Перевод квт в лошадиные силы
Москва +7(495) 788 7235 | |||
Пилорамы Wood-Mizer: опыт действующих предприятий, идеи для бизнеса и новые рыночные ниши в лесопилении | |||
|
Калькулятор перевода киловатт в лошадиные силы
Лошадиная сила представляет собой внесистемную единицу измерения параметра мощности. На самом деле во всём мире сразу несколько разных единиц называют «лошадиной силой». В РФ обычно термин «лошадиная сила» подразумевает «метрическую» л. с., которая эквивалентна 735,49875 Вт.
Сейчас в РФ формально эту единицу вывели из применения, но поныне её используют для расчётов сумм транспортных налогов, а также ОСАГО. Система СИ давно в качестве официальной единицы установила Ватт.
Английская система измерения в качестве единицы мощности признает фунто-фут/сек, однако в действительности в Великобритании данную единицу уже не используют, в США — используют чрезвычайно редко.
Что такое лошадиная сила и как она появилась
По какой причине лошадиная сила начала использоваться как единица мощности? Как она выражается через другие единицы? Дж. Уатт предложил в 18 в. устройство для выкачки вод из шахт. Однако нужно было как-то объяснить владельцам шахт, что конкретно он предлагает им приобрести, в чём заключаются плюсы изобретения.
Для оценки мощности нового двигателя было предпринято такое мероприятие. Конь был запряжен в обыкновенный насос для подъёма воды, который работал с помощью лошадиной тяги. Затем оценили, сколько именно за 1 день будет поднято лошадью воды.
Потом соединили с этим насосом паровой двигатель и увидели результат, полученный в течение 1 дня работы. 2-е число разделили на 1-е, с помощью данных цифр объяснив владельцам шахт, что насос может заменить столько-то коней. Полученное вследствие 1-го эксперимента значение мощности сделали мерилом, обозначив его ему словосочетанием «лошадиная сила».
Таким образом, формулировка «лошадиная сила» появилась благодаря официальному изобретателю паровой машины, инженеру Дж. Уатту из Англии. Он должен был провести наглядную демонстрацию того факта, что созданная им машина способна стать заменой для множества коней. Ради этого потребовалось бы как-либо определить в единицах работу, к выполнению которой лошадь способна за определённое время.
Выполнив свои наблюдения в шахтах с углём, Уатт продемонстрировал способность среднестатистической лошади на протяжении длительного времени осуществлять подъём из шахты грузов массой примерно
1 л. с. — единица мощности, а не силы. Метрическая л. с. равна 0,736 кВт.
Что такое киловатты (кВт)
Ватт является принятой в СИ единицей мощности, названной по фамилии изобретателя Дж. Уатта, создавшего универсальную паровую машину. Ватт в качестве единицы мощности приняли в ходе 2-го конгресса научной ассоциации Великобритании в 1889-м. Ранее для расчёта преимущественно использовали лошадиные силы, которые ввёл Дж. Уатт, реже — фут-фунты/мин. 19-я генеральная конференция мер в 1960-м постановила включить Ватт в СИ.
Один из главных параметров любого электрического прибора — мощность, которую он потребляет. По этой причине на каждом электрическом приборе (либо в прилагаемой к нему инструкции) можно прочитать данные о том количестве Ватт, которое требуется для функционирования прибора.
1 Ватт — это единица мощности, которая позволяет в течение 1 секунды выполнить работу в количестве 1 Дж.
Различают не только механическую мощность. Известны также тепловая мощность и электрическая. 1 Ватт для потока тепла равноценен 1 Ватту механической мощности. 1 Ватт для электрической мощности равноценен 1 Ватту механической и представляет собой по сути мощность постоянного электротока, имеющего силу 1 А, который совершает работу в условиях напряжения 1 В.
Сколько киловатт в лошадиной силе и наоборот: формулы
Все знают об устаревшей уже единице — «лошадиной силе». Она сегодня вытеснена стандартной единицей — Ватт. Но доныне первая сохраняет обширное применение, к примеру, в автомобильной отрасли. В науке уже нечасто применяется данная единица по причине неоднозначности её толкования. Что она собой представляет? Одна л.с, равна
» src=»https://www.youtube.com/embed/0m8PWl7-cgk?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Таблица для перевода л. с. в кВт
Чтобы вычислить мощность мотора в кВт, нужно воспользоваться пропорцией 1 кВт = 1,3596 л. с. Обратный её вид: 1 л. с. = 0,73549875 кВт. Именно так взаимно переводятся друг в друга 2 эти единицы.
кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. | кВт | л.с. |
1 | 1. 36 | 30 | 40.79 | 58 | 78.86 | 87 | 118.29 | 115 | 156.36 | 143 | 194.43 | 171 | 232.50 |
2 | 2.72 | 31 | 42.15 | 59 | 80.22 | 88 | 119.65 | 116 | 157.72 | 144 | 195.79 | 172 | 233.86 |
3 | 4.08 | 32 | 43.51 | 60 | 81.58 | 89 | 121.01 | 117 | 160. 44 | 145 | 197.15 | 173 | 235.21 |
4 | 5.44 | 33 | 44.87 | 61 | 82.94 | 90 | 122.37 | 118 | 160.44 | 146 | 198.50 | 174 | 236.57 |
5 | 6.80 | 34 | 46.23 | 62 | 84.30 | 91 | 123.73 | 119 | 161.79 | 147 | 199.86 | 175 | 237.93 |
6 | 8. 16 | 35 | 47.59 | 63 | 85.66 | 92 | 125.09 | 120 | 163.15 | 148 | 201.22 | 176 | 239.29 |
7 | 9.52 | 36 | 48.95 | 64 | 87.02 | 93 | 126.44 | 121 | 164.51 | 149 | 202.58 | 177 | 240.65 |
8 | 10.88 | 37 | 50.31 | 65 | 88.38 | 94 | 127.80 | 122 | 165. 87 | 150 | 203.94 | 178 | 242.01 |
9 | 12.24 | 38 | 51.67 | 66 | 89.79 | 95 | 129.16 | 123 | 167.23 | 151 | 205.30 | 179 | 243.37 |
10 | 13.60 | 39 | 53.03 | 67 | 91.09 | 96 | 130.52 | 124 | 168.59 | 152 | 206.66 | 180 | 144.73 |
11 | 14. 96 | 40 | 54.38 | 68 | 92.45 | 97 | 131.88 | 125 | 169.95 | 153 | 208.02 | 181 | 246.09 |
12 | 16.32 | 41 | 55.74 | 69 | 93.81 | 98 | 133.24 | 126 | 171.31 | 154 | 209.38 | 182 | 247.45 |
13 | 17.67 | 42 | 57.10 | 70 | 95.17 | 99 | 134. 60 | 127 | 172.67 | 155 | 210.74 | 183 | 248.81 |
14 | 19.03 | 43 | 58.46 | 71 | 96.53 | 100 | 135.96 | 128 | 174.03 | 156 | 212.10 | 184 | 250.17 |
15 | 20.39 | 44 | 59.82 | 72 | 97.89 | 101 | 137.32 | 129 | 175.39 | 157 | 213.46 | 185 | 251. 53 |
16 | 21.75 | 45 | 61.18 | 73 | 99.25 | 102 | 138.68 | 130 | 176.75 | 158 | 214.82 | 186 | 252.89 |
17 | 23.9 | 46 | 62.54 | 74 | 100.61 | 103 | 140.04 | 131 | 178.9 | 159 | 216.18 | 187 | 254.25 |
18 | 24.47 | 47 | 63.90 | 75 | 101. 97 | 104 | 141.40 | 132 | 179.42 | 160 | 217.54 | 188 | 255.61 |
19 | 25.83 | 48 | 65.26 | 76 | 103.33 | 105 | 142.76 | 133 | 180.83 | 161 | 218.90 | 189 | 256.97 |
20 | 27.19 | 49 | 66.62 | 78 | 106.05 | 106 | 144.12 | 134 | 182.19 | 162 | 220. 26 | 190 | 258.33 |
21 | 28.55 | 50 | 67.98 | 79 | 107.41 | 107 | 145.48 | 135 | 183.55 | 163 | 221.62 | 191 | 259.69 |
22 | 29.91 | 51 | 69.34 | 80 | 108.77 | 108 | 146.84 | 136 | 184.91 | 164 | 222.98 | 192 | 261.05 |
23 | 31.27 | 52 | 70. 70 | 81 | 110.13 | 109 | 148.20 | 137 | 186.27 | 165 | 224.34 | 193 | 262.41 |
24 | 32.63 | 53 | 72.06 | 82 | 111.49 | 110 | 149.56 | 138 | 187.63 | 166 | 225.70 | 194 | 263.77 |
25 | 33.99 | 54 | 73.42 | 83 | 112.85 | 111 | 150.92 | 139 | 188. 99 | 167 | 227.06 | 195 | 265.13 |
26 | 35.35 | 55 | 74.78 | 84 | 114.21 | 112 | 152.28 | 140 | 190.35 | 168 | 228.42 | 196 | 266.49 |
27 | 36.71 | 56 | 76.14 | 85 | 115.57 | 113 | 153.64 | 141 | 191.71 | 169 | 229.78 | 197 | 267.85 |
28 | 38. 07 | 57 | 77.50 | 86 | 116.93 | 114 | 155.00 | 142 | 193.07 | 170 | 231.14 | 198 | 269.56 |
Как пользоваться онлайн-калькулятором
Чтобы воспользоваться предложенным интернет-калькулятором для перевода мощности из одной единицы в другую, достаточно выбрать единицу, ввести количество единиц мощности в этой единице и нажать на кнопку получения результата на дисплее.
Мне нравится4Не нравится1Перевести киловатты (кВт) в лошадиные силы (лс): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести киловатты (кВт) в лошадиные силы (л.с.), введите мощность P в кВт, затем нажмите кнопку “Рассчитать”. В результате, будет получено значение в л.с.
Калькулятор кВт в л.с.
Метрическая система
Формула для перевода кВт в л.с.
Pл.с. = PкВт ⋅ 1000 / 735,49875
Мощность P в лошадиных силах (л.с.) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на число 735,49875 (т.к. 1 л.с. = 735,49875 Вт, 1 кВт = 1000 Вт).
Английская система
Формула для перевода кВт в л.с.
Pл.с. = PкВт ⋅ 1000 / 745,69988
Мощность P в лошадиных силах (л.с.) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на число 745,69988 (т.к. 1 л.с. = 745,69988 Вт, 1 кВт = 1000 Вт).
Калькулятор перевода кВт в л.с. (киловатты в лошадиные силы)
Основными единицами измерения мощности двигателя или какого-либо электрического прибора являются ватты (Вт) или киловатты (кВт). Однако помимо этого на практике очень часто используется устаревшая внесистемная единица измерения мощности – лошадиные силы (л с).
Главным неудобством “лошадок” является то, что эта единица измерения не является метрической единицей измерения, поэтому переводить киловатты в лошадиные силы достаточно неудобно. К счастью, сегодня есть наш онлайн калькулятор, который очень быстро переводят одни единицы измерения в другие.
Как пользоваться онлайн калькулятором
Перевод киловатт в лошадиные силы с помощью калькулятора осуществляется так:
- Сверху слева выберите метрические единицы измерения – ватты или киловатты.
- Снизу выберите тип “лошадок” – метрические, английские или электрические (на практике чаще всего используются именно метрические).
- Сверху введите число в соответствующую ячейку: если Вам нужно перевести кВт в лс – введите число в левую ячейку, если наоборот – в правую ячейку.
- Для введения дробных чисел используйте разделительный символ “запятая” (“,”).
Сколько лс в 1 кВт
Количество лошадиных сил в 1 кВт зависит от типа лс:
- В 1 кВт – 1,36 метрических лошадей.
- В 1 кВт – 1,38 английских лошадей.
- В 1 кВт – 1,34 электрических лошадей.
Сколько кВт в 1 лс
Количество киловатт в 1 лс также зависит от типа лошадиных сил:
- 1 метрическая лс = 0,735 кВт.
- 1 английская лс = 0,745 кВт.
- 1 электрическая лс = 0,746 кВт.
Таблица для перевода лс в кВт
Киловатты в лошадиные силы можно перевести и с помощью специальных таблиц. Ниже представлена таблица, которая адаптирована под нужды расчета транспортного налога:
Тип лошадей | Метрические | Английские | Электрические |
1 | 0,735 | 0,745 | 0,746 |
100 | 73,5 | 74,5 | 74,6 |
125 | 91,86 | 93,13 | 93,25 |
150 | 110,25 | 111,75 | 111,9 |
175 | 128,63 | 130,38 | 130,55 |
200 | 147,00 | 149,00 | 149,20 |
225 | 165,38 | 167,63 | 167,85 |
250 | 183,75 | 186,25 | 186,50 |
В чем измеряется мощность двигателя
На практике чаще всего используются ватты/киловатты, а лошади применяются только в одной области – вычисление мощности движка авто. Дело все в том, что в России практически все владельцы автомобилей обязаны платить транспортный налог, а его размер напрямую зависит от количества “лошадок” двигателя.
Также обратите внимание, что на практике встречаются три “лошади” – метрические, английские и электрические. На первый взгляд может показаться, что они являются взаимозаменяемыми единицами измерения, поскольку они лишь незначительно отличаются друг от друга. Однако это не совсем так – при расчете крупных двигателей небольшие отличия могут дать серьезную погрешность, что приведет к некорректному подсчету транспортного налога.
Рассмотрим, когда нужно использовать для расчетов ту или иную лошадку:
- Метрические – представляют собой основные единицы измерения мощности двигателя, поскольку на практике они используются чаще всего.
- Английские – применяются для подсчета мощности автомобилей, которые изготовлены на некоторых английских, американских, канадских, австралийских и новозеландских заводах.
- Электрические – нужны для подсчета мощности авто с электрическим и комбинированным движком.
Приборы для измерения мощности двигателя
Для вычисления используется специальный прибор под названием динамометр, который подключается непосредственно к двигателю авто. Для определения силы движка машину помешают на специальную платформу, а потом выполняется холостой разгон движка с подключенным динамометром. На основании измерения некоторых технических показателей (ускорение, скорость разгона, стабильность работы и другие) при разгоне динамометр определяют общую мощность, а результаты выводятся на цифровой или аналоговый экран.
» src=»https://www.youtube.com/embed/-m9JFasfPK4?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Также сегодня существуют полностью электронные динамометры, которые можно подключить к компьютеру – обработка информации в таком случае осуществляется с помощью специальных программ, которые и определяют точную мощность движка. Также обратите внимание, что существует два показателя силы движка – нетто-мощность и брутто-мощность.
Рассмотрим, чем они отличаются и какой из этих показателей более надежный:
- Брутто-мощность – этот показатель измеряется при разгоне “голого” авто (то есть без глушителя, вторичных амортизаторов и других вспомогательных деталей).
- Нетто-мощность – этот показатель измеряется при разгоне “нагруженного” авто с учетом всех необходимых деталей, которые нужны для комфортной езды.
Обратите внимание, что при определении транспортного налога нужно определять именно “нагруженную” нетто-мощность. Дело все в том, что брутто-мощность обычно на 10-20% выше нетто-показателя (ведь автомобилю не приходится в таком случае “разгонять” дополнительные важные детали). Подобная уловка часто используется недобросовестными производителями и маркетологами, которые хотят выставить свой автомобиль в более лучшем свете, что нужно помнить при проведении замеров.
Что такое лошадиная сила [ЛС]
Единицу измерения ЛС придумал Джеймс Уатт в конце XVIII века. Предполагается, что подобное название связано с тем, что Уатт хотел доказать преимущество своих паровых машин над более традиционной тягловой рабочей силой – над лошадьми. Популярная легенда гласит, что после создания первых прототипов одну из паровых машин купил местный пивовар, которому движок нужен был для работы водяного насоса. Во время испытания пивовар сравнил паровую машину со своей самой сильной лошадью – и оказалось, что лошадь в 1,38 раз слабее паровой машины (а 1 киловатт – это как раз и есть 1,38 лс).
