля незаменимы в различных областях применения, начиная от сектора легких самолетов и комбинированных теплоэнергетических установок и заканчивая морской промышленностью.
Одним из основных недостатков двигателя Ванкеля является его низкий тепловой КПД. Длинная, тонкая и подвижная камера сгорания приводит к медленному и неполному сгоранию топливной смеси.Это приводит к более высоким выбросам углерода и более низкой топливной экономичности по сравнению с поршневыми двигателями. Однако этот недостаток превращается в преимущество при переходе на водородное топливо.
Еще одна слабость двигателей Ванкеля заключается в уплотнении ротора и вершины. Неидеальное уплотнение между краями ротора и корпуса — например, из-за износа или недостаточной центробежной силы в нижних диапазонах частоты вращения — может привести к утечке продуктов сгорания в следующую камеру.
Поскольку сгорание происходит только в одной секции роторного двигателя, существует большая разница температур в двух отдельных камерах.Как следствие, разные коэффициенты расширения материалов приводят к неоптимальному уплотнению ротора. Потребление масла также является проблемой, поскольку масло необходимо впрыскивать в камеры, чтобы добавить смазки и помочь сохранить герметичность ротора.
Роторные двигатели— обзор
7.3.1 Проблема с водородом
В целом водород представляет собой идеальное решение. Это также хорошее топливо для двигателей внутреннего сгорания (ВС), и его выбросы в основном состоят из воды.По этой причине BMW пропагандирует это решение как альтернативу топливным элементам. Он считает, что двигатели внутреннего сгорания составляют его основное технологическое преимущество, и не хочет идти на компромисс, что неизбежно произошло бы, если бы топливные элементы были повсеместно приняты автопроизводителями. BMW утверждает, что водородные двигатели IC дают те же экологические преимущества, что и водородные топливные элементы. На практике выделяются очень низкие уровни углеводородов из-за смазочного масла, которое все еще требуется двигателю внутреннего сгорания, хотя это, вероятно, незначительно.
Более важно то, что если кислород, используемый для сжигания водорода, получен из окружающего воздуха, более высокая температура сгорания водорода неизбежно приведет к более высоким выбросам NOx, а также к более высоким тепловым потерям (Keolian, 1997: 87). Эта проблема не возникнет в топливных элементах, которые работают при гораздо более низких температурах, а также с более высоким КПД. Водород можно сжигать в существующих двигателях внутреннего сгорания с небольшими модификациями, поэтому массовый отход от существующих технологий двигателей и производственных мощностей не потребуется.BMW также предлагает использовать пустынные районы для крупномасштабного производства водорода на солнечной энергии. Однако BMW была одной из первых, кто разработал топливный элемент для питания бортовых электрических систем в своих автомобилях. Mazda сообщила в начале 1990-х годов, что ее роторные двигатели IC Ванкеля также особенно подходят для работы на водороде (Hege, 2001: 161).
Новая потребность в водороде хорошо согласуется с желанием некоторых стран перейти к «водородной экономике», которая в большинстве случаев представляет собой экономику, основанную на водороде как средстве хранения энергии, генерируемом из возобновляемых источников энергии, а не на ископаемом топливе. .Тогда это приведет к созданию экономики, основанной на изобилии энергии, но без каких-либо побочных эффектов, таких как загрязнение окружающей среды, войны на Ближнем Востоке или глобальное потепление. Исландия, изобилующая геотермальной энергией, объявила, что идет к достижению этой цели в течение нескольких десятилетий. Канада считает, что может использовать гидроэлектроэнергию для производства водорода. Другие предлагали использовать ядерную энергию. Президент США Джордж Буш также стал сторонником принципа водородной экономики, поскольку он рассматривает его как способ снижения зависимости от импортируемой нефти и сокращения производства C0 2 при сохранении энергоемкого образа жизни в США.Его инициатива Freedom Car, пришедшая на смену Партнерству Клинтона по созданию автомобилей нового поколения (PNGV), является частью стратегии реализации.