Что такое киловатты [кВт]
В начале XIX века лошадиные силы стали использоваться для обозначения мощности, которую в пределе может создать одна сильная лошадь. Однако некоторые инженеры и ученые в качестве точки отсчета стали использовать не абстрактных лошадей, а вполне конкретные первые машины Уатта фиксированной мощности. Эта практика закрепилась в конце XIX века, когда в качестве единицы мощности были признаны ватты. Впрочем, далеко не все государства признали новые единицы, поэтому сегодня лошадиные силы все еще используются в качестве вспомогательных или основных единиц мощности.
киловатт в лошадиную силу – калькулятор онлайн
Автомобилисты при оплате налогов за свой автомобиль часто путаются при определении количества квт в лс. Для установления мощности двигателя любого типа давно используют единицу измерения киловатт. Не стало это исключением и для двигателей внутреннего сгорания (ДВС). Однако по сей день в России при обозначении мощности ДВС её указывают в лошадиных силах. Правда, тут же пишут значение физической величины лс в кВт. Если этого нет, то переводить одну величину в другую приходится самостоятельно.
Лошадиная сила – характеристика мощности
История появления лошадиной силы
Английские шахтёры в конце 18 века для выкачивания из шахт воды применяли паровую установку Ньюкомена. Эту машину решил улучшить и поднять её производительность физик Уатт. Работая над ней, он сделал её в 4 раза эффективнее. Кроме того, что он сделал рабочим ход поршня в обе стороны, был разработан механизм передачи движения от поршня к коромыслу.
Так был создан паровой двигатель, преобразующий движение поршня поступательного действия во вращение. Это произвело целую революцию и открывало возможности применять его в различных сферах. Компания Уатта и его партнёра Болтона выпустила 496 устройств к 1800 году. Только меньше четверти из них применялись в качестве насосов. Потребность продавать свою продукцию вызвала необходимость определения её технических характеристик. Главный показатель, на который пришлось обращать внимание покупателей, – мощность теплового двигателя.
Когда Джеймс Уатт захотел показать, скольких лошадей в работе может подменить паровой двигатель, он придумал термин «лошадиная сила» – л. с. Шотландский изобретатель решил придумать этот эталон после одного случая. Говорили, что в 1789 году один пивовар, купив двигатель, сравнил продуктивность его работы по вращению водяного насоса с аналогичной работой сильной лошади. Стараясь уличить Джеймса в несостоятельности его изобретения, пивовар заставил работать на износ одну из сильных и выносливых лошадей. Инженер принял вызов и немного превысил названную пивоваром «техническую характеристику» одной лошади.
Почему именно 0,735 кВт
Как и любая единица измерения, л. с. требовала теоретических и практических обоснований. Шотландец решил вывести зависимость между ваттами и лошадиной силой, рассмотрев процесс поднятия на поверхность из угольных шахт людей и угля. Бочку, приспособленную для этого, на поверхность вытаскивали две лошади. Они в течение восьмичасовой смены непрерывно таскали канат, который с помощью блока вытаскивал бочку наверх. Взяв средний вес такой поклажи в180 кг, Уатт практическим путём определил, что одна лошадь обязана тащить груз весом 75 кг. Она должна удерживать скорость 1 м/с, при этом 1 лошадиная сила составит 320 тысяч фунто-футов за минуту. Округлив результат и учтя ускорение свободного падения g = 9,8 м/с2, Джеймс получил цифру 735,5 ватт.
Внимание! Все расчёты Джеймса Уатта опирались на то, что лошадь будет работать длительное время. Если брать кратковременный рабочий интервал, то мощность, выданная лошадью, составит примерно 1000 кгс на м/с = 9,8 кВт.
Метрическая л.с.
Как измеряются л.
с. в России и других странахПеревести киловатты в лошадиные силы в Российской Федерации можно из расчёта: одна лошадиная сила равна 735, 499 Вт. Европа для себя определила значение 1 л.с. = 75 кгс·м/с, называет её метрической. Англичане и американцы используют это обозначение в автомобилестроении, энергетике и промышленности.
Таблица наименований л. с.
Важно! В России обозначение «лошадиная сила» применяется только для расчёта страховки по ОСАГО и оплаты транспортного налога за средство. В иных случаях эта мера не используется, тем не менее, от неё не собираются отказываться.
Мощность двигателя
Когда определяют мощность двигателя внутреннего сгорания, то для того, чтобы перевести киловатты в лошадиные силы, используют соотношение: 1квт равен лс в количестве 1,3596. Если предстоит выполнить обратное превращение квт в л. с., то соответственно:
1 л. с. = 0,73549875 Квт.
Определить мощность двигателя можно, используя следующие способы измерений:
- метод нетто;
- метод брутто;
- метод по DIN.
Измерения с применением первых двух пунктов подразумевают общую подготовку и производство процесса для проведения замеров. Стендовые тесты проводят из расчёта:
P = Мд*n,
где:
- Мд – крутящий момент;
- n – частота вращения.
Мд можно выразить через силу действия на рычаг длиной L:
P= F* L* n.
Двигатель, помещённый на стенд, нагружают либо электрическими генераторами, либо, используя тормоза на гидравлике. Частота измерений проводится при максимальной нагрузке и интервалом в 250-500 об./мин. Реальную мощность машины (нетто) определяют при ее комплектации вспомогательными системами и узлами.
Выполняя измерения по способу брутто, машину не нагружают так, как это происходит в реальной эксплуатации. В этом случае мощность получается выше на 10-15 %.
К сведению. Разные способы измерения приводят к различным результатам. Измеренную эффективную мощность в любом случае умножают на коэффициент k, который учитывает атмосферное давление, влажность воздуха, температуру окружающей среды.
Deutsche Industrie Normen (DIN) – немецкий метод стандартизации, разработанный в соответствующем институте, подразумевает стендовые измерения с оборудованием, постоянно присутствующим на двигателе. К нему относятся:
- вентилятор охлаждения;
- насос системы охлаждения;
- насосы масляной и топливной системы;
- генератор (без нагрузки).
Из навесного оборудования двигателя исключены детали: глушитель и воздушный фильтр.
Пример расчета лс в ваттах и киловаттах
Зачастую предстоит вычислять, сколько квт в лс, или наоборот решить вопрос: «в 1 квт сколько будет л с.»? Всё просто. К примеру, автомобиль ВАЗ 2110 оснащён 16-ти клапанным двигателем мощностью 89 л.с. Можно самостоятельно перевести лс в кв. Расчёты производятся, исходя из равенства, – 1 квт равен 1,36 л. с.
Пересчитывая мощность на кВт по формуле перевода получают следующие значения:
P=89*hp = 89*0,735 = 65, 415 кВт.
Так как 1кВт = 1000 Вт, следовательно, получают 65,415 кВт = 65415 Вт.
Двигатель ВАЗ 2110 16 клапанный, объёмом 1,6 л
Практический аспект
От обозначенной в техпаспорте автомобиля мощности в лошадиных силах зависит сумма денежного налога на автомобиль. Стоимость страхового полиса также напрямую подчинена этой цифре. Чтобы предварительно оценивать свои расходы, автомобилистам приходится конвертировать переводы квт в лс и обратно.
С этой задачей с лёгкостью справятся онлайн калькуляторы квт в л. с. Множество подобных программ работает несложно. В открывшемся окне программы у калькулятора – две рабочих позиции. В одну из них забивается известное значение, в другом рабочем поле программы высвечивается нужный результат. Остаётся только кликнуть мышкой и перевести квт в л с.
Важно! Значения, получаемые, как при ручных вычислениях, так и на онлайн-калькуляторе, могут иметь разрядность до четырёх знаков после запятой. В этом случае необходимо производить округление чисел при переводе мощности из квт в л. с. и обратно.
Правило округления чисел
Округление поможет понять, к какой ступени по мощности относится авто. Налогообложение (транспортный налог) имеет ступенчатую ценовую палитру. Например, с авто до 100 л. с. берётся один налог, начиная со 101 лошадиной силы сумма налогообложения увеличивается.
Таблица транспортного налога в зависимости от мощности автомобиля
Показатель мощности – ватт
Обозначение лошадиных сил в различных языках разное, например:
- л. с. – в русском;
- hp – в английском;
- PS – в немецком;
- CV – в французском.
Мощность P, как системная единица, в СИ измеряется в ваттах (Вт, W). Это работа размерностью в 1 Джоуль (Дж), которая может быть выполнена за 1 секунду.
Электрические машины, тепловые приборы, источники тока и напряжения имеют обозначение P в киловаттах (кВт, kw). Поскольку ватт – величина маленькая, используют её кратное значение 1*103. Эту меру ввели в обозначение в честь того же Джеймса Уатта. Ею измеряется как отдаваемая источником энергии мощность, так и потребляемая потребителями. Последняя также ещё называется потребляемой мощностью. Её значения наносятся на корпуса приборов и бытовой техники.
Для того чтобы рассчитать количество энергии, необходимое для обеспечения работы всех приборов, включенных в сеть 220 В, нужно выполнить сложение всех потребляемых мощностей.
Формула определения электрической мощности:
P = I*U,
где:
- P – мощность, Вт;
- I – ток, А;
- U – напряжение, В.
Эта формула определения мощности верна для постоянного тока. При расчётах для переменного тока учитывают значения cosϕ, который практически лежит в пределах от 0,5 до 0,7. Это коэффициент сдвига фаз между током и напряжением.
Несмотря на то, что повсеместно запрещено указывать значение P в лошадиных силах без обозначения рядом её в ваттах, с этим можно встретиться. Не запутаться в этом помогут знание соотношения и методы перевода л. с. в квт и обратно.
Видео
Калькулятор преобразованиялошадиных сил в киловатты (кВт)
Мощность (л.с.) в киловатты (кВт) преобразование мощности: калькулятор и как преобразовать.
Выберите тип единицы мощности, введите мощность в лошадиных силах и нажмите кнопку Преобразовать :
* Для электродвигателей и кондиционеров используется электрическая мощность
ПреобразованиекВт в л.с. ►
Как перевести мощность в киловатты
Мощность механика / гидравлики в киловаттах
Одна механическая или гидравлическая мощность равна 0.745699872 киловатт:
1 л.с. (I) = 745,699872 Вт = 0,745699872 кВт
Таким образом, преобразование лошадиных сил в киловатты дается по формуле:
P (кВт) = 0,745699872 ⋅ P (л. с.)
Пример
Преобразование 10 л.с. в кВт:
P (кВт) = 0,745699872 ⋅ 10 л.с. = 7,45699872 кВт
Электрическая мощность в киловаттах
Одна электрическая лошадиная сила равна 0.746 киловатт:
1 л.с. (E) = 746 Вт = 0,746 кВт
Таким образом, преобразование лошадиных сил в киловатты дается по формуле:
P (кВт) = 0,746 ⋅ P (л.с.)
Пример
Преобразование 10 л.с. в кВт:
P (кВт) = 0,746 ⋅ 10 л.с. = 7,460 кВт
Метрическая мощность в киловаттах
Одна метрическая лошадиная сила равна 0,73549875 киловатт:
1 л.с. (М) = 735.49875 Вт = 0,73549875 кВт
Таким образом, преобразование лошадиных сил в киловатты дается по формуле:
P (кВт) = 0,73549875 ⋅ P (л.с.)
Пример
Преобразование 10 л.с. в кВт:
P (кВт) = 0,73549875 ⋅ 10 л. с. = 7,3549875 кВт
Таблица преобразования киловатт в лошадиные силы
Кило- Вт (кВт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
0.001 кВт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
0,002 кВт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
0,003 кВт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
0,004 кВт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
0,005 кВт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
0,006 кВт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
0,007 кВт | 0.009387 л.с. | 0. 009383 л.с. | 0.009517 л.с. |
0,008 кВт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
0,009 кВт | 0,012069 л.с. | 0.012064 л.с. | 0.012237 л.с. |
0.01 кВт | 0,013 410 лс | 0.013405 л.с. | 0,013596 л.с. |
0,02 кВт | 0,026820 л.с. | 0,026810 л.с. | 0,027192 л.с. |
0,03 кВт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
0,04 кВт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
0,05 кВт | 0,067051 л.с. | 0.067024 л.с. | 0,067981 л.с. |
0,06 кВт | 0.080461 л.с. | 0.080429 л.с. | 0,081577 л.с. |
0,07 кВт | 0,093871 л.с. | 0,093834 л.с. | 0.095174 л.с. |
0,08 кВт | 0. 107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
0,09 кВт | 0.120692 л.с. | 0.120643 л.с. | 0.122366 л.с. |
0.1 кВт | 0.134022 л.с. | 0.134048 л.с. | 0.135962 л.с. |
0,2 кВт | 0.268204 л.с. | 0.268097 л.с. | 0,271924 л.с. |
0,3 кВт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
0,4 кВт | 0.536409 л.с. | 0,536193 л.с. | 0.543849 л.с. |
0,5 кВт | 0,670511 л.с. | 0.670241 л.с. | 0,679811 л.с. |
0,6 кВт | 0.804613 л.с. | 0.804290 л.с. | 0.815773 л.с. |
0,7 кВт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
0,8 кВт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
0,9 кВт | 1. 206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1 кВт | 1.341022 лс | 1.340483 л.с. | 1.359622 л.с. |
2 кВт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3 кВт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4 кВт | 5.364088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5 кВт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
кВт в л.с. ►
См. Также
.Калькулятор преобразованиякиловатт в лошадиные силы (л.с.)
киловатт (кВт) в лошадиные силы (л.с.) преобразование мощности: калькулятор и как преобразовать.
Введите мощность в киловаттах и нажмите кнопку Преобразовать :
* Для электродвигателей и кондиционеров используется электрическая мощность
Преобразованиел. с. в кВт ►
Как перевести киловатты в мощность
Киловатт в мощность для механика / гидравлики
Одна механическая или гидравлическая мощность равна 0.745699872 киловатт:
1 л.с. (I) = 745,699872 Вт = 0,745699872 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,745699872
Пример
Преобразование 10 кВт в механическую мощность:
P (л.с.) = 10 кВт / 0,745699872 = 13,41 л.с.
Киловатт в электрические лошадиные силы
Одна электрическая лошадиная сила равна 0.746 киловатт:
1 л.с. (E) = 746 Вт = 0,746 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,746
Пример
Преобразование 10 кВт в электрическую мощность:
P (л. с.) = 10 кВт / 0,746 = 13,405 л.с.
Киловатт в метрическая мощность
Одна метрическая лошадиная сила равна 0,73549875 киловатт:
1 л.с. (М) = 735.49875 Вт = 0,73549875 кВт
Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:
P (л.с.) = P (кВт) / 0,73549875
Пример
Преобразование 10 кВт в метрическую мощность:
P (л.с.) = 10 кВт / 0,73549875 = 13,596 л.с.
Таблица преобразования киловатт в лошадиные силы
Кило- Вт (кВт) | Механическая мощность (лс (I) ) | Электрическая мощность (л.с. (E) ) | Метрическая мощность (л.с. (М) ) |
---|---|---|---|
0.001 кВт | 0.001341 л.с. | 0.001340 л.с. | 0.001360 л.с. |
0,002 кВт | 0.002682 л.с. | 0.002681 л.с. | 0.002719 л.с. |
0,003 кВт | 0.004023 л.с. | 0.004021 л.с. | 0.004079 л.с. |
0,004 кВт | 0.005364 л.с. | 0.005362 л.с. | 0.005438 л.с. |
0,005 кВт | 0.006705 л.с. | 0.006702 л.с. | 0.006798 л.с. |
0,006 кВт | 0.008046 л.с. | 0.008043 л.с. | 0.008158 л.с. |
0,007 кВт | 0.009387 л.с. | 0.009383 л.с. | 0.009517 л.с. |
0,008 кВт | 0,010728 л.с. | 0,010724 л.с. | 0,010877 л.с. |
0,009 кВт | 0,012069 л.с. | 0.012064 л.с. | 0.012237 л.с. |
0.01 кВт | 0,013 410 лс | 0.013405 л.с. | 0,013596 л.с. |
0,02 кВт | 0,026820 л.с. | 0,026810 л.с. | 0,027192 л.с. |
0,03 кВт | 0.040231 л.с. | 0,040 214 л.с. | 0,040789 л.с. |
0,04 кВт | 0.053641 л.с. | 0,053619 л.с. | 0,054385 л.с. |
0,05 кВт | 0,067051 л.с. | 0.067024 л.с. | 0,067981 л.с. |
0,06 кВт | 0.080461 л.с. | 0.080429 л.с. | 0,081577 л.с. |
0,07 кВт | 0,093871 л.с. | 0,093834 л.с. | 0.095174 л.с. |
0,08 кВт | 0.107282 л.с. | 0.107239 л.с. | 0.108770 л.с. |
0,09 кВт | 0.120692 л.с. | 0.120643 л.с. | 0.122366 л.с. |
0.1 кВт | 0.134022 л.с. | 0.134048 л.с. | 0.135962 л.с. |
0,2 кВт | 0.268204 л.с. | 0.268097 л.с. | 0,271924 л.с. |
0,3 кВт | 0,402 307 л.с. | 0,402145 л.с. | 0,407886 л.с. |
0,4 кВт | 0.536409 л.с. | 0,536193 л.с. | 0.543849 л.с. |
0,5 кВт | 0,670511 л.с. | 0,670241 л.с. | 0.679811 л.с. |
0,6 кВт | 0.804613 л.с. | 0.804290 л.с. | 0.815773 л.с. |
0,7 кВт | 0.938715 л.с. | 0.938338 л.с. | 0.951735 л.с. |
0,8 кВт | 1.072817 л.с. | 1.072386 л.с. | 1.087697 л.с. |
0,9 кВт | 1.206920 л.с. | 1.206434 л.с. | 1.223659 л.с. |
1 кВт | 1.341022 лс | 1.340483 л.с. | 1.359622 л.с. |
2 кВт | 2.682044 л.с. | 2.680965 л.с. | 2.719243 л.с. |
3 кВт | 4.023066 л.с. | 4.021448 л.с. | 4.078865 л.с. |
4 кВт | 5.364088 л.с. | 5.36 1930 л.с. | 5.438486 л.с. |
5 кВт | 6.705110 л.с. | 6.702413 л.с. | 6.798108 л.с. |
л.с. в кВт ►
См. Также
.Перевести кВт в л.с. — Перевод единиц измерения
›› Перевести киловатты в лошадиные силы [электрические]
Пожалуйста, включите Javascript использовать конвертер величин
›› Дополнительная информация в конвертере величин
Сколько кВт в 1 л.с.? Ответ 0,746.
Мы предполагаем, что вы конвертируете киловатт в лошадиных сил [электрическая] .
Вы можете просмотреть более подробную информацию по каждой единице измерения:
кВт или
л.с. Производная единица СИ для мощности — ватт.
1 ватт равен 0,001 кВт, или 0,0013404825737265 л.с.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать киловатты в лошадиные силы.
Введите свои числа в форму для преобразования единиц!
›› Таблица преобразования kw в hp
1 кВт до л.с. = 1,34048 л.с.
5 кВт до л.с. = 6,70241 л.с.
10 кВт до л.с. = 13,40483 л.с.
15 кВт в л.с. = 20.10724 л.с.
от 20 кВт до 26 л.с.80965 л.с.
25 кВт / л.с. = 33,5 1206 л.с.
30 кВт до л.с. = 40,21448 л.с.
40 кВт до л.с. = 53,6193 л.с.
50 кВт до л.с. = 67.02413 л.с.
›› Хотите другие единицы?
Вы можете произвести обратное преобразование единиц измерения из л.с. в кВт, или введите любые две единицы ниже:
›› Преобразователи общей мощности
кВт до декаватта
кВт до килограмма-силы-метра в секунду
кВт до сантиватта
кВт до петаватта
кВт до фунтал-фут в секунду
кВт до фунтал-фут в час
кВт до ньютон-метр / мин
кВт до йоттаватта
кВт до зепто
кВт в граммо-сила-сантиметр в час
›› Определение: Киловатт
Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.
Итак, 1 киловатт = 10 3 Вт.
Определение ватта следующее:
Ватт (обозначение: Вт) — производная единица измерения мощности в системе СИ. Это эквивалентно одному джоулю в секунду (1 Дж / с) или, в электрических единицах, одному вольт-ампера (1 ВА).
›› Определение:
лошадиных силЭлектрическая мощность, используемая в электротехнической промышленности для электрических машин, составляет ровно 746 Вт (при 100% КПД).
›› Метрические преобразования и др.
Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
.1 Киловатт = 1,341 Лошадиная сила | 10 Киловатт = 13.4102 Лошадиная сила | 2500 Киловатт = 3352,56 Лошадиных сил |
2 Киловатт = 2.682 Лошадиная сила | 20 Киловатт = 26,8204 Лошадиная сила | 5000 Киловатт = 6705.11 Мощность |
3 Киловатт = 4.0231 Лошадиная сила | 30 Киловатт = 40,2307 Лошадиная сила | 10000 Киловатт = 13410,22 Лошадиных сил |
4 Киловатт = 5,3641 Лошадиная сила | 40 Киловатт = 53.6409 Лошадиная сила | 25000 Киловатт = 33525.55 Мощность |
5 Киловатт = 6,7051 Лошадиная сила | 50 Киловатт = 67.0511 Лошадиная сила | 50000 Киловатт = 67051.1 Лошадиная сила |
6 Киловатт = 8,0461 Лошадиная сила | 100 Киловатт = 134,1 Лошадиных сил | 100000 Киловатт = 134102.21 Мощность |
7 Киловатт = 9,3872 Лошадиная сила | 250 Киловатт = 335,26 Лошадиных сил | 250000 Киловатт = 335255,52 Лошадиные силы |
8 Киловатт = 10,7282 Лошадиная сила | 500 Киловатт = 670,51 Лошадиных сил | 500000 Киловатт = 670511.04 Мощность |
9 Киловатт = 12.0692 Лошадиная сила | 1000 Киловатт = 1341.02 Лошадиная сила | 1000000 Киловатт = 1341022.09 Лошадиные силы |
Таблица преобразования
|
Таблица преобразования
|
ПУЭ 7. Правила устройства электроустановок. Издание 7
2.5.231. Пересечение ВЛ напряжением до 35 кВ с ЛС и ЛПВ должно быть выполнено по одному из следующих вариантов:
1) проводами ВЛ и подземным кабелем ЛС* и ЛПВ;
* В данной главе к кабелям связи относятся металлические и оптические кабели с металлическими элементами.
2) проводами ВЛ и воздушным кабелем ЛС и ЛПВ;
3) подземной кабельной вставкой в ВЛ и неизолированными проводами ЛС и ЛПВ;
4) проводами ВЛ и неизолированными проводами ЛС и ЛПВ.
2.5.232. Пересечение ВЛ напряжением до 35 кВ с неизолированными проводами ЛС и ЛПВ может применяться в следующих случаях:
1) если невозможно проложить ни подземный кабель ЛС и ЛПВ, ни кабель ВЛ;
2) если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС;
3) если при применении кабельной вставки в ЛПВ общая длина кабельных вставок в линию превышает допустимые значения;
4) если на ВЛ применены подвесные изоляторы. При этом ВЛ на участке пересечения с неизолированными проводами ЛС и ПВ выполняются с повышенной механической прочностью проводов и опор (см. 2.5.240).
2.5.233. Пересечение ВЛ 110-500 кВ с ЛС и ЛПВ должно быть выполнено по одному из следующих вариантов:
1) проводами ВЛ и подземным кабелем ЛС и ЛПВ;
2) проводами ВЛ и неизолированными проводами ЛС и ЛПВ.
2.5.234. Пересечение ВЛ 750 кВ с ЛС и ЛПВ выполняется подземным кабелем ЛС и ЛПВ. При невозможности прокладки подземного кабеля ЛС и ЛПВ в условиях стесненной, труднопроходимой горной местности допускается выполнять пересечение ЛС и ЛПВ с ВЛ 750 кВ неизолированными проводами, но расстояние в свету от вершин опор ЛС и ЛПВ до неотклоненных проводов ВЛ должно быть не менее 30 м.
2.5.235. При пересечении ВЛ 110-500 кВ с воздушными проводами ЛС и ЛПВ применять кабельные вставки не следует, если:
1) применение кабельной вставки в ЛС приведет к необходимости установки дополнительного усилительного пункта на ЛС, а отказ от применения этой кабельной вставки не приведет к увеличению мешающего влияния ВЛ на ЛС сверх допустимых норм;
2) применение кабельной вставки в ЛПВ приведет к превышению суммарной допустимой длины кабельных вставок в линии, а отказ от этой кабельной вставки не приведет к увеличению мешающего влияния ВЛ на ЛПВ сверх допустимого значения.
2.5.236. В пролете пересечения ЛС и ЛПВ с ВЛ до 750 кВ, на которых предусматриваются каналы высокочастотной связи и телемеханики с аппаратурой, работающей в совпадающем с аппаратурой ЛС и ЛПВ спектре частот и имеющей мощность на один канал:
1) более 10 Вт — ЛС и ЛПВ должны быть выполнены подземными кабельными вставками. Длина кабельной вставки определяется по расчету мешающего влияния, при этом расстояние по горизонтали от основания кабельной опоры ЛС и ЛПВ до проекции крайнего провода ВЛ на горизонтальную плоскость должно быть не менее 100 м;
2) от 5 до 10 Вт — необходимость применения кабельной вставки в ЛС и ЛПВ или принятия других средств защиты определяется по расчету мешающего влияния. При этом, в случае применения кабельной вставки, расстояние в свету от неотклоненных проводов ВЛ до 500 кВ до вершин кабельных опор ЛС и ЛПВ должно быть не менее 20 м, а от неотклоненных проводов ВЛ 750 кВ до вершин кабельных опор ЛС и ЛПВ — не менее 30 м;
3) менее 5 Вт или если высокочастотная аппаратура ВЛ работает в несовпадающем спектре частот, или ЛС и ЛПВ не уплотнена ВЧ аппаратурой — применение кабельной вставки при пересечении с ВЛ до 750 кВ по условиям мешающего влияния не требуется. Если кабельная вставка в ЛС и ЛПВ оборудуется не по условиям мешающего влияния от высокочастотных каналов ВЛ, то расстояние по горизонтали от основания кабельной опоры ЛС и ЛПВ до проекции на горизонтальную плоскость крайнего неотклоненного провода ВЛ до 330 кВ должно быть не менее 15 м. Для ВЛ 500 кВ расстояние в свету от крайних неотклоненных проводов ВЛ до вершины кабельных опор ЛС и ЛПВ должно быть не менее 20 м, а для ВЛ 750 кВ — не менее 30 м.
2.5.237. Пересечения проводов ВЛ с воздушными линиями городской телефонной связи не допускаются; эти линии в пролете пересечения с проводами ВЛ должны выполняться только подземными кабелями.
2.5.238. При пересечении ВЛ с подземным кабелем связи и ПВ (или с подземной кабельной вставкой) должны соблюдаться следующие требования:
1) угол пересечения ВЛ до 500 кВ с ЛС и ЛПВ не нормируется, угол пересечения ВЛ 750 кВ с ЛС и ЛПВ должен быть по возможности близок к 90°, но не менее 45°;
2) расстояние от подземных кабелей ЛС и ЛПВ до ближайшего заземлителя опоры ВЛ напряжением до 35 кВ или ее подземной металлической или железобетонной части должно быть не менее:
- в населенной местности — 3 м;
- в ненаселенной местности — расстояний, приведенных в табл.2.5.26.
Таблица 2.5.26. Наименьшие расстояния от подземных кабелей ЛС (ЛПВ) до ближайшего заземлителя опоры ВЛ и ее подземной части.
Эквивалентное удельное сопротивление земли, Ом·м | Наименьшее расстояние, м, при напряжении ВЛ, кВ | ||
---|---|---|---|
До 35 | 110-500 | 750 | |
До 100 | 10 | 10 | 15 |
Более 100 до 500 | 15 | 25 | 25 |
Более 500 до 1000 | 20 | 35 | 40 |
Более 1000 | 30 | 50 | 50 |
Расстояние от подземных кабелей ЛС и ЛПВ до подземной части незаземленной деревянной опоры ВЛ напряжением до 35 кВ должно быть не менее:
- в населенной местности — 2 м, в стесненных условиях указанное расстояние может быть уменьшено до 1 м при условии прокладки кабеля в полиэтиленовой трубе на длине в обе стороны от опоры не менее 3 м;
- в ненаселенной местности: 5 м — при эквивалентном удельном сопротивлении земли до 100 Ом•м; 10 м — при эквивалентном удельном сопротивлении земли от 100 до 500 Ом•м; 15 м — при эквивалентном удельном сопротивлении земли от 500 до 1000 Ом•м; 25 м — при эквивалентном удельном сопротивлении земли более 1000 Ом•м.
3) расстояние от подземных кабелей ЛС и ЛПВ до ближайшего заземлителя опоры ВЛ 110 кВ и выше и ее подземной части должно быть не менее значений, приведенных в табл.2.5.26;
4) при прокладке подземного кабеля (кабельной вставки) в стальных трубах, или при покрытии его швеллером, уголком, или при прокладке его в полиэтиленовой трубе, закрытой с обеих сторон от попадания земли, на длине, равной расстоянию между проводами ВЛ плюс 10 м с каждой стороны от крайних проводов для ВЛ до 500 кВ и 15 м для ВЛ 750 кВ, допускается уменьшение указанных в табл.2.5.26 расстояний до 5 м для ВЛ до 500 кВ и до 10 м для 750 кВ.
Металлические покровы кабеля в этом случае следует соединять с трубой или другими металлическими защитными элементами. Это требование не относится к оптическим кабелям и кабелям с внешним изолирующим шлангом, в том числе с металлической оболочкой. Металлические покровы кабельной вставки должны быть заземлены по концам. При уменьшении расстояний между кабелем и опорами ВЛ, указанных в табл.2.5.26, помимо приведенных мер защиты необходимо устройство дополнительной защиты от ударов молнии путем оконтуровки опор тросами в соответствии с требованиями нормативной документации по защите кабелей от ударов молнии;
5) вместо применения швеллера, уголка или стальной трубы допускается при строительстве новой ВЛ использовать два стальных троса сечением 70 мм, прокладываемых симметрично на расстоянии не более 0,5 м от кабеля и на глубине 0,4 м. Тросы должны быть продлены с обеих сторон под углом 45° к трассе в сторону опоры ВЛ и заземлены на сопротивление не более 30 Ом. Соотношения между длиной отвода тросов l и сопротивлением R заземлителя должны соответствовать значениям Ki и Kd, приведенным в табл.2.5.27;
Таблица 2.5.27. Сопротивления заземлителей при защите кабеля ЛС и ЛПВ на участке пересечения с ВЛ.
Удельное сопротивление земли, Ом•м | До 100 | 101-500 | Более 500 |
---|---|---|---|
Длина отвода, l, м | 20 | 30 | 50 |
Сопротивление заземлителя, Ом | 30 | 30 | 20 |
Примечание. Защита кабеля от ударов молнии путем оконтуровки опор ВЛ или прокладки защитного троса в этом случае также обязательна.
6) в пролете пересечения ВЛ с ЛС и ЛПВ крепление проводов ВЛ на опорах, ограничивающих пролет пересечения, должно осуществляться с помощью глухих зажимов, не допускающих падения проводов на землю в случае их обрыва в соседних пролетах.
2.5.239. При пересечении подземной кабельной вставки в ВЛ до 35 кВ с неизолированными проводами ЛС и ЛПВ должны соблюдаться следующие требования:
1) угол пересечения подземной кабельной вставки ВЛ с ЛС и ЛПВ не нормируется;
2) расстояние от подземной кабельной вставки до незаземленной опоры ЛС и ЛПВ должно быть не менее 2 м, а до заземленной опоры ЛС (ЛПВ) и ее заземлителя — не менее 10 м;
3) расстояние по горизонтали от основания кабельной опоры ВЛ, неуплотненной и уплотненной в несовпадающем и совпадающем спектрах частот в зависимости от мощности высокочастотной аппаратуры, до проекции проводов ЛС и ЛПВ должно выбираться в соответствии с требованиями, изложенными в 2.5.236;
4) подземные кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл.2.3 и 2.5.124.