Однако, независимо от того, выбираете ли вы топливные элементы или водородные двигатели внутреннего сгорания, есть некоторые проблемы, в основном связанные с производством водорода. Водород (химическая формула: H 2 ) не встречается на Земле в чистом виде в природе и обычно производится из воды или углеводородного топлива, такого как метанол. Этот процесс может быть довольно энергоемким, поэтому возникает вопрос, какой источник энергии использовать для производства водорода.Этот процесс сам по себе может загрязнять окружающую среду, особенно если используется ископаемое топливо. В настоящее время большая часть водорода производится из природного газа путем переработки пласта, и Keolian et al. (1997: 86) указывают, что эффективность этого процесса составляет 70–75%. Финансовые затраты в два-три раза превышают затраты на сырье, хотя и на уровне цен в США. Электролиз воды может иметь эффективность 75%, хотя и требует больших затрат энергии, в то время как газификация угля с эффективностью 60–65% является самой низкой стоимостью в США. В связи с этим привлекательность недорогих природных источников энергии, таких как тепловая или гидроэнергетика, очевидна.С другой стороны, как Burns et al. (2002: 49) указывает, что, поскольку автомобили на топливных элементах, вероятно, будут почти в два раза эффективнее автомобилей с бензиновым двигателем, можно допустить значительную надбавку к цене за водород, поскольку цена за милю будет ключом к успеху.
Водород также представляет проблемы с хранением. Существующие системы хранения, такие как резервуары со сжатым водородом или металлогидридом, являются громоздкими, и экспериментальные водородные транспортные средства часто были фургонами, которые могли их перевозить. Проблема в том, что водород имеет только одну четверть плотности энергии бензина, поэтому для преодоления того же расстояния требуется больше энергии (Таблица 7.2). К концу 1990-х одно направление мышления, таким образом, больше сдвинулось в сторону выработки водорода на борту транспортного средства из углеводородного топлива, такого как метанол или даже бензин. Это бортовое преобразование, при котором водород извлекается переработчиком по мере необходимости из топлива, с которым легче обращаться и хранить в автомобиле, как в двигателях внутреннего сгорания. Споры о том, что лучше — метанол или бензин, все еще продолжаются. Последний был продвинут Chrysler среди других в 1990-х годах, поскольку он позволяет сохранить существующую бензиновую инфраструктуру.Однако это не решает проблему нашей чрезмерной зависимости от скудных запасов нефти. Автомобиль Nissan на топливных элементах (FCV) использует метанол и воду, которые вступают в реакцию и выделяют водород. Метанол, одна из форм спирта, может быть извлечен из различных видов сырья.
Таблица 7.2. Относительная плотность энергии топлива (бензин / бензин = 1)
Топливо | Плотность энергии |
---|---|
Бензин / бензин | 1,00 |
Дизельное топливо | 1.06 |
Этанол | 0,74 |
Метанол | 0,54 |
Сжиженный нефтяной газ | 0,67 |
СПГ | 0,42 | 903 903
Источник: Schuetzle and Glaze (1999).
Как работает роторный двигатель Ванкеля
Одна из проблем обычных автомобилей двигатель дизайн заключается в том, что поршни двигаться по прямой вверх и вниз в своих цилиндры , производить то, что есть известный как возвратно-поступательное движение .
Внутри двухроторного двигателя Ванкеля
В NSU Ro80 и более современных автомобилях Mazda с двигателями Ванкеля используются сдвоенные роторы. Роторы приводят в движение выходной вал, проходящий через их центр. Этот вал соединен с маховиком для сглаживания импульсов мощности двигателя. Преимущество сдвоенных роторов заключается в том, что, когда они настроены на поворот на 180 ° в противофазе друг с другом, один ротор компенсирует любые вибрации, производимые другим ротором, что обеспечивает исключительно плавную работу двигателя.Но опорные колеса требуют другого движения — вращательное движение . К преобразовать возвратно-поступательное движение во вращательное движение, поршни связаны с коленчатый вал так что, когда поршни поднимаются и опускаются, они заставляют коленчатый вал повернуть. Тогда вращательное движение коленчатого вала может передаваться на дорогу. колеса, чтобы вести их.