2.5.240. При пересечении проводов ВЛ с неизолированными проводами ЛС и ЛПВ необходимо соблюдать следующие требования:
1) угол пересечения проводов ВЛ с проводами ЛС и ЛПВ должен быть по возможности близок к 90°. Для стесненных условий угол не нормируется;
2) место пересечения следует выбирать по возможности ближе к опоре ВЛ. При этом расстояние по горизонтали от ближайшей части опоры ВЛ до проводов ЛС и ЛПВ должно быть не менее 7 м, а от опор ЛС и ЛПВ до проекции на горизонтальную плоскость ближайшего неотклоненного провода ВЛ должно быть не менее 15 м. Расстояние в свету от вершин опор ЛС и ПВ до неотклоненных проводов ВЛ должно быть не менее: 15 м — для ВЛ до 330 кВ, 20 м — для ВЛ 500 кВ;
3) не допускается расположение опор ЛС и ЛПВ под проводами пересекающей ВЛ;
4) опоры ВЛ, ограничивающие пролет пересечения с ЛС и ЛПВ, должны быть анкерного типа облегченной конструкции из любого материала как свободностоящие, так и на оттяжках. Деревянные опоры должны быть усилены дополнительными приставками или подкосами;
5) пересечения можно выполнять на промежуточных опорах при условии применения на ВЛ проводов с площадью сечения алюминиевой части не менее 120 мм2;
6) провода ВЛ должны быть расположены над проводами ЛС и ЛПВ и должны быть многопроволочными сечениями не менее приведенных в табл.2.5.5;
7) провода ЛС и ЛПВ в пролете пересечения не должны иметь соединений;
8) в пролете пересечения ВЛ с ЛС и ЛПВ на промежуточных опорах ВЛ крепление проводов на опорах должно осуществляться только с помощью поддерживающих гирлянд изоляторов с глухими зажимами;
9) изменение места установки опор ЛС и ЛПВ, ограничивающих пролет пересечения с ВЛ, допускается при условии, что отклонение средней длины элемента скрещивания на ЛС и ЛПВ не будет превышать значений, указанных в табл.2.5.28;
Таблица 2.5.28. Допустимое изменение места установки опор ЛС и ЛПВ, ограничивающих пролет пересечения с ВЛ.
Длина элемента скрещивания, м | 35 | 40 | 50 | 60 | 70 | 80 | 100 | 125 | 170 |
---|---|---|---|---|---|---|---|---|---|
Допустимое отклонение, м | ±6 | ±6,5 | ±7 | ±8 | ±8,5 | ±9 | ±10 | ±11 | ±13 |
10) длины пролетов ЛС и ЛПВ в месте пересечения с ВЛ не должны превышать значений, указанных в табл.2.5.29;
Таблица 2.5.29. Максимально допустимые длины пролетов ЛС и ПВ в месте пересечения с ВЛ.
Марки проводов, применяемых на ЛС и ЛПВ | Диаметр провода, мм | Максимально допустимые длины пролета ЛС и ЛПВ, м, для линий типов | |||
---|---|---|---|---|---|
О | Н | У | ОУ | ||
Сталеалюминиевые: | |||||
АС 25/4,2 | 6,9 | 150 | 85 | 65 | 50 |
АС 16/2,7 | 5,6 | 85 | 65 | 40 | 35 |
АС 10/1,8 | 4,5 | 85 | 50 | 40 | 35 |
Биметаллические (сталемедные) БСМ-1, БСМ-2 | 4,0 | 180 | 125 | 100 | 85 |
3,0 | 180 | 100 | 85 | 65 | |
2,0 | 150 | 85 | 65 | 40 | |
1,6 | 100 | 65 | 40 | 40 | |
1,2 | 85 | 35 | – | – | |
Биметаллические(сталеалюминиевые) БСА-КПЛ | 5,1 | 180 | 125 | 90 | 85 |
4,3 | 180 | 100 | 85 | 65 | |
Стальные | 5,0 | 150 | 130 | 70 | 45 |
4,0 | 150 | 85 | 50 | 40 | |
3,0 | 125 | 65 | 40 | – | |
2,5 | 100 | 40 | 30 | – | |
2,0 | 100 | 40 | 30 | – | |
1,5 | 100 | 40 | – | – |
Примечание. О — обычный, Н — нормальный, У — усиленный, ОУ — особо усиленный, типы линий — в соответствии с «Правилами пересечения воздушных линий связи и радиотрансляционных сетей с линиями электропередачи».
11) опоры ЛС и ЛПВ, ограничивающие пролет пересечения или смежные с ним и находящиеся на обочине автомобильной дороги, должны быть защищены от наездов транспортных средств;
12) провода на опорах ЛС и ЛПВ, ограничивающие пролет пересечения с ВЛ, должны иметь двойное крепление: при траверсном профиле — только на верхней траверсе, при крюковом профиле — на двух верхних цепях;
13) расстояния по вертикали от проводов ВЛ до пересекаемых проводов ЛС и ЛПВ в нормальном режиме ВЛ и при обрыве проводов в смежных пролетах ВЛ должны быть не менее приведенных в табл.2.5.30.
Таблица 2.5.30. Наименьшее расстояние по вертикали от проводов ВЛ до проводов ЛС и ЛПВ.
Расчетный режим ВЛ | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||||
---|---|---|---|---|---|---|
до 10 | 20-110 | 150 | 220 | 330 | 500 | |
Нормальный режим: | ||||||
а) ВЛ на деревянных опорах при наличии грозозащитных устройств, а также на металлических и железобетонных опорах | 2 | 3 | 4 | 4 | 5 | 5 |
б) ВЛ на деревянных опорах при отсутствии грозозащитных устройств | 4 | 5 | 6 | 6 | – | – |
Обрыв проводов в смежных пролетах | 1 | 1 | 1,5 | 2 | 2,5 | 3,5 |
Расстояния по вертикали определяются в нормальном режиме при наибольшей стреле провеса проводов (без учета их нагрева электрическим током). В аварийном режиме расстояния проверяются для ВЛ с проводами площадью сечения алюминиевой части менее 185 мм2 при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами площадью сечения алюминиевой части 185 мм2 и более проверка по аварийному режиму не требуется.
При разности высот точек крепления проводов ЛС и ЛПВ на опорах, ограничивающих пролет пересечения (например, на косогорах) с ВЛ 35 кВ и выше, вертикальные расстояния, определяемые по табл.2.5.30, подлежат дополнительной проверке на условия отклонения проводов ВЛ при ветровом давлении, определенном согласно 2.5.56, направленном перпендикулярно оси ВЛ, и при неотклоненном положении проводов ЛС и ЛПВ.
Расстояния между проводами следует принимать для наиболее неблагоприятного случая.
При применении на ВЛ плавки гололеда следует проверять габариты до проводов ЛС и ЛПВ в режиме плавки гололеда. Эти габариты проверяются при температуре провода в режиме плавки гололеда и должны быть не меньше, чем при обрыве провода ВЛ в смежном пролете;
14) на деревянных опорах ВЛ без грозозащитного троса, ограничивающих пролет пересечения с ЛС и ЛПВ, при расстояниях между проводами пересекающихся линий менее указанных в п.б) табл.2.5.30 на ВЛ должны устанавливаться защитные аппараты. Защитные аппараты должны устанавливаться в соответствии с требованиями 2.5.229. При установке ИП на ВЛ должно быть предусмотрено автоматическое повторное включение;
15) на деревянных опорах ЛС и ЛПВ, ограничивающих пролет пересечения, должны устанавливаться молниеотводы в соответствии с требованиями, предъявляемыми в нормативной документации на ЛС и ЛПВ.
2.5.241. Совместная подвеска проводов ВЛ и проводов ЛС и ЛПВ на общих опорах не допускается. Это требование не распространяется на специальные оптические кабели, которые подвешиваются на конструкциях ВЛ. Эти кабели должны соответствовать требованиям настоящей главы и правил проектирования, строительства и эксплуатации волоконно-оптических линий связи на воздушных линиях электропередачи.
2.5.242. При сближении ВЛ с ЛС и ЛПВ расстояния между их проводами и мероприятия по защите от влияния определяются в соответствии с правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи.
2.5.243. При сближении ВЛ с воздушными ЛС и ЛПВ наименьшие расстояния от крайних неотклоненных проводов ВЛ до опор ЛС и ЛПВ должны быть не менее высоты наиболее высокой опоры ВЛ, а на участках стесненной трассы расстояние от крайних проводов ВЛ при наибольшем отклонении их ветром расстояния должны быть не менее значений, указанных в табл.2.5.31. При этом расстояние в свету от ближайшего неотклоненного провода ВЛ до вершин опор ЛС и ЛПВ должно быть не менее: 15 м — для ВЛ до 330 кВ, 20 м — для ВЛ 500 кВ, 30 м — для ВЛ 750 кВ.
Таблица 2.5.31. Наименьшие расстояния между проводами ВЛ при наибольшем отклонении их ветром и опорами ЛС и ЛПВ в условиях стесненной трассы.
Напряжение ВЛ, кВ | До 20 | 35-110 | 150 | 220 | 330 | 500-750 |
Наименьшее расстояние, м | 2 | 4 | 5 | 6 | 8 | 10 |
Шаг транспозиции ВЛ по условию влияния на ЛС и ЛПВ не нормируется.
Опоры ЛС и ЛПВ должны быть укреплены дополнительными подпорами или устанавливаться сдвоенными в случае, если при их падении возможно соприкосновение между проводами ЛС и ЛПВ и проводами ВЛ.
2.5.244. При сближении ВЛ со штыревыми изоляторами на участках, имеющих углы поворота, с воздушными ЛС и ЛПВ расстояния между ними должны быть такими, чтобы провод, сорвавшийся с угловой опоры ВЛ, не мог оказаться от ближайшего провода ЛС и ЛПВ на расстояниях менее приведенных в табл.2.5.31. При невозможности выполнить это требование провода ВЛ, отходящие с внутренней стороны поворота, должны иметь двойное крепление.
2.5.245. При сближении ВЛ с подземными кабелями ЛС и ЛПВ наименьшие расстояния между ними и меры защиты определяются в соответствии с правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи и рекомендациями по защите оптических кабелей с металлическими элементами от опасного влияния линий электропередачи, электрифицированных железных дорог переменного тока и энергоподстанций.
Наименьшие расстояния от заземлителя и подземной части опоры ВЛ до подземного кабеля ЛС и ЛПВ должны быть не менее приведенных в табл.2.5.26.
2.5.246. Расстояния от ВЛ до антенных сооружений передающих радиоцентров должны приниматься по табл.2.5.32.
Таблица 2.5.32. Наименьшие расстояния от ВЛ до антенных сооружений передающих радиоцентров.
Антенные сооружения | Расстояния, м, при напряжении ВЛ, кВ | |
---|---|---|
До 110 | 150-750 | |
Средневолновые и длинноволновые передающие антенны | За пределами высокочастотного заземляющего устройства, но не менее 100 | |
Коротковолновые передающие антенны: | ||
– в направлении наибольшего излучения | 200 | 300 |
– в остальных направлениях | 50 | 50 |
Коротковолновые передающие слабонаправленные и ненаправленные антенны | 150 | 200 |
2.5.247. Наименьшие расстояния сближения ВЛ со створом радиорелейной линии и радиорелейными станциями вне зоны направленности антенны должны приниматься по табл.2.5.33. Возможность пересечения ВЛ со створом радиорелейной линии устанавливается при проектировании ВЛ.
2.5.248. Расстояния от ВЛ до границ приемных радиоцентров и выделенных приемных пунктов радиофикации и местных радиоузлов должны приниматься по табл.2.5.33.
Таблица 2.5.33. Наименьшие расстояния от ВЛ до границ приемных радиоцентров, радиорелейных KB и УКВ станций, выделенных приемных пунктов радиофикации и местных радиоузлов.
Радиоустройства | Расстояние, м, при напряжении ВЛ, кВ | ||
---|---|---|---|
До 35 | 110-220 | 330-750 | |
Магистральные, областные, районные, связные радиоцентры и радиорелейные станции в диаграмме направленности антенны | 500 | 1000 | 2000 |
Радиолокационные станции, радиотехнические системы ближней навигации | 1000 | 1000 | 1000 |
Автоматические ультракоротковолновые радиопеленгаторы | 800 | 800 | 800 |
Коротковолновые радиопеленгаторы | 700 | 700 | 700 |
Станции проводного вещания | 200 | 300 | 400 |
Радиорелейные станции вне зоны направленности их антенн и створы радиорелейных линий | 100 | 200 | 250 |
В случае прохождения трассы проектируемой ВЛ в районе расположения особо важных приемных радиоустройств допустимое сближение устанавливается в индивидуальном порядке в процессе проектирования ВЛ.
Если соблюдение расстояний, указанных в табл.2.5.33, затруднительно, то в отдельных случаях допускается их уменьшение (при условии выполнения мероприятий на ВЛ, обеспечивающих соответствующее уменьшение помех). Для каждого случая в процессе проектирования ВЛ должен быть составлен проект мероприятий по соблюдению норм радиопомех.
Расстояния от ВЛ до телецентров и радиодомов должны быть не менее: 400 м — для ВЛ до 20 кВ, 700 м — для ВЛ 35-150 кВ, 1000 м — для ВЛ 220-750 кВ.
Глава 2.5. Часть 4. ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ ВЫШЕ 1 кВ
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С СООРУЖЕНИЯМИ СВЯЗИ, СИГНАЛИЗАЦИИ И РАДИОТРАНСЛЯЦИИ
2.5.124. Пересечение ВЛ до 35 кВ с ЛС и РС должно быть выполнено по одному из следующих вариантов:
1. Проводами ВЛ и подземным кабелем ЛС и РС.
2. Подземной кабельной вставкой в ВЛ и неизолированными проводами ЛС и РС.
3. Проводами ВЛ и неизолированными проводами ЛС и РС.
2.5.125. Пересечение ВЛ напряжением до 35 кВ с неизолированными проводами ЛС и РС может выполняться в следующих случаях:
1. Если невозможно проложить ни подземный кабель ЛС и РС, ни кабель ВЛ.
2. Если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС.
3. Если при применении кабельной вставки в РС общая длина кабельных вставок РС превышает допустимые значения.
4. Если на ВЛ напряжением до 35 кВ применены подвесные изоляторы. При этом ВЛ на участке пересечения с неизолированными проводами ЛС и РС выполняется с повышенной механической прочностью проводов и опор (см. 2.5.132).
2.5.126. Пересечение ВЛ напряжением 110 кВ и выше с ЛС и РС должно быть выполнено по одному из следующих вариантов:
1. Проводами ВЛ и подземным кабелем ЛС и РС.
2. Проводами ВЛ и неизолированными проводами ЛС и РС.
2.5.127. При пересечении ВЛ напряжением 110 кВ и выше с ЛС и РС применять кабельные вставки в ЛС и РС не следует (см. также 2.5.129):
1) если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС, а отказ от применения этой кабельной вставки не вызовет нарушения норм мешающего влияния ВЛ на ЛС;
2) если при применении кабельной вставки в РС общая длина кабельных вставок в РС превысит допустимые значения, а отказ от применения этой кабельной вставки не приведет к нарушению норм мешающего влияния ВЛ на РС.
2.5.128. Пересечение проводов ВЛ с воздушными линиями городской телефонной связи не допускается; эти линии в пролете пересечения с проводами ВЛ должны выполняться только подземными кабелями.
2.5.129. В пролете пересечения ЛС и РС с ВЛ, на которых предусматриваются каналы высокочастотной связи и телемеханики с аппаратурой, работающей в совпадающем спектре частот и имеющей мощность более 10 Вт на один канал, ЛС и РС должны быть выполнены подземными кабельными вставками. Длина кабельной вставки определяется по расчету влияния ВЛ на ЛС (РС), при этом расстояние по горизонтали от основания кабельной опоры ЛС и РС до проекции крайнего провода ВЛ на горизонтальную плоскость должно быть не менее 100 м.
Если мощность высокочастотной аппаратуры, работающей в совпадающем спектре частот, превышает 5 Вт, но не более 10 Вт на один канал, то необходимость применения кабельной вставки ЛС и РС или принятия других мер защиты определяется по расчету влияния.
Если мощность высокочастотной аппаратуры ВЛ, работающей в совпадающем спектре частот, не превышает 5 Вт на один канал, то применение кабельной вставки по условиям мешающего влияния не требуется.