Двигатель автомобиля был бы намного проще, если бы поршни могли вращаться вместо движение вверх и вниз, потому что создаваемое таким образом вращательное движение может быть передается непосредственно на опорные колеса (хотя передача все равно будет нужный).
Еще одно преимущество такого роторный двигатель было бы что поршни бы всегда двигаться в одном направлении — по кругу. Ни один из двигателей мощность будет потрачена впустую, остановив поршни в конце их Инсульт а также снова ускоряя их в обратном направлении, как это происходит в Поршневой двигатель.
Емкости Ванкеля
Дизайн Двигатель Ванкеля делает его намного более мощным, чем поршневой двигатель такой же мощности.NSU Wankel Spyder с двигателем объемом 498 куб. См, обеспечивающим максимальную скорость почти 100 миль в час, это один из примеров. Еще совсем недавно купе Mazda RX-7 имеет объем двигателя всего 1308 куб. См (654 куб. См на ротор), но имеет аналогичные рабочие характеристики Porsche 924S объемом 2479 куб. Чтобы уравнять мощности двигателей Ванкеля и поршневых двигателей в с точки зрения производительности, мощность двигателя Ванкеля должна быть увеличена на 1.8. Это означает, что двигатель RX-7 объемом 1308 куб. См имеет такую же выходную мощность, что и поршневой двигатель объемом 2354 куб. см.Разработка
Несмотря на привлекательность идеи, когда-либо применялся только один тип роторного двигателя. успешно применяется в автомобилях. Это двигатель Ванкеля, разработанный Феликсом. Ванкель.
Он начал исследования роторных компрессоры в 1938 году. После Второй мировой войны он объединился с NSU (немецкий производитель автомобилей, позже ставший частью VW Audi) превратить его компрессоры в практичный двигатель внутреннего сгорания .
К 1957 году Ванкель построил экспериментальный роторный двигатель, работавший на испытательный стенд, и в 1964 году этот двигатель был предложен публике в NSU Wankel Spyder.Этот небольшой спортивный автомобиль с задним расположением двигателя имел двигатель Ванкеля объемом 498 куб. мог развивать 50 л.с. и иметь максимальную скорость 95 миль в час (152 км в час).
Spyder так и не завоевал популярность у публики, и автомобиль, который действительно прославил двигатель Ванкеля NSU R080, который был признан автомобилем Год 1968. Он имеет двухроторный двигатель 995c и может развивать скорость до 110 миль в час. (176км в час).
Внутри Ванкеля
Сердце двигателя Ванкеля — трехсторонний поршень, называемый ротором. вращающийся внутри корпус ротора .На каждой стороне корпуса есть торцевая пластина.
Боковые стороны ротора изогнуты на три лопасти, а корпус ротора имеет в форме большой восьмерки, так что при вращении ротора зазор между каждой стороной ротора и корпусом попеременно увеличивается и меньше. Этот постоянно меняющийся разрыв является ключом к горение процесс.
топливо / воздушная смесь поступает в корпус в момент, когда в ловушке объем между стенкой корпуса и одним из лопастей ротора увеличивается.По мере увеличения этого объема создается вакуум , рисунок в топливовоздушная смесь через отверстия в корпусе и на концевой пластине.
По мере вращения ротора этот объем начинает сокращаться, сжимая топливно-воздушная смесь. Затем эта смесь проходит через свеча зажигания , установлен в стенка корпуса. В Искра загорается загорание, чтобы воспламенить смесь, в результате чего она развернуть и вращать ротор вокруг своего цикл . На данный момент объем между ротор и корпус увеличиваются, чтобы обеспечить расширение газов.Наконец, объем снова уменьшается, вытесняя отработанные газы через выхлопные отверстия.
Таким образом, ротор совершает тот же четырехтактный цикл, что и поршневой двигатель — индукция , сжатие , мощность и выхлоп — но каждый из трех лепестки ротора проходят через этот процесс непрерывно, поэтому есть три силовые удары за каждый оборот ротора.
Через центр ротора проходит выходной вал , к которому ротор связан системой планетарные передачи аналогично автоматическому коробка передач (см. Системы 44 и 45).Зубчатая передача позволяет ротору следовать эксцентричный орбите так, чтобы три конца ротора постоянно касались Корпус.
Когда ротор вращается, он вращает этот вал. Вал несет это вращательное движение к коробка передач и так с опорными колесами.
Рабочий цикл роторного двигателя Ванкеля
Индукция
Когда кончик ротора проходит через впускное отверстие, следующая камера начинает увеличиваться в размерах из-за эксцентрической орбиты ротора.Это приводит к засасыванию топливно-воздушной смеси в камеру.Сжатие
По мере того как ротор продолжает вращаться, камера начинает уменьшаться в размерах, сжимая топливно-воздушную смесь, готовую к воспламенению.Зажигание
Когда камера проходит над свечами зажигания, они загораются, чтобы воспламенить смесь. Все современные двигатели Ванкеля имеют две свечи зажигания, обеспечивающие равномерное сгорание топливно-воздушной смеси по всей камере.Выхлоп
Расширение горящих газов заставляет ротор совершать полный цикл, проходя через выхлопное отверстие, где газы вытесняются из камеры. Этот цикл продолжается во всех трех камерах одновременно.Отличия
Конструкция двигателя Ванкеля означает, что он не имеет клапаны — топливо / воздух смесь просто входит и выходит из камеры через отверстия в корпусе ротора и торцевую пластину.Поэтому и качелей нет, распредвал или толкатели.
Это означает, что Ванкель имеет примерно половину количества частей Поршневой двигатель. Он также легче и компактнее. Тем не менее, это все еще требует многих из тех же вспомогательных устройств, что и другие двигатели — стартер , генератор , система охлаждения , карбюратор или же впрыск топлива , масляный насос и так далее. Однажды двигатель установлен со всем этим, он теряет большую часть своего преимущества компактность и меньший вес.
Тем не менее, двигатель Ванкеля в Ro80 получил широкую признательность за его плавность хода и отсутствие вибрации.Отчасти это было из-за неисправности двигателя. с двумя роторами, установленными на одной линии друг с другом, но в отдельных корпусах. Каждый вращались примерно на том же выходном валу, но их синхронизация была выставлена на 180 ° наружу, так что любой дисбаланс сила произведенные одним ротором, будут аннулированы тем же сил другого ротора, и чтобы они совместно производили более равномерный поворотное движение.
Ограничения Ванкеля
Хотя проблема уплотнения теперь в значительной степени разобрались, он до сих пор не удалось полностью использовать потенциал двигателя Ванкеля для использования в транспортных средствах из-за ограниченного срока службы компонентов двигателя.Еще одна проблема заключается в том, что двигатель обычного поршневого автомобиля хорошо работает в довольно широком диапазоне скоростей и нагрузок, тогда как Двигатель Ванкеля лучше всего работает только в гораздо более узком диапазоне.Ранние проблемы
После того, как базовая конструкция Ванкеля была определена, вскоре возникнут проблемы. стало очевидным. Один из них — износ уплотнений. Роторы герметизированы со всех сторон, чтобы следите за тем, чтобы газы не просачивались через наконечники из частей с высокой степенью сжатия корпус к частям с низкой степенью сжатия.Эти уплотнения были подвержены износу и поломка, в результате чего двигатель теряет компрессию и, следовательно, мощность.