Если кабельная вставка в ЛС и РС оборудуется не по условиям мешающего влияния от высокочастотных каналов ВЛ, то расстояние по горизонтали от основания кабельной опоры ЛС и РС до проекции на горизонтальную плоскость крайнего провода ВЛ неуплотненных, уплотненных в несовпадающем спектре частот или уплотненных в совпадающем спектре частот при мощности высокочастотной аппаратуры до 10 Вт на один канал должно быть не менее 15 м без учета отклонения проводов ВЛ ветром.
Таблица 2.5.26. Наименьшее расстояние от заземлителя и подземной части опоры ВЛ до подземного кабеля ЛС и РС
Эквивалентное удельное сопротивление земли P , Ом·м | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |
до 35 | 110 и выше | |
До 100 | 0,83 | 10 |
Более 100 до 500 | 10 | 25 |
Более 500 до 1000 | 11 | 35 |
Более 1000 | 0,35 | 50 |
2.5.130. При пересечении ВЛ с подземным кабелем ЛС и РС должны соблюдаться следующие требования:
1. Угол пересечения ВЛ с ЛС и РС не нормируется.
2. Расстояние от заземлителя и подземной части опор ВЛ до подземного кабеля ЛС и РС должно быть не менее приведенных в табл. 2.5.26.
В случае прокладки кабельной вставки с целью экранирования в стальных трубах или покрытия ее швеллером и т. п. по длине, равной расстоянию между проводами ВЛ плюс по 10 м с каждой стороны от крайних проводов, допускается уменьшение приведенных расстояний до 5 м. В этом случае при пересечении с ВЛ 110 кВ и выше оболочку кабеля следует соединять со швеллером или трубкой по обоим концам.
3. Металлические покровы кабельной вставки должны быть заземлены с обоих концов.
4. Защита кабельной вставки от грозовых перенапряжений, типы кабелей, способ оборудования кабельной вставки на участке пересечения выбираются в соответствии с требованиями, предъявляемыми к кабельным ЛС и РС.
5. При пересечении ВЛ 400-500 кВ с ЛС и РС расстояние в свету от вершины кабельной опоры ЛС и РС до проводов ВЛ должно быть не менее 20 м.
2.5.131. При пересечении кабельной вставки в ВЛ до 35 кВ с неизолированными проводами ЛС и РС должны соблюдаться следующие требования:
1. Угол пересечения кабельной вставки в ВЛ с ЛС и РС не нормируется.
2. Расстояние от подземного кабеля вставки в ВЛ до незаземленной опоры ЛС и РС должно быть не менее 2 м, а до заземленной опоры ЛС (РС) и ее заземлителя — не менее 10 м.
3. Расстояние по горизонтали от основания кабельной опоры ВЛ, неуплотненной и уплотненной в несовпадающем спектре частот и в совпадающем спектре частот в зависимости от мощности высокочастотной аппаратуры, до проекции проводов ЛС и РС должно выбираться в соответствии с требованиями, изложенными в 2.5.129 для случая пересечения проводов ВЛ с подземным кабелем ЛС и РС.
4. Подземные кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл. 2.3 и в 2.5.69.
2.5.132. При пересечении проводов ВЛ с неизолированными проводами ЛС и РС необходимо соблюдать следующие требования:
1. Угол пересечения проводов ВЛ с проводами ЛС и РС должен быть по возможности близок к 90°. Для стесненных условий угол пересечения не нормируется.
2. Место пересечения следует выбирать возможно ближе к опоре ВЛ. При этом расстояние по горизонтали от опор ВЛ до проводов ЛС и РС должно быть не менее 7 м, а от опор ЛС и РС до проекции ближайшего провода ВЛ — не менее 15 м. Кроме того, расстояние в свету от проводов ВЛ 400 и 500 кВ до вершин опор ЛС и РС должно быть не менее 20 м.
Не допускается расположение опор ЛС и РС под проводами ВЛ.
3. Опоры ВЛ, ограничивающие пролет пересечения с ЛС и РС, должны быть анкерными, железобетонными, металлическими или деревянными. Деревянные опоры должны быть усилены дополнительными приставками или подкосами.
Пересечения ВЛ 35 кВ и выше с ЛС и РС можно выполнять на промежуточных опорах при применении на ВЛ проводов сечением 120 мм² — и более.
4. Провода ВЛ должны быть расположены над проводами ЛС и РС. Провода ВЛ в пролете пересечения с ЛС и РС должны быть многопроволочными сечением не менее: алюминиевые — 70 мм² , сталеалюминиевые — 35 мм² , стальные — 25 мм² .
5. Провода и тросы ВЛ, а также провода ЛС и РС не должны иметь соединений в пролете пересечения. При применении на ВЛ проводов сечением 240 мм² и более, а в случае расщепления фазы на три провода — 150 мм² и более допускается установка одного соединительного зажима на провод.
6. В пролете пересечений ВЛ с ЛС и РС на опорах ВЛ должны применяться только подвесные изоляторы и глухие зажимы. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки.
7. Изменение места установки опор ЛС и РС, ограничивающих пролет пересечения с ВЛ, допускается при условии, что отклонение средней длины элемента скрещивания на ЛС и РС не будет превышать значений, указанных в действующей «Инструкции по скрещиванию телефонных цепей воздушных линий связи» Министерства связи СССР.
8. Опоры ЛС и РС, ограничивающие пролет пересечения или смежные с ним и находящиеся на обочине дороги, должны быть защищены от наезда транспорта.
9. Провода на опорах ЛС и РС, ограничивающих пролет пересечения с ВЛ, должны иметь двойное крепление: при траверсном профиле — только на верхней траверсе, при крюковом профиле — на двух верхних цепях.
10. Расстояния по вертикали от проводов ВЛ до пересекаемых проводов ЛС и РС в нормальном режиме ВЛ и при обрыве проводов в смежных пролетах ВЛ должны быть не менее приведенных в табл. 2.5.27.
Таблица 2.5.27. Наименьшее расстояние по вертикали от проводов ВЛ до проводов ЛС и РС
Расчетный режим ВЛ | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||||||
до 10 | 20 | 35 | 110 | 150 | 220 | 330 | 500 | |
Нормальный: | ||||||||
а) ВЛ на деревянных опорах при наличии грозозащитных устройств, а также на металлических и железобетонных опорах | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 5 |
б) ВЛ на деревянных опорах при отсутствии грозозащитных устройств | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 |
Обрыв проводов в смежных пролетах на ВЛ с подвесной изоляцией | 1 | 1 | 1 | 1 | 1,5 | 2 | 2,5 | 3,5 |
При применении на ВЛ плавки гололеда следует проверять габариты до проводов ЛС и РС в режиме плавки гололеда. Эти габариты проверяются при температуре провода в режиме плавки гололеда и должны быть не меньше, чем при обрыве провода ВЛ в смежном пролете.
Расстояния по вертикали определяются в нормальном режиме при наибольшей стреле провеса проводов (без учета их нагрева электрическим током). В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка по аварийному режиму не требуется.
11. На деревянных опорах ВЛ без грозозащитного троса, ограничивающих пролет пересечения с ЛС и РС, при расстояниях между проводами пересекающихся линий менее указанных в п. «б» табл. 2.5.27 должны устанавливаться при напряжении 35 кВ и ниже трубчатые разрядники или защитные промежутки, при напряжении 110-220 кВ — трубчатые разрядники. При установке защитных промежутков на ВЛ должно быть предусмотрено автоматическое повторное включение.
Трубчатые разрядники и защитные промежутки должны устанавливаться в соответствии с требованиями 2.5.122.
Сопротивления заземляющих устройств трубчатых разрядников и защитных промежутков при токах промышленной частоты в летнее время должны быть не более:
Эквивалентное удельное сопротивление земли, Ом·м | До 100 | Более 100 и до 500 | Более 500 и до 1000 | Более 1000 |
Сопротивление заземляющего устройства, Ом | 10 | 15 | 20 | 30 |
Применение специальных мер защиты не требуется: для ВЛ с деревянными опорами без грозозащитных тросов при расстояниях между проводами пересекающихся линий не менее приведенных в табл. 2.5.27, п. «б», для ВЛ с металлическими и железобетонными опорами, для участков ВЛ с деревянными опорами, имеющих грозозащитные тросы.
12. На деревянных опорах ЛС и РС, ограничивающих пролет пересечения с ВЛ, должны устанавливаться заземляющие спуски в соответствии с требованиями, предъявляемыми к ЛС и РС.
2.5.133. Совместная подвеска проводов ВЛ и проводов ЛС и РС на общих опорах не допускается.
2.5.134. При сближении ВЛ с воздушными ЛС и РС расстояния между их проводами и мероприятия по защите от влияния определяются в соответствии с «Правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи». Наименьшие расстояния по горизонтали при неотклоненных проводах должны быть не менее высоты наиболее высокой опоры ВЛ, а на участках стесненной трассы при наибольшем отклонении проводов ВЛ ветром: 2 м для ВЛ до 20 кВ, 4 м для ВЛ 35 и 110 кВ, 5 м для ВЛ 150 кВ, 6 м для ВЛ 220 кВ, 8 м для ВЛ 330 кВ, 10 м для ВЛ 400-500 кВ. При этом расстояние в свету от проводов ВЛ 400-500 кВ до вершин опор ЛС и РС должно быть не менее 20 м. Шаг транспозиции ВЛ по условию влияния на ЛС и РС не нормируется.
Должны быть укреплены дополнительными подпорами опоры ЛС и РС или должны быть установлены сдвоенные опоры в случаях, если при падении опор ЛС и РС возможно соприкосновение между проводами ЛС и РС и проводами ВЛ.
2.5.135. При сближении ВЛ со штыревыми изоляторами на участках, имеющих углы поворота, с воздушными ЛС и РС расстояние между ними должно быть таким, чтобы провод, сорвавшийся с угловой опоры ВЛ, не мог оказаться от ближайшего провода ЛС и РС на расстоянии менее приведенных в 2.5.134. При невозможности выполнить это требование провода ВЛ, проходящие с внутренней стороны поворота, должны иметь двойное крепление.
2.5.136. При сближении ВЛ с подземными кабельными ЛС и РС наименьшие расстояния между ними определяются в соответствии с «Правилами защиты устройств проводной связи, железнодорожной сигнализации и телемеханики от опасного и мешающего влияния линий электропередачи» и должны быть не менее приведенных в табл. 2.5.26.
2.5.137. Расстояния от ВЛ до антенных сооружений передающих радиоцентров должны приниматься по табл. 2.5.28.
Пересечение ВЛ со створом радиорелейной линии должно быть согласовано с организацией, в ведении которой находится радиорелейная линия.
Таблица 2.5.28. Наименьшее расстояние от ВЛ до антенных сооружений передающих радиоцентров
Антенные сооружения | Расстояние, м, при напряжении ВЛ, кВ | |
до 110 | 150-500 | |
Средневолновые и длинноволновые передающие антенны | 100 | 100 |
Коротковолновые передающие антенны в направлении наибольшего излучения | 200 | 300 |
То же в остальных направлениях | 50 | 50 |
Коротковолновые передающие слабонаправленные и ненаправленные антенны | 150 | 200 |
2.5.138. Расстояния от ВЛ до границ приемных радиоцентров, выделенных приемных пунктов радиофикации и местных радиоузлов должны приниматься по табл. 2.5.29.
Допустимые сближения установлены, исходя из условия, что уровень поля помех, создаваемых ВЛ на расстоянии 50 м от нее, не превосходит значений, предусмотренных общесоюзными «Нормами допускаемых индустриальных радиопомех».
В случае прохождения трассы проектируемой ВЛ в районе расположения особо важных приемных радиоустройств допустимое сближение устанавливается в индивидуальном порядке по согласованию с заинтересованными организациями в процессе проектирования ВЛ.
Таблица 2.5.29. Наименьшее расстояние от ВЛ до границ приемных радиоцентров, выделенных приемных пунктов радиофикации и местных радиоузлов
Радиоустройства | Расстояние, м, при напряжении ВЛ, кВ | ||
6-35 | 110-220 | 330-500 | |
Магистральные, областные и районные радиоцентры | 500 | 1000 | 2000 |
Выделенные приемные пункты радиофикации | 400 | 700 | 1000 |
Местные радиоузлы | 200 | 300 | 400 |
Если соблюдение расстояний, указанных в табл. 2.5.29, затруднительно, в отдельных случаях допускается их уменьшение (при условии выполнения мероприятий на ВЛ, обеспечивающих соответствующее уменьшение помех), а также перенос всех или части приемных радиоустройств на другие площадки. В каждом таком случае в процессе проектирования ВЛ должен быть составлен и согласован с заинтересованными организациями проект мероприятий по соблюдению норм радиопомех.
Расстояния от ВЛ до телецентров и радиодомов должны быть не менее: 400 м для ВЛ до 20 кВ, 700 м для ВЛ 35-150 кВ, 1000 м для ВЛ 220-500 кВ.
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ЖЕЛЕЗНЫМИ ДОРОГАМИ
2.5.139. Пересечение ВЛ с железными дорогами следует выполнять, как правило, воздушными переходами. На железных дорогах с особо интенсивным движением1 и в некоторых технически обоснованных случаях (например, при переходе через насыпи, на железнодорожных станциях или в местах, где устройство воздушных переходов технически затруднено) переходы ВЛ до 10 кВ следует выполнять кабелем.
1К особо интенсивному движению поездов относится такое движение, при котором количество пассажирских и грузовых поездов в сумме по графику на двухпутных участках составляет более 100 пар в сутки и на однопутных — более 48 пар в сутки.
Пересечение ВЛ 150 кВ и ниже с железными дорогами в местах сопряжения анкерных участков контактной сети запрещается.
Угол пересечения ВЛ с железными дорогами электрифицированными1 и подлежащими электрификации² должен быть не менее 40°. Рекомендуется по возможности во всех случаях производить пересечения под углом, близким к 90°.
1К электрифицированным железным дорогам относятся все электрифицированные дороги независимо от рода тока и значения напряжения контактной сети.
² К дорогам, подлежащим электрификации, относятся дороги, которые будут электрифицированы в течение 10 лет, считая от года строительства ВЛ, намечаемого проектом.
2.5.140. При пересечении и сближении ВЛ с железными дорогами расстояния от основания опоры ВЛ до габарита приближения строений1 на неэлектрифицированных железных дорогах или до оси опор контактной сети электрифицированных дорог или подлежащих электрификации должны быть не менее высоты опоры плюс 3 м. На участках стесненной трассы допускается эти расстояния принимать не менее: 3 м для ВЛ до 20 кВ, 6 м для ВЛ 35-150 кВ, 8 м для ВЛ 220-330 кВ и 10 м для ВЛ 500 кВ.
1Габаритом приближения строений называется предназначенное для пропуска подвижного состава предельное поперечное, перпендикулярное пути очертание, внутрь которого, помимо подвижного состава, не могут заходить никакие части строений, сооружений и устройств.
Защита разрядниками или защитными промежутками пересечений ВЛ с контактной сетью осуществляется в соответствии с требованиями, приведенными в 2.5.122.
В горловинах железнодорожных станций и в местах сопряжения анкерных участков контактной сети пересечение ВЛ 150 кВ и ниже с железными дорогами не допускается.
2.5.141. Расстояния при пересечении и сближении ВЛ с железными дорогами от проводов до различных элементов железной дороги должны быть не менее приведенных в табл. 2.5.30.
Расстояния по вертикали от проводов до различных элементов железных дорог, а также до наивысшего провода или несущего троса электрифицированных железных дорог определяются в нормальном режиме ВЛ при наибольшей стреле провеса с учетом дополнительного нагрева проводов электрическим током. При отсутствии данных об электрических нагрузках ВЛ температура проводов принимается равной плюс 70°С.
В аварийном режиме расстояния проверяются при пересечениях ВЛ с проводами сечением менее 185 мм² для условий среднегодовой температуры, без гололеда и ветра. При сечении проводов 185 мм² и более проверка в аварийном режиме не требуется.
Допускается сохранение опор контактной сети под проводами пересекающей ВЛ при расстоянии по вертикали от проводов ВЛ до верха опор контактной сети не менее: 7 м для ВЛ до 110 кВ, 8 м для ВЛ 150-220 кВ и 9 м для ВЛ 330-500 кВ.
В отдельных случаях на участках стесненной трассы допускается подвеска проводов ВЛ и контактной сети на общих опорах. Технические условия на выполнение совместной подвески проводов следует согласовывать с Управлением железной дороги.