На поршневом двигателе это уплотнение частично обеспечивается клапанами и частично за счет поршневые кольца , но уплотнения на двигателе Ванкеля представляли особую проблемы.
Уплотнения наименее эффективны при низких оборотах двигателя, где они должны быть снабжены пружинами, чтобы удерживать их прижатыми к боковой стороне корпуса.
Но при высоких оборотах двигателя комбинация центробежные силы и высокий газ давление плотнее прижмите уплотнения к корпусу.Результирующий трение означало потерю мощности и значительный износ уплотнений, что вскоре сломал.
Ранние Ванкели имели печати, сделанные из углерод , но в более поздних конструкциях были особые чугунные уплотнения, которые оказались более прочными. Для дополнительной защиты внутри корпуса и концевых пластин нанесено износостойкое покрытие.
Вторая серьезная проблема — износ восьмиугольной рабочей поверхности, вызванный «стуком» печатей. Это приводит к гофре на ходу. поверхность и сокращает срок службы двигателя.
Формы камеры
Mazda 13B Роторный двигатель
Схема впуска, двигателя и выхлопа роторного двигателя Mazda 13B. Этот двигатель имеет электронный впрыск топлива с двумя топливными форсунками на ротор. Первичные форсунки работают постоянно, в то время как вторичные форсунки включаются только при повышенных оборотах двигателя или под нагрузкой. Выбросы выхлопных газов сокращаются за счет использования термического реактора для нагрева выходящих газов — тепло подается теплообменником дальше по выхлопной трубе.Другая проблема двигателя Ванкеля — форма горение камера . В типичном поршневом двигателе камера примерно равна полусферический, что помогает обеспечить равномерное сгорание топливно-воздушной смеси и постепенно. В двигателе Ванкеля камера сгорания неизбежно длинная. и плоская, форма которой значительно затрудняет оптимальное сгорание.
Частичное решение проблемы камеры сгорания заключалось в соответствовать две искры заглушки расположены на небольшом расстоянии друг от друга.Mazda — чей RX-7 теперь единственный Автомобиль с двигателем Ванкеля, который продается сегодня в Великобритании (см. Ниже) — взял этот принцип за основу. далее, установив две свечи, одна из которых зажигает доли секунды. позже, чем другой. Это расположение требует двух отдельных зажигание системы с двумя катушки .
Отсутствие успеха
Несмотря на мощность и плавность хода Ванкеля, ему пока не удалось завоевать популярность среди подавляющего большинства производителей автомобилей.
Основная причина — высокий расход топлива, вызванный тенденцией топливно-воздушная смесь гореть неравномерно.Неравномерное сгорание в двигателе Ванкеля также создает еще одну проблему — высокий выброс уровни частично обгоревшего углеводороды (загрязнение выхлопными газами).
За годы, прошедшие с тех пор, как R080 принес теоретические преимущества Ванкеля двигатель к известности, были различные нефтяные кризисы и продолжающиеся давление со стороны правительств и общественности с целью снижения уровня выбросов выхлопных газов и лучший расход топлива.
Ни одно из этих требований не благоприятствует двигателю Ванкеля, и, кроме того, он означало, что большинству производителей автомобилей пришлось потратить много времени и денег на повышение эффективности существующих двигателей.
Руководство для начинающих: что такое роторный двигатель (и как он работает)?
Поворотный против поршневого
PROS
• Природа двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера — Mazda RX-8 технически имеет объем 1,3 литра, но выдает около 230 л.с.
• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.
• Из-за характера двигателя они внутренне сбалансированы — роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга.Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет раскручиваться до более высоких оборотов (10000 об / мин отнюдь не является чем-то неслыханным) без повреждений.
МИНУСЫ
• Роторные двигатели менее экономичны по топливу, чем их эквиваленты с поршневыми двигателями, поскольку они менее эффективны с термической точки зрения.
• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.
• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя — это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.
• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.
• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.
Mazda — крупнейший производитель роторных двигателей и единственный производитель, использующий их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства.NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012.
Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида, благодаря их компактным размерам и плавности хода.Считается, что, работая с постоянной скоростью для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.
Что такое двигатель Ванкеля? Ан-Обзор
В этой статье описывается принцип работы и компоненты двигателя Ванкеля. Двигатель Ванкеля — любимый тип двигателя из категории двигателей внутреннего сгорания. Этот тип двигателя также известен как роторный двигатель. Двигатель Ванкеля работает за счет вращательного движения поршня.В двигателях Ванкеля используется ротор, который преобразует энергию давления газа во вращательное движение. Напротив, поступательное движение поршня используется для преобразования во вращательное движение коленчатого вала.
История двигателя Ванкеля:Компания NSU Motorenwerke AG начала разработку двигателя Ванкеля в 1951 году. Немецкий инженер-механик Феликс Генрих Ванкель разработал роторный двигатель Ванкеля в 1954 году в качестве альтернативы обычному поршневому двигателю.
После некоторых технологических изменений, внесенных инженером Хансом Дитером Пашке, роторный двигатель Ванкеля был впервые представлен специалистам и прессе на конференции Союза инженеров Германии в Мюнхене в 1960 году.
Благодаря своей простоте, превосходному соотношению прочности и веса, плавности хода и высокой эффективности работы в 1960-х годах двигатели Ванкеля были у всех на слуху в автомобильной и мотоциклетной промышленности. В августе 1967 года компания NSU Motorenwerke AG получила широкую огласку в связи с новым NSU Ro 80, оснащенным 115-часовым двигателем Ванкеля с двумя роторами. Это был первый немецкий автомобиль в 1968 году, который был выбран «Автомобилем года».
Несколько крупных производителей автомобилей подписали лицензионные соглашения на производство роторных двигателей Ванкеля в течение следующего десятилетия, включая Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda.
Принцип работы двигателя Ванкеля:
В отличие от поршневого двигателя с возвратно-поступательным движением, 4 такта стандартного двигателя с циклом Отто организованы последовательно вокруг эллиптического двигателя в двигателе Ванкеля. Двигатель Ванкеля имеет один ротор, одна эллиптическая коробка вращается вокруг треугольного ротора (с трех сторон от Reuleaux), который вращается и перемещается в коробке. Сторона уплотнения ротора разделена на три камеры сгорания со стороны корпуса и углы уплотнения ротора по периметру основной коробки.
По мере того, как ротор вращается, вращение и форма корпуса толкают ротор ближе к стенке корпуса, а камеру сгорания двигателя ближе и дальше вниз по «ходам» возвратно-поступательного поршня. Но эти 4-тактные двигатели производят такт сгорания после двух оборотов поршня внутри цилиндра. Камеры сгорания двигателя Ванкеля производят один «такт сгорания» за каждый оборот. Поскольку приводной вал Ванкеля вращается со скоростью, в три раза превышающей частоту вращения ротора, он становится одним «тактом» сгорания на один оборот выходного вала ротора, что в два раза больше, чем у четырехтактного поршневого двигателя, и эквивалентно таковому у двухтактного двигателя.Эти двигатели имеют большую выходную мощность по сравнению с четырехтактными бензиновыми двигателями с сопоставимым ходом двигателя.
1) Ход всасывания:Когда наконечник ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Пространство всасывает свежий воздух до того, как входит вторая вершина и закрывает входной порт. Свежая топливно-воздушная смесь обычно заделывается в первую камеру и отделяется для сгорания.
2) Ход сжатия:Первая камера, в которой находится свежий заряд, сжимается конструкцией двигателя до упора в свечу зажигания.После этого новая воздушно-топливная смесь поступает в камеру 2 nd .
3) Горение или рабочий ход:Сильно сжатая смесь взрывоопасно набухает при воспламенении свечи зажигания. Давление расширения толкает ротор вперед. Этот процесс продолжается до тех пор, пока первый угол не попадет в вытяжную камеру.
4) Ход выпуска:Когда пиковый угол ИЛИ 1 проходит через выпускное отверстие, горячие газы сгорания будут свободно выходить из порта.При движении ротора объем камеры начинает уменьшаться, а оставшиеся газы выталкиваются из выпускного отверстия. Со временем угол 2 закрывает выпускной клапан, а угол 1 проходит через впускной канал, повторяя петлю.
Вторая камера сжимает газы, а первая камера выпускает (между углом 2 и углом 3). Примерно в то же время камера 3 (между углом 1 и углом 3) рисует новую комбинацию. В этом уникальность двигателя Ванкеля — четыре последовательности четырехтактного цикла, которые происходят в поршневом двигателе последовательно, генерируются одновременно в двигателе Ванкеля и генерируют мощность в непрерывном потоке.
Детали двигателя Ванкеля:
Роторный двигатель может показаться сложным, но в нем меньше движущихся частей и компонентов, чем в поршневом двигателе. Ниже мы рассмотрим основные компоненты двигателя Ванкеля или роторного двигателя, чтобы вы лучше поняли, как все работает.
1) РоторРотор представляет собой трехстороннюю деталь с вогнутыми сторонами и обеспечивает герметичное уплотнение при прижатии к стенкам корпуса. Каждая поверхность ротора имеет воздухозаборник или воздушный карман, который может увеличивать количество газа в корпусе, эффективно увеличивая рабочий объем роторного двигателя.
Этот компонент двигателя Ванкеля вращается с парой шестерен, прикрепленных к валу в центре корпуса. Эти шестерни вращаются так, что края с обеих сторон ротора всегда соприкасаются с корпусом, таким образом поддерживая три отдельных кармана сгорания. Думайте об этом как о спирографе с слегка вращающимся ротором.
2) КорпусКорпус является основным корпусом роторного двигателя. Его овальная конструкция позволяет двигателю добиться максимального рабочего объема при вращении ротора, так что его края находятся в постоянном контакте с внутренней стенкой корпуса.
Когда ротор вращается в корпусе, каждый воздушный карман проходит через четыре части цикла сгорания: от входа до сжатия и сгорания до выхода. Свечи зажигания и форсунки вставляются непосредственно в стенки кожуха, а внешние каналы позволяют маслу и охлаждающей жидкости через систему поддерживать ее целостность и температуру.
3) Выходной валВыходной вал передает энергию, генерируемую сжатием и сгоранием, в систему трансмиссии для привода колес.Сам вал снабжен круглым выступом, который касается ротора и вращает вал.
4) Впускной и выпускной патрубки:Впускной канал позволяет свежей смеси поступать в камеру сгорания, а выхлопные газы выходят через выпускное или выпускное отверстие.
5) Свеча зажигания :Свеча зажигания передает электроэнергию в камеру сгорания, которая воспламеняет топливовоздушную смесь, которая способствует внезапному расширению газа.
Преимущества и недостатки роторного двигателя:
Преимущества:- Эти двигатели имеют значительно более высокое отношение мощности к массе, чем двигатель с колонной.
- Примерно треть размера поршневого двигателя с сопоставимой выходной мощностью.
- Более просто упаковать в ограниченном пространстве двигателя, чем аналог поршневого или внутреннего двигателя.
- Эти двигатели не нуждаются во взаимных компонентах.
- Они могут производить более высокие обороты в минуту по сравнению с двигателем внутреннего сгорания.
- Звук почти не работает.
- Не подходит для детонации двигателя.
- Дешевле массового производства, и в двигателе меньше движущихся компонентов.
- Превосходный воздушный поток, восполняйте нагрузку сгорания при 270 ° C в поршневом двигателе, а не при 180 ° C
- Обеспечивает крутящий момент поршневого двигателя примерно на две трети цикла сгорания, а не на одну пятую.
- Эти двигатели вполне себе, чем двигатели внутреннего сгорания.