Таблица 2.5.30. Наименьшее расстояние при пересечении и сближении ВЛ с железными дорогами
Пересечение или сближение | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||||
до 20 | 35-110 | 150 | 220 | 330 | 500 | |
При пересечении | ||||||
Для неэлектрифицированных железных дорог от провода до головки рельса в нормальном режиме ВЛ по вертикали: | ||||||
железных дорог широкой колеи общего и необщего пользования1 и узкой колеи общего пользования | 7,5 | 7,5 | 8 | 8,5 | 9 | 9,5 |
1Железные дороги в зависимости от их назначения разделяются на: железные дорога общего пользования, служащие для перевозки пассажиров и грузов по установленным для всех тарифам; железные дорога необщего пользования, связанные непрерывной рельсовой колеей с общей сетью железных дорог и служащие только для хозяйственно-производственных перевозок учреждений, предприятий и организаций, которым эти подъездные пути подчинены. | ||||||
железных дорог узкой колеи необщего пользования | 6 | 6,5 | 7,0 | 7,5 | 8 | 8,5 |
От провода до головки рельса при обрыве провода ВЛ в смежном пролете по вертикали: | ||||||
железных дорог широкой колеи | 6 | 6 | 6,5 | 6,5 | 7 | — |
железных дорог узкой колеи | 4,5 | 4,5 | 5 | 5 | 5,5 | — |
Для электрифицированных или подлежащих электрификации железных дорог от проводов ВЛ до наивысшего провода или несущего троса в нормальном режиме по вертикали | Как при пересечении ВЛ между собой в соответствии с табл. 2.5.24 (см. также 2.5.122) | |||||
То же, но при обрыве провода в соседнем пролете | 1 | 1 | 2 | 2 | 2,5 | 3,5 |
При сближении | ||||||
Для неэлектрифицированных железных дорог на участках стесненной трассы от отклоненного провода ВЛ до габарита приближения строений по горизонтали | 1,5 | 2,5 | 2,5 | 2,5 | 3,5 | 4,5 |
Для электрифицированных или подлежащих электрификации железных дорог на стесненных участках трасс от крайнего провода ВЛ до крайнего провода, подвешенного с полевой стороны опоры контактной сети, по горизонтали | Как при сближении ВЛ между собой в соответствии с табл. 2.5.25 | |||||
То же, но при отсутствии проводов с полевой стороны опор контактной сети | Как при сближении ВЛ с сооружениями в соответствии с 2.5.114 |
При пересечении и сближении ВЛ с железными дорогами, вдоль которых проходят линии связи и сигнализации, необходимо кроме табл. 2.5.30 руководствоваться также требованиями, предъявляемыми к пересечениям и сближениям ВЛ с сооружениями связи.
2.5.142. При пересечении железных дорог общего пользования электрифицированных и подлежащих электрификации, опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции. На участках с особо интенсивным и интенсивным движением1 поездов эти опоры должны быть металлическими.
1К интенсивному движению поездов относится такое движение, при котором количество пассажирских и грузовых поездов в сумме по графику на двухпутных участках составляет более 50 и до 100 пар в сутки, а на однопутных — более 24 и до 48 пар в сутки.
Допускается в пролете этого пересечения, ограниченного анкерными опорами, установка промежуточной опоры между путями, не предназначенными для прохождения регулярных пассажирских поездов, а также промежуточных опор по краям железнодорожного полотна путей любых дорог. Указанные опоры должны быть металлическими или железобетонными. Крепление проводов на этих опорах должно быть двойным, поддерживающие зажимы должны быть глухими.
Применение опор из любого материала с оттяжками и деревянных одностоечных опор не допускается. Деревянные промежуточные опоры должны быть П-образными (с X- или Z-образными связями) или А-образными.
При пересечении железных дорог необщего пользования допускается применение анкерных опор облегченной конструкции и промежуточных опор с подвеской проводов в глухих зажимах. Опоры всех типов, устанавливаемые на пересечениях железных дорог необщего пользования, могут быть свободно стоящими или на оттяжках.
Крепление проводов в натяжных гирляндах должно выполняться в соответствии с 2.5.95.
Применение штыревых изоляторов в пролетах пересечений ВЛ с железными дорогами не допускается.
Использование в качестве заземлителей арматуры железобетонных опор и железобетонных пасынков у опор, ограничивающих пролет пересечения, запрещается.
2.5.143. При пересечении ВЛ с железной дорогой, имеющей лесозащитные насаждения, следует руководствоваться требованиями 2.5.106.
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С АВТОМОБИЛЬНЫМИ ДОРОГАМИ
2.5.144. Угол пересечения ВЛ с автомобильными дорогами не нормируется.
2.5.145. При пересечении автомобильных дорог категории I1 опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции.
1Автомобильные дороги в зависимости от категории имеют следующие размеры:
Категория дорог | Ширина элементов дорог, м | |||
проезжей части | обочин | разделительной полосы | земляного полотна | |
I | 15 и более | 3,75 | 5 | 27,5 и более |
II | 7,5 | 3,75 | — | 15 |
III | 7 | 2,5 | — | 12 |
IV | 6 | 2 | — | 10 |
V | 4,5 | 1,75 | — | 8 |
Таблица 2.5.31. Наименьшее расстояние при пересечении и сближении ВЛ с автомобильными дорогами
Пересечение или сближение | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||||
до 20 | 35-110 | 150 | 220 | 330 | 500 | |
Расстояние по вертикали: | ||||||
а) от провода до полотна дороги: | ||||||
в нормальном режиме ВЛ | 7 | 7 | 7,5 | 8 | 8,5 | 9 |
при обрыве провода в соседнем пролете | 5 | 5 | 5,5 | 5,5 | 6 | — |
б) от провода до транспортных средств в нормальном режиме ВЛ | 2,5 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 |
Расстояния по горизонтали: | ||||||
а) от основания опоры до бровки земляного полотна дороги при пересечении | Высота опоры | |||||
б) то же, но при параллельном следовании | Высота опоры плюс 5 м | |||||
в) то же, но на участках стесненной трассы от любой части опоры до подошвы насыпи дороги или до наружной бровки кювета: | ||||||
при пересечении дорог категорий I и II | 5 | 5 | 5 | 5 | 10 | 10 |
при пересечении дорог остальных категорий | 1,5 | 2,5 | 2,5 | 2,5 | 5 | 5 |
г) при параллельном следовании от крайнего провода при неотклоненном положении до бровки земляного полотна дороги | 2 | 4 | 5 | 6 | 8 | 10 |
Крепление проводов на ВЛ с подвесными или штыревыми изоляторами должно выполняться в соответствии с 2.5.95.
При пересечении автомобильных дорог категорий II-IV опоры, ограничивающие пролет пересечения, могут быть анкерными облегченной конструкции или промежуточными.
На промежуточных опорах с подвесными изоляторами провода должны быть подвешены в глухих зажимах, а на опорах со штыревыми изоляторами должно применяться двойное крепление проводов. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки. К пересечениям с автомобильными дорогами V категории предъявляются такие же требования, как при прохождении ВЛ по ненаселенной местности.
При сооружении новых автомобильных дорог и прохождении их под действующими ВЛ 400 и 500 кВ переустройство ВЛ не требуется, если расстояние от нижнего провода ВЛ до полотна дороги составляет не менее 9 м и от фундамента опоры до бровки полотна дороги — не менее 25 м.
2.5.146. Расстояния при пересечении и сближении ВЛ с автомобильными дорогами должны быть не менее приведенных в табл. 2.5.31.
Во всех случаях сближения ВЛ с криволинейными участками автомобильных дорог, проходящих по насыпи, минимальные расстояния от проводов ВЛ до бровки дороги должны быть не менее указанных в табл. 2.5.31 расстояний по вертикали.
Расстояния по вертикали в нормальном режиме проверяются при наибольшей стреле провеса без учета нагрева проводов электрическим током.
В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка по аварийному режиму не требуется.
2.5.147. В местах пересечения ВЛ с автомобильными дорогами, по которым предусматривается передвижение автомобилей и других транспортных средств высотой более 3,8 м, с обеих сторон ВЛ на дорогах должны устанавливаться дорожные знаки, указывающие допустимую высоту движущегося транспорта с грузом.
При расстояниях по вертикали от провода ВЛ до полотна автомобильной дороги, превышающих указанные в табл. 2.5.31 более чем на 2 м, сигнальные знаки допускается не устанавливать.
Подвеска дорожных знаков в местах пересечения ВЛ с дорогами в пределах охранных зон (см. 2.5.104) не допускается.
2.5.148. Опоры ВЛ, находящиеся на обочине автомобильной дороги, должны быть защищены от наезда транспорта.
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ТРОЛЛЕЙБУСНЫМИ И ТРАМВАЙНЫМИ ЛИНИЯМИ
2.5.149. Угол пересечения ВЛ с троллейбусными и трамвайными линиями не нормируется.
2.5.150. При пересечении троллейбусных и трамвайных линий опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции. Для ВЛ с сечением проводов 120 мм² и более допускаются также промежуточные опоры с подвеской проводов в глухих зажимах и с двойным креплением на штыревых изоляторах. При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки.
В случае применения анкерных опор подвеска проводов должна выполняться в соответствии с 2.5.95.
2.5.151. Расстояния по вертикали при пересечении и сближении ВЛ с троллейбусными и трамвайными линиями при наибольшей стреле провеса проводов должны быть не менее приведенных в табл. 2.5.32.
В нормальном режиме расстояния по вертикали проверяются при наибольшей стреле провеса (без учета нагрева провода электрическим током).
В аварийном режиме расстояния по вертикали проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка расстояний по аварийному режиму не производится.
2.5.152. Защита разрядниками или защитными промежутками пересечений ВЛ с контактной сетью осуществляется в соответствии с требованиями, приведенными в 2.5.122.
Допускается сохранение опор контактной сети под проводами пересекающей ВЛ при расстояниях по вертикали от проводов ВЛ до верха опор контактной сети не менее: 7 м для ВЛ напряжением до 110 кВ, 8 м для ВЛ 150-220 кВ и 9 м для ВЛ 330-500 кВ.
Таблица 2.5.32. Наименьшее расстояние от проводов ВЛ при пересечении и сближении с троллейбусными и трамвайными линиями
Пересечение или сближение | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||
до 110 | 150-220 | 330 | 500 | |
Расстояния по вертикали от проводов ВЛ: | ||||
а) при пересечении с троллейбусной линией (в нормальном режиме): | ||||
до высшей отметки проезжей части | 11 | 12 | 13 | 13 |
до проводов контактной сети или несущих тросов | 3 | 4 | 5 | 5 |
б) при пересечении с трамвайной линией (в нормальном режиме): | ||||
до головки рельса | 9,5 | 10,5 | 11,5 | 11,5 |
до проводов контактной сети или несущих тросов | 3 | 4 | 5 | 5 |
в) при обрыве провода ВЛ в соседнем пролете до проводов или несущих тросов троллейбусной или трамвайной линии | 1 | 2 | 2,5 | — |
Расстояние по горизонтали при сближении от отклоненных проводов ВЛ до опор троллейбусных и трамвайных контактных сетей | 3 | 4 | 5 | 5 |
ПЕРЕСЕЧЕНИЕ ВЛ С ВОДНЫМИ ПРОСТРАНСТВАМИ
2.5.153. При пересечении ВЛ с водными пространствами (реки, каналы, озера, заливы, гавани и т. п.) угол пересечения с ними не нормируется.
2.5.154. При пересечении водных пространств с регулярным судоходным движением опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными концевыми. Для ВЛ с сечением сталеалюминиевых проводов 120 мм² и более или стальных канатов типа ТК сечением 50 мм² и более допускается применение промежуточных опор и анкерных опор облегченного типа; при этом в обоих случаях опоры, смежные с ними, должны быть анкерными концевыми.
При применении в пролете пересечения промежуточных опор провода и тросы должны крепиться к ним глухими или специальными зажимами (например, многороликовыми подвесами).
К пересечениям водных путей местного значения с навигационной глубиной 1,65 м и менее, малых рек с глубиной 1,0 м и менее (классов IV-VII по путевым условиям судоходства) и несудоходных водных пространств, не относящихся к числу больших переходов, предъявляются такие же требования, как при прохождении ВЛ по ненаселенной местности, с дополнительной проверкой расстояний до уровня высоких вод, льда и до габарита судов или сплава по табл. 2.5.33.
2.5.155. Расстояние от нижних проводов ВЛ до поверхности воды должны быть не менее приведенных в табл. 2.5.33. Расчетные уровни льда и воды принимаются в соответствии с 2.5.13. Нагрев проводов ВЛ электрическим током не учитывается.
Таблица 2.5.33. Наименьшее расстояние от проводов ВЛ до поверхности воды, габарита судов и сплава
Расстояние | Наименьшее расстояние, м, при напряжении ВЛ, кВ | ||||
до 110 | 150 | 220 | 330 | 500 | |
До наибольшего уровня высоких вод судоходных рек, каналов и т. п. при высшей температуре | 6 | 6,5 | 7 | 7,5 | 8 |
До габарита судов или сплава при наибольшем уровне высоких вод и высшей температуре | 2 | 2,5 | 3 | 3,5 | 4 |
До наибольшего уровня высоких вод несудоходных рек, каналов и т. п. при температуре плюс 15°С | 3 | 3,5 | 4 | 4,5 | 5 |
До уровня льда несудоходных рек, каналов и т. п. при температуре минус 5°С при наличии гололеда | 6 | 6,5 | 7 | 7,5 | 8 |
При прохождении ВЛ в непосредственной близости от неразводных мостов, где мачты и трубы судов, плавающих по реке или каналу, должны быть опущены, допускается по согласованию с местным Управлением водного транспорта уменьшать расстояния от проводов ВЛ до наибольшего уровня высоких вод, приведенных в табл. 2.5.33.
2.5.156. Места пересечений ВЛ с судоходными реками, каналами и т. п. должны быть обозначены на берегах сигнальными знаками в соответствии с действующими правилами плавания по внутренним судоходным путям.
ПРОХОЖДЕНИЕ ВЛ ПО МОСТАМ
2.5.157. При прохождении ВЛ по мостам опоры или поддерживающие устройства, ограничивающие пролеты с берега на мост и через разводную часть моста, должны быть анкерными нормальной конструкции. Все прочие поддерживающие устройства на мостах могут быть промежуточного типа с креплением проводов глухими зажимами или с двойным креплением на штыревых изоляторах.
2.5.158. На металлических железнодорожных мостах с ездой по низу, снабженных на всем протяжении верхними связями, провода допускается располагать непосредственно над пролетным строением моста выше связей или за его пределами. Располагать провода в пределах габарита приближения строений, а также в пределах ширины, занятой элементами контактной сети электрифицированных железных дорог, не допускается. Расстояния от проводов ВЛ до всех линий МПС, проложенных по конструкции моста, принимаются по 2.5.141, как для стесненных участков трассы.
На городских и шоссейных мостах допускается располагать провода как за пределами пролетного строения, так и в пределах ширины пешеходной и проезжей частей моста.
На охраняемых мостах допускается располагать провода ВЛ ниже отметки пешеходной части.
2.5.159. Наименьшие расстояния от проводов ВЛ до различных частей мостов должны приниматься по согласованию с организациями, в ведении которых находится данный мост, при этом определение наибольшей стрелы провеса проводов производится путем сопоставления стрел провеса при высшей расчетной температуре воздуха и при гололеде.
ПРОХОЖДЕНИЕ ВЛ ПО ПЛОТИНАМ И ДАМБАМ
2.5.160. При прохождении ВЛ по плотинам, дамбам и т. п. расстояния от проводов ВЛ при наибольшей стреле провеса и наибольшем отклонении до различных частей плотин и дамб должны быть не менее приведенных в табл. 2.5.34.
Таблица 2.5.34. Наименьшее расстояние от проводов ВЛ до различных частей плотин и дамб
Части плотин и дамб | Наименьшее расстояние, м, при напряжении ВЛ, кВ | ||||
до 110 | 150 | 220 | 330 | 500 | |
Гребень и бровка откоса | 6 | 6,5 | 7 | 7,5 | 8 |
Наклонная поверхность откоса | 5 | 5,5 | 6 | 6,5 | 7 |
Поверхность воды, переливающейся через плотину | 4 | 4,5 | 5 | 5,5 | 6 |
При прохождении ВЛ по плотинам и дамбам, по которым проложены пути сообщения, ВЛ должна удовлетворять также требованиям, предъявляемым к ВЛ при пересечениях и сближениях с соответствующими объектами путей сообщения.