- Высокая скорость этих двигателей обеспечивает превосходную адаптивность.
- Эти двигатели могут использовать топливо с высоким октановым числом.
- Они лучше всего подходят для использования водородного топлива.
i) Уплотнение ротора:
Это также незначительная проблема, поскольку кожух двигателя Ванкеля имеет немного разные температуры в каждом отдельном сегменте камеры.Различные коэффициенты расширения вещества способствуют несовершенному экранированию.
ii) Подъем уплотнения Apex:
Центробежная сила заставляет верхнее уплотнение на поверхности корпусов двигателя создать прочное уплотнение. При работе с малой нагрузкой зазоры между верхним уплотнением и трохоидным корпусом могут образоваться в случае дисбаланса центробежной силы и давления газа.
iii) Высокий уровень выбросов:
Поскольку несгоревшее топливо находится в потоке выхлопных газов при использовании топлива, стандарты выбросов трудно выполнить.Прямой впрыск топлива в камеру сгорания двигателя решит эту проблему.
iv) Низкая топливная экономичность бензинового топлива:
Это связано с формой движущейся камеры сгорания, которая способствует плохому сгоранию и хорошему давлению при частичной нагрузке и низких оборотах. Это приводит к присоединению несгоревшего топлива к выхлопному потоку; топливо, не используемое для производства электроэнергии, теряется.
v) Медленное горение:
При использовании бензинового топлива горение газа замедляется из-за длинной, тонкой и подвижной камеры сгорания.Пламя почти полностью перемещается в сторону вращения ротора. Это приводит к низкому затуханию смеси бензин / воздух (2 мм), что является основной причиной несгоревших углеводородов на высоких оборотах. Задняя сторона камеры сгорания естественным образом создает «сжатый поток», который не позволяет свету достигать задней кромки камеры в сочетании со слабым гашением бензина / воздуха. Использование водородного топлива не вызывает этой дилеммы, потому что оно закалено на 0,6 мм.
Применения двигателя Ванкеля:- Крошечный двигатель Ванкеля все чаще используется в других целях, в том числе в картингах, личных водных судах и вспомогательных силовых установках самолетов.
- Некоторые использовали двигатели Ванкеля в версиях, которые в основном использовались с 1970 года. Даже с большим глушителем весь комплект весит всего 13,4 унции (380 граммов).
- Универсальность двигателей Ванкеля делает их подходящими для конструкций с малыми, микро и микро-мини.
- Самый большой двигатель Ванкеля доступен с ротором мощностью 550 л.с. (410 кВт) и двумя версиями ротора по 1100 л.с. (820 кВт), смещает примерно 41 литр ротора в диаметре. За счет снижения частоты вращения двигателя до 1200 об / мин и использования природного газа в качестве топлива двигатели были хорошо выбраны для привода насосов на газопроводах.
- Было также небольшое количество двигателей с двигателями Ванкеля.
- Эти двигатели используются в самолетах.
- Эти двигатели используют в автомобилях Mazda.
- Малые двигатели Ванкеля также используются в мотоциклах.
- Эти типы двигателей также используются на лодках.
Двигатель Ванкеля во многом является двигателем, за которым следуют люди, которые следят за ним и любят его. Эти типы двигателей не горят очень чисто и, как следствие, имеют высокий уровень выбросов.Роторные двигатели также имеют более высокий износ по сравнению с поршневыми двигателями внутреннего сгорания и не служат так долго.
Кроме того, они ужасные двигатели для людей, которые ездят на короткие расстояния. Если бы вы могли завести их, переместить машину с проезжей части на дорогу и выключить их, эти двигатели сильно затопятся. Затем вам нужно пройти процесс удаления наводнения. Я думаю, что этот процесс может занять около 20 или 30 минут, чтобы перезапустить машину. Думаю, вам часто приходится подключать дополнительное питание, чтобы не разрядить аккумулятор.