Наибольшая стрела провеса проводов ВЛ должна определяться путем сопоставления стрел провеса при высшей расчетной температуре воздуха и при гололеде.
СБЛИЖЕНИЕ ВЛ С ВОДООХЛАДИТЕЛЯМИ
2.5.161. Расстояние от крайних проводов ВЛ до водоохладителей должно определяться в соответствии с требованиями СНиП II-89-80* «Генеральные планы промышленных предприятий» (изд. 1995 г.) Госстроя России, а также с требованиями норм технологического проектирования электростанций, подстанций и воздушных линий электропередачи.
СБЛИЖЕНИЕ ВЛ СО ВЗРЫВО- И ПОЖАРООПАСНЫМИ УСТАНОВКАМИ
2.5.162. Сближение ВЛ со зданиями, сооружениями и наружными технологическими установками, связанными с добычей, производством, изготовлением, использованием или хранением взрывоопасных, взрывопожароопасных и пожароопасных веществ, должно выполняться в соответствии с нормами, утвержденными в установленном порядке.
Если нормы сближения не предусмотрены нормативными документами, то расстояния от оси трассы ВЛ до указанных зданий, сооружений и наружных установок должны составлять не менее полуторакратной высоты опоры. На участках стесненной трассы допускается уменьшение этих расстояний по согласованию с соответствующими министерствами и ведомствами.
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С НАДЗЕМНЫМИ И НАЗЕМНЫМИ ТРУБОПРОВОДАМИ И КАНАТНЫМИ ДОРОГАМИ
2.5.163. Угол пересечения ВЛ с надземными и наземными газопроводами, нефтепроводами и нефтепродуктопроводами рекомендуется принимать близким к 90°. Угол пересечения ВЛ с остальными надземными и наземными трубопроводами, а также с канатными дорогами не нормируется.
Пересечение ВЛ 110 кВ и выше с вновь сооружаемыми надземными и наземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами запрещается. Допускается пересечение этих ВЛ с действующими однониточными надземными и наземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также с действующими техническими коридорами магистральных трубопроводов при прокладке их в насыпи на расстоянии 1000 м в обе стороны от ВЛ.
2.5.164. При пересечении ВЛ с надземными и наземными трубопроводами и канатными дорогами опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерными нормальной конструкции.
Для ВЛ со сталеалюминиевыми проводами сечением 120 мм² и более или со стальными канатами типа ТК. сечением 50 мм² и более допускаются также анкерные опоры облегченной конструкции и промежуточные опоры с подвеской проводов в глухих зажимах.
При расщеплении фазы не менее чем на три провода допускается применение зажимов с ограниченной прочностью заделки.
2.5.165. Провода ВЛ должны располагаться над трубопроводами и канатными дорогами. В исключительных случаях допускается прохождение ВЛ до 220 кВ под канатными дорогами, которые имеют снизу мостики или сетки для ограждения проводов ВЛ. Крепление мостиков и сеток на опорах ВЛ запрещается.
В местах пересечения с ВЛ надземные и наземные газопроводы, кроме проложенных в насыпи, следует защищать ограждениями. Ограждение должно выступать по обе стороны пересечения от проекции крайних проводов ВЛ при наибольшем их отклонении на расстояния не менее: 3 м для ВЛ до 20 кВ, 4 м для ВЛ 35-110 кВ, 4,5 м для ВЛ 150 кВ, 5 м для ВЛ 220 кВ, 6 м для ВЛ 330 кВ, 6,5 м для ВЛ 500 кВ.
Расстояния от ВЛ до мостиков, сеток и ограждений принимают как до надземных и наземных трубопроводов и канатных дорог (см. 2.5.166).
2.5.166. Расстояния при пересечении, сближении и параллельном следовании ВЛ с надземными и наземными трубопроводами и канатными дорогами должны быть не менее приведенных в табл. 2.5.35.
Таблица 2.5.35. Наименьшее расстояние от проводов ВЛ до надземных и наземных трубопроводов и канатных дорог
Пересечение или сближение | Наименьшее расстояние, м, при напряжении ВЛ, кВ | |||||
до 20 | 35-110 | 150 | 220 | 330 | 500 | |
Расстояния по вертикали: | ||||||
от провода ВЛ до любой части трубопровода (насыпи) или канатной дороги в нормальном режиме | 3 | 4 | 4,5 | 5 | 6 | 6,5 |
то же, но при обрыве провода в соседнем пролете | 1 | 2 | 2,5 | 3 | 4 | — |
Расстояния по горизонтали: | ||||||
1) при параллельном следовании: | ||||||
от крайнего провода ВЛ до любой части трубопровода или канатной дороги (за исключением пульпопровода и магистральных газопровода, нефтепровода и нефтепродуктопровода) в нормальном режиме | Не менее высоты опоры | |||||
от крайнего провода ВЛ до любой части пульпопровода в нормальном режиме | Не менее 30 м | |||||
от крайнего провода ВЛ до любой части магистрального газопровода в нормальном режиме | Не менее удвоенной высоты опоры | |||||
от крайнего провода ВЛ до любой части магистрального нефтепровода и нефтепродуктопровода в нормальном режиме | 50 м, но не менее высоты опоры | |||||
в стесненных условиях от крайнего провода ВЛ при наибольшем его отклонении до любой части трубопровода * или канатной дороги | 3 | 4 | 4,5 | 5 | 6 | 6,5 |
* Вновь сооружаемые магистральные газопроводы на участке сближения с ВЛ в стесненных условиях должны отвечать требованиям, предъявляемым к газопроводам не ниже II категории. | ||||||
2) при пересечении: | ||||||
от опоры ВЛ до любой части трубопровода или канатной дороги в нормальном режиме | Не менее высоты опоры | |||||
в стесненных условиях от опоры ВЛ до любой части трубопровода или канатной дороги | 3 | 4 | 4,5 | 5 | 6 | 6,5 |
3) от ВЛ до продувочных свеч газопровода | Не менее 300 м |
Расстояния по вертикали в нормальном режиме определяются при наибольшей стреле провеса провода без учета нагрева проводов электрическим током.
В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка при обрыве провода не требуется.
В районах Западной Сибири и Крайнего Севера при параллельном следовании ВЛ 110 кВ и выше с техническими коридорами магистральных газопроводов, нефтепроводов и нефтепродуктопроводов расстояние от ВЛ до крайнего трубопровода должно быть не менее 1000 м.
2.5.167. В пролетах пересечения с ВЛ металлические трубопроводы, кроме проложенных в насыпи, и канатные дороги, а также ограждения, мостики и сетки должны быть заземлены. Сопротивление, обеспечиваемое применением искусственных заземлителей, должно быть не более 10 Ом.
ПЕРЕСЕЧЕНИЕ И СБЛИЖЕНИЕ ВЛ С ПОДЗЕМНЫМИ ТРУБОПРОВОДАМИ
2.5.168. Угол пересечения ВЛ 35 кВ и ниже с подземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также угол пересечения ВЛ с остальными подземными трубопроводами не нормируется.
Угол пересечения ВЛ 110 кВ и выше с вновь сооружаемыми подземными магистральными газопроводами, нефтепроводами и нефтепродуктопроводами, а также с действующими техническими коридорами этих трубопроводов должен быть не менее 60°. При этом вновь сооружаемые трубопроводы, прокладываемые в районах Западной Сибири и Крайнего Севера, на расстоянии 1 км в обе стороны от пересечения должны быть не ниже II категории.
2.5.169. При сближении ВЛ с действующими и вновь сооружаемыми магистральными газопроводами давлением более 1,2 МПа и магистральными нефтепроводами и нефтепродуктопроводами расстояния между ними должны быть не менее приведенных в 2.5.104.
Провода ВЛ должны быть расположены не ближе 300 м от продувочных свеч, устанавливаемых на магистральных газопроводах.
В стесненных условиях трассы при параллельном следовании ВЛ, а также в местах пересечения ВЛ с указанными трубопроводами допускаются расстояния по горизонтали от заземлителя и подземной части (фундамента) опор ВЛ до трубопроводов не менее: 5 м для ВЛ до 35 кВ, 10 м для ВЛ 110-220 кВ и 15 м для ВЛ 330-500 кВ.
Вновь сооружаемые магистральные газопроводы с давлением более 1,2 МПа на участках сближения с ВЛ при прокладке их на расстояниях менее приведенных в 2.5.104 должны отвечать требованиям, предъявляемым к участкам газопроводов не ниже II категории для ВЛ 500 кВ и не ниже III категории для ВЛ 330 кВ и ниже.
Вновь сооружаемые магистральные нефтепроводы и нефтепродуктопроводы на участках сближения с ВЛ при прокладке их на расстояниях менее приведенных в 2.5.104 должны отвечать требованиям, предъявляемым к участкам трубопроводов не ниже III категории.
В районах Западной Сибири и Крайнего Севера при параллельном следовании ВЛ 110 кВ и выше с техническими коридорами магистральных газопроводов, нефтепроводов и нефтепродуктопроводов расстояние от ВЛ до крайнего трубопровода должно быть не менее 1 км.
2.5.170. При сближении и пересечении ВЛ с магистральными и распределительными газопроводами давлением 1,2 МПа и менее, а также при сближении и пересечении с ответвлениями от магистральных газопроводов к населенным пунктам и промышленным предприятиям и с ответвлениями от нефтепроводов и нефтепродуктопроводов к нефтебазам и предприятиям расстояния от заземлителя и подземной части (фундаментов) опор ВЛ до трубопроводов должны быть не менее: 5 м для ВЛ до 35 кВ, 10 м для ВЛ 110 кВ и выше.
2.5.171. При сближении и пересечении ВЛ с теплопроводами, водопроводом, канализацией (напорной и самотечной), водостоками и дренажами расстояния в свету от заземлителя и подземной части (фундаментов) опор ВЛ до трубопроводов должны быть не менее 2 м для ВЛ до 35 кВ и 3 м для ВЛ 110 кВ и выше.
В исключительных случаях при невозможности выдержать указанные расстояния до трубопроводов (например, при прохождении ВЛ по территориям электростанций, промышленных предприятий, по улицам городов) эти расстояния допускается уменьшать по согласованию с заинтересованными организациями. При этом следует предусматривать защиту фундаментов опор ВЛ от возможного подмыва фундаментов при повреждении указанных трубопроводов, а также по предотвращению выноса опасных потенциалов по металлическим трубопроводам.
СБЛИЖЕНИЕ ВЛ С НЕФТЯНЫМИ И ГАЗОВЫМИ ФАКЕЛАМИ
2.5.172. При сближении с нефтяными и газовыми промысловыми факелами ВЛ должна быть расположена с наветренной стороны. Расстояние от ВЛ до промысловых факелов должно быть не менее 60 м.
СБЛИЖЕНИЕ ВЛ С АЭРОДРОМАМИ
2.5.173. Сближение ВЛ с аэродромами и воздушными трассами допускается по согласованию с территориальным управлением гражданской авиации, со штабом военного округа, с управлением министерства или ведомства, в ведении которого находится аэродром или аэропорт, при расположении ВЛ на расстояниях: до 10 км от границ аэродрома — с опорами любой высоты; более 10 и до 30 км от границ аэродрома — при абсолютной отметке верхней части опор ВЛ, превышающей абсолютную отметку аэродрома на 50 м и более; более 30 и до 75 км от границ аэродромов и на воздушных трассах — при высоте опор 100 м и более.
КВТ Концевые и соединительные кабельные термоусаживаемые муфты «КВТ»
Концевые, кабельные, муфты, 4КВНТп-1 (КВТ)
Тип
4КВНТп-1Концевые, кабельные, муфты, 3КВНТп-1 (КВТ)
Тип
3КВНТп-1Концевые, кабельные, муфты, 4КВНТп-1 (КВТ)
нг-LSТип
4КВНТп-1 нг-LSКонцевые, кабельные, муфты, 3КВНТп-1 нг-LS (КВТ)
нг-LSТип
3КВНТп-1 нг-LSКонцевые, кабельные, муфты, 2ПКТп-1
Тип
2ПКТп-1Концевые кабельные муфты 3ПКТп-1
Тип
3ПКТп-1Концевые, кабельные, муфты, 4ПКТп-1
Тип
4ПКТп-1Концевые, кабельные, муфты, 5ПКТп-1
Тип
5ПКТп-1Концевые кабельные муфты (3+1)ПКТп-1 (КВТ)
Тип
(3+1)ПКТпКонцевые, кабельные, муфты, 4ПКТп-1 нг-LS
нг-LSТип
4ПКТп-1 нг-LSКонцевые, кабельные, муфты, 4ПКТп-нг-LS-1, 5ПКТп-нг-LS-1
нг-LSТип
5ПКТп-1 нг-LSСоединительные, кабельные, муфты, ККТ нг-LS
нг-LSТип
ККТ нг-LSКонцевые кабельные муфты, 1РКТ
Тип
1РКТ-1Концевые кабельные муфты, 1РКТп
Тип
4РКТп-1Концевые кабельные муфты, (3+1)РКТп-1
Тип
(3+1)РКТп-1Концевые, кабельные, муфты, 4ПКТп-нг-LS-1, 5ПКТп-нг-LS-1
нг-LSТип
1ПКТ-1 нг-LSКонцевые кабельные муфты 1ПКТ(б)-1 нг-LS
нг-LSТип
1ПКТ(б)-1 нг-LSТермоусаживаемые концевые мини-муфты ПКТп мини
миниТип
ПКТп миниТермоусаживаемые концевые мини-муфты ПКТп мини нг-LS
Новинка миниТип
ПКТп мини нг-LSСоединительные, кабельные, муфты, 4СТп-1
Тип
4СТп-1Соединительные, кабельные, муфты 3СТп-1
Тип
3СТп-1Соединительные кабельные муфты 4СТп-1 нг-LS
нг-LSТип
4СТп-1 нг-LSСоединительные кабельные муфты 3СТп-1 нг-LS
нг-LSТип
3СТп-1 нг-LSСоединительные кабельные муфты 2ПСТ-1
Тип
2ПСТ-1Соединительные кабельные муфты 3ПСТ-1
Тип
3ПСТ-1Соединительные, кабельные, муфты, 4ПСТ-1
Тип
4ПСТ-1Соединительные, кабельные, муфты, 5ПСТ-1
Тип
5ПСТ-1Соединительные, кабельные, муфты, (3+1)ПСТ-1
Тип
(3+1)ПСТ-1Соединительные кабельные муфты 4ПСТ-1 нг-LS
нг-LSТип
4ПСТ-1 нг-LSСоединительные кабельные муфты 5ПСТ-1 нг-LS
нг-LSТип
5ПСТ-1 нг-LSСоединительные ремонтные муфты для кабелей с пластмассовой изоляцией до 1кВ 4ПСТР(б)-1
Тип
4ПСТР(б)-1Соединительные ремонтные муфты для кабелей с пластмассовой изоляцией до 1кВ 5ПСТР(б)-1
Тип
5ПСТР(б)-1Соединительные муфты для кабелей с резиновой изоляцией до 1кВ, 1РCТ
Тип
1РCТ-1Соединительные муфты для кабелей с резиновой изоляцией до 1кВ
Тип
4РCТ-1Соединительные кабельные муфты (3+1)РСТ-1
Тип
(3+1)РСТ-1Соединительные, кабельные, муфты, ПСТк
Тип
ПСТкСоединительные, кабельные, муфты, 1ПCТ-1 нг-LS
нг-LSТип
1ПCТ-1 нг-LSСоединительные, кабельные, муфты, 1ПCТ(б)-1 нг-LS
нг-LSТип
1ПCТ(б)-1 нг-LSзаливная соединительная муфта мкс квт
заливнаяТип
МКСМуфты соединительные термоусаживаемые МТС
Тип
МТССоединительные, кабельные, муфты, ПСТ мини нг-LS
мини нг-LSТип
ПСТ мини нг-LSтермоусаживаемые муфты для водопогруженных кабелей МВПТ
Тип
МВПТСоединительные, кабельные, муфты, 4ПТО-1
Тип
4ПТО-1Соединительные, кабельные, муфты, 5ПТО-1
Тип
5ПТО-1переходные, кабельные, муфты, 4ПКТпбсип1б
Тип
4ПКТп(б)(СИП)-1Соединительные переходные кабельные муфты
Тип
4ППСТ-1Соединительные переходные кабельные муфты
Тип
5ППСТ-1Кабель ВВГнг LS на 0,66 кВ
Кабель ВВГнг LS на 0,66 кВ прайс-лист
Силовые кабели с медными жилами, c изоляцией и оболочкой из поливинилхлоридных композиций пониженной пожароопасности.
(Индекс LS в марках означает низкое дымо- и газовыделение Low Smoke).
КОНСТРУКЦИЯ
1. ТОКОПРОВОДЯЩАЯ ЖИЛА – медная, однопроволочная круглой формы
2. ИЗОЛЯЦИЯ – из поливинилхлоридной композиции пониженной пожароопасности. Изолированные жилы многожильных кабелей имеют отличительную расцветку. Изоляция нулевых жил выполняется голубого цвета. Изоляция жил заземления выполняется двухцветной (жёлто-зелёной расцветки).
3. СКРУТКА – изолированные жилы двух-, трех-, четырёх- и пятижильных кабелей скручены; двухжильные кабели имеют жилы одинакового сечения; трех-, четырёх- и пятижильные имеют все жилы одинакового сечения или одну жилу меньшего сечения (жилу заземления или нулевую).
4. ВНУТРЕННЯЯ ЭКСТРУДИРОВАННАЯ ОБОЛОЧКА – накладывается по скрученным изолированным жилам из ПВХ композиции пониженной пожароопасности, которая заполняет промежутки между жилами. Толщина внутренней оболочки не менее 0,3 мм.
5. НАРУЖНАЯ ОБОЛОЧКА – из ПВХ композиции пониженной пожароопасности. Для кабелей с сечением круглых токопроводящих жил до 16 мм2 допускается наложение наружной оболочки с одновременным заполнением промежутков между жилами. В этом случае внутренняя экструдированная оболочка не накладывается.
ПРИМЕНЕНИЕ
Кабели, не распространяющие горение, с низким дымо- и газовыделением предназначены для передачи и распределения электроэнергии в стационарных установках на номинальное переменное напряжение 0,66 кВ и 1 кВ частоты 50 Гц. Кабели изготавливаются для общепромышленного применения и атомных станций при поставках на внутренний рынок и на экспорт. Кабели предназначены для эксплуатации в кабельных сооружениях и помещениях. Кабели марки ВВГ нг LS не распространяют горение при прокладке в пучках.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Диапазон температур эксплуатации | от –50°С до +50°С | ||
Относительная влажность воздуха при температуре до +35°С | до 98% | ||
Прокладка и монтаж кабелей без предварительного подогрева производится при температуре не ниже | -15°С | ||
Минимальный радиус изгиба при прокладке: | |||
кабелей одножильных | 10 наружных диаметров | ||
Номинальная частота | 50 Гц | ||
Длительно допустимая температура нагрева жил кабелей при эксплуатации | +70°С | ||
Предельная температура токопроводящих жил кабелей по условию невозгорания кабеля при к.з. | +400°С | ||
Строительная длина кабелей для сечений основных жил: | |||
от 1,5 до 16 мм2 | 450 м | ||
от 25 до 70 мм2 | 300 м | ||
от 95 мм2 и выше | 200 м | ||
Гарантийный срок эксплуатации | 5 лет с даты ввода кабеля в эксплуатацию, но не познее 6 месяцев с даты изготовления | ||
Срок службы кабеля | 30 лет |
ПУЭ Раздел 2 => Пересечение и сближение вл с сооружениями связи,. Сигнализации и проводного вещания. Таблица 2.5.26. Наименьшие…
Пересечение и сближение ВЛ с сооружениями связи,
сигнализации и проводного вещания
2.5.231. Пересечение ВЛ напряжением до 35 кВ с ЛС и ЛПВ должно быть выполнено по одному из следующих вариантов:
1) проводами ВЛ и подземным кабелем ЛС* и ЛПВ;
2) проводами ВЛ и воздушным кабелем ЛС и ЛПВ;
3) подземной кабельной вставкой в ВЛ и неизолированными проводами ЛС и ЛПВ;
4) проводами ВЛ и неизолированными проводами ЛС и ЛПВ.
_______________________
* В данной главе к кабелям связи относятся металлические и оптические кабели с металлическими элементами.
2.5.232. Пересечение ВЛ напряжением до 35 кВ с неизолированными проводами ЛС и ЛПВ может применяться в следующих случаях:
1) если невозможно проложить ни подземный кабель ЛС и ЛПВ, ни кабель ВЛ;
2) если применение кабельной вставки в ЛС приведет к необходимости установки дополнительного или переноса ранее установленного усилительного пункта ЛС;
3) если при применении кабельной вставки в ЛПВ общая длина кабельных вставок в линию превышает допустимые значения;
4) если на ВЛ применены подвесные изоляторы. При этом ВЛ на участке пересечения с неизолированными проводами ЛС и ПВ выполняются с повышенной механической прочностью проводов и опор (см. 2.5.240).
2.5.233. Пересечение ВЛ 110-500 кВ с ЛС и ЛПВ должно быть выполнено по одному из следующих вариантов:
1) проводами ВЛ и подземным кабелем ЛС и ЛПВ;
2) проводами ВЛ и неизолированными проводами ЛС и ЛПВ.
2.5.234. Пересечение ВЛ 750 кВ с ЛС и ЛПВ выполняется подземным кабелем ЛС и ЛПВ. При невозможности прокладки подземного кабеля ЛС и ЛПВ в условиях стесненной, труднопроходимой горной местности допускается выполнять пересечение ЛС и ЛПВ с ВЛ 750 кВ неизолированными проводами, но расстояние в свету от вершин опор ЛС и ЛПВ до неотклоненных проводов ВЛ должно быть не менее 30 м.
2.5.235. При пересечении ВЛ 110-500 кВ с воздушными проводами ЛС и ЛПВ применять кабельные вставки не следует, если:
1) применение кабельной вставки в ЛС приведет к необходимости установки дополнительного усилительного пункта на ЛС, а отказ от применения этой кабельной вставки не приведет к увеличению мешающего влияния ВЛ на ЛС сверх допустимых норм;
2) применение кабельной вставки в ЛПВ приведет к превышению суммарной допустимой длины кабельных вставок в линии, а отказ от этой кабельной вставки не приведет к увеличению мешающего влияния ВЛ на ЛПВ сверх допустимого значения.
2.5.236. В пролете пересечения ЛС и ЛПВ с ВЛ до 750 кВ, на которых предусматриваются каналы высокочастотной связи и телемеханики с аппаратурой, работающей в совпадающем с аппаратурой ЛС и ЛПВ спектре частот и имеющей мощность на один канал:
1) более 10 Вт — ЛС и ЛПВ должны быть выполнены подземными кабельными вставками. Длина кабельной вставки определяется по расчету мешающего влияния, при этом расстояние по горизонтали от основания кабельной опоры ЛС и ЛПВ до проекции крайнего провода ВЛ на горизонтальную плоскость должно быть не менее 100 м;
2) от 5 до 10 Вт — необходимость применения кабельной вставки в ЛС и ЛПВ или принятия других средств защиты определяется по расчету мешающего влияния. При этом, в случае применения кабельной вставки, расстояние в свету от неотклоненных проводов ВЛ до 500 кВ до вершин кабельных опор ЛС и ЛПВ должно быть не менее 20 м, а от неотклоненных проводов ВЛ 750 кВ до вершин кабельных опор ЛС и ЛПВ — не менее 30м;
3) менее 5 Вт или если высокочастотная аппаратура ВЛ работает в несовпадающем спектре частот, или ЛС и ЛПВ не уплотнена ВЧ аппаратурой — применение кабельной вставки при пересечении с ВЛ до 750 кВ по условиям мешающего влияния не требуется. Если кабельная вставка в ЛС и ЛПВ оборудуется не по условиям мешающего влияния от высокочастотных каналов ВЛ, то расстояние по горизонтали от основания кабельной опоры ЛС и ЛПВ до проекции на горизонтальную плоскость крайнего неотклоненного провода ВЛ до 330 кВ должно быть не менее 15 м. Для ВЛ 500 кВ расстояние в свету от крайних неотклоненных проводов ВЛ до вершины кабельных опор ЛС и ЛПВ должно быть не менее 20 м, а для ВЛ 750 кВ — не менее 30 м.
2.5.237. Пересечения проводов ВЛ с воздушными линиями городской телефонной связи не допускаются; эти линии в пролете пересечения с проводами ВЛ должны выполняться только подземными кабелями.
2.5.238. При пересечении ВЛ с подземным кабелем связи и ПВ (или с подземной кабельной вставкой) должны соблюдаться следующие требования:
1) угол пересечения ВЛ до 500 кВ с ЛС и ЛПВ не нормируется, угол пересечения ВЛ 750 кВ с ЛС и ЛПВ должен быть по возможности близок к 90°, но не менее 45°;
2) расстояние от подземных кабелей ЛС и ЛПВ до ближайшего заземлителя опоры ВЛ напряжением до 35 кВ или ее подземной металлической или железобетонной части должно быть не менее:
в населенной местности — 3 м;
в ненаселенной местности — расстояний, приведенных в табл. 2.5.26.
Таблица 2.5.26
Наименьшие расстояния от подземных кабелей ЛС (ЛПВ)
до ближайшего заземлителя опоры ВЛ и ее подземной части
Эквивалентное удельное сопротивление земли, Ом·м |
Наименьшее расстояние, м, при напряжении ВЛ, кВ |
||
До 35 |
110-500 |
750 |
|
До 100 |
10 |
10 |
15 |
Более 100 до 500 |
15 |
25 |
25 |
Более 500 до 1000 |
20 |
35 |
40 |
Более 1000 |
30 |
50 |
50 |
Расстояние от подземных кабелей ЛС и ЛПВ до подземной части незаземленной деревянной опоры ВЛ напряжением до 35 кВ должно быть не менее:
в населенной местности — 2 м, в стесненных условиях указанное расстояние может быть уменьшено до 1 м при условии прокладки кабеля в полиэтиленовой трубе на длине в обе стороны от опоры не менее 3 м;
в ненаселенной местности: 5 м — при эквивалентном удельном сопротивлении земли до 100 Ом·м; 10 м — при эквивалентном удельном сопротивлении земли от 100 до 500 Ом·м; 15 м — при эквивалентном удельном сопротивлении земли от 500 до 1000 Ом·м; 25 м — при эквивалентном удельном сопротивлении земли более 1000 Ом·м;
3) расстояние от подземных кабелей ЛС и ЛПВ до ближайшего заземлителя опоры ВЛ 110 кВ и выше и ее подземной части должно быть не менее значений, приведенных в табл. 2.5.26;
4) при прокладке подземного кабеля (кабельной вставки) в стальных трубах, или при покрытии его швеллером, уголком, или при прокладке его в полиэтиленовой трубе, закрытой с обеих сторон от попадания земли, на длине, равной расстоянию между проводами ВЛ плюс 10 м с каждой стороны от крайних проводов для ВЛ до 500 кВ и 15 м для ВЛ 750 кВ, допускается уменьшение указанных в табл. 2.5.26 расстояний до 5 м для ВЛ до 500 кВ и до 10 м для 750 кВ.
Металлические покровы кабеля в этом случае следует соединять с трубой или другими металлическими защитными элементами. Это требование не относится к оптическим кабелям и кабелям с внешним изолирующим шлангом, в том числе с металлической оболочкой. Металлические покровы кабельной вставки должны быть заземлены по концам. При уменьшении расстояний между кабелем и опорами ВЛ, указанных в табл. 2.5.26, помимо приведенных мер защиты необходимо устройство дополнительной защиты от ударов молнии путем оконтуровки опор тросами в соответствии с требованиями нормативной документации по защите кабелей от ударов молнии;
5) вместо применения швеллера, уголка или стальной трубы допускается при строительстве новой ВЛ использовать два стальных троса сечением 70 мм, прокладываемых симметрично на расстоянии не более 0,5 м от кабеля и на глубине 0,4 м. Тросы должны быть продлены с обеих сторон под углом 45° к трассе в сторону опоры ВЛ и заземлены на сопротивление не более 30 Ом. Соотношения между длиной отвода тросов l и сопротивлением R заземлителя должны соответствовать значениям Ki и Kd, приведенным в табл. 2.5.27;
Таблица 2.5.27
Сопротивления заземлителей при защите кабеля ЛС и ЛПВ
на участке пересечения с ВЛ
Удельное сопротивление земли, Ом·м |
До 100 |
101-500 |
Более 500 |
Длина отвода, l, м |
20 |
30 |
50 |
Сопротивление заземлителя, Ом |
30 |
30 |
20 |
Примечание. Защита кабеля от ударов молнии путем оконтуровки опор ВЛ или прокладки защитного троса в этом случае также обязательна.
6) в пролете пересечения ВЛ с ЛС и ЛПВ крепление проводов ВЛ на опорах, ограничивающих пролет пересечения, должно осуществляться с помощью глухих зажимов, не допускающих падения проводов на землю в случае их обрыва в соседних пролетах.
2.5.239. При пересечении подземной кабельной вставки в ВЛ до 35 кВ с неизолированными проводами ЛС и ЛПВ должны соблюдаться следующие требования:
1) угол пересечения подземной кабельной вставки ВЛ с ЛС и ЛПВ не нормируется;
2) расстояние от подземной кабельной вставки до незаземленной опоры ЛС и ЛПВ должно быть не менее 2 м, а до заземленной опоры ЛС (ЛПВ) и ее заземлителя — не менее 10 м;
3) расстояние по горизонтали от основания кабельной опоры ВЛ, неуплотненной и уплотненной в несовпадающем и совпадающем спектрах частот в зависимости от мощности высокочастотной аппаратуры, до проекции проводов ЛС и ЛПВ должно выбираться в соответствии с требованиями, изложенными в 2.5.236;
4) подземные кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл. 2.3 и 2.5.124.
2.5.240. При пересечении проводов ВЛ с неизолированными проводами ЛС и ЛПВ необходимо соблюдать следующие требования:
1) угол пересечения проводов ВЛ с проводами ЛС и ЛПВ должен быть по возможности близок к 90°. Для стесненных условий угол не нормируется;
2) место пересечения следует выбирать по возможности ближе к опоре ВЛ. При этом расстояние по горизонтали от ближайшей части опоры ВЛ до проводов ЛС и ЛПВ должно быть не менее 7 м, а от опор ЛС и ЛПВ до проекции на горизонтальную плоскость ближайшего неотклоненного провода ВЛ должно быть не менее 15 м. Расстояние в свету от вершин опор ЛС и ПВ до неотклоненных проводов ВЛ должно быть не менее: 15м- для ВЛ до 330 кВ, 20 м — для ВЛ 500 кВ;
3) не допускается расположение опор ЛС и ЛПВ под проводами пересекающей ВЛ;
4) опоры ВЛ, ограничивающие пролет пересечения с ЛС и ЛПВ, должны быть анкерного типа облегченной конструкции из любого материала как свободностоящие, так и на оттяжках. Деревянные опоры должны быть усилены дополнительными приставками или подкосами;
5) пересечения можно выполнять на промежуточных опорах при условии применения на ВЛ проводов с площадью сечения алюминиевой части не менее 120 мм2;
6) провода ВЛ должны быть расположены над проводами ЛС и ЛПВ и должны быть многопроволочными сечениями не менее приведенных в табл. 2.5.5;
7) провода ЛС и ЛПВ в пролете пересечения не должны иметь соединений;
8) в пролете пересечения ВЛ с ЛС и ЛПВ на промежуточных опорах ВЛ крепление проводов на опорах должно осуществляться только с помощью поддерживающих гирлянд изоляторов с глухими зажимами;
9) изменение места установки опор ЛС и ЛПВ, ограничивающих пролет пересечения с ВЛ, допускается при условии, что отклонение средней длины элемента скрещивания на ЛС и ЛПВ не будет превышать значений, указанных в табл. 2.5.28;
Таблица 2.5.28
Допустимое изменение места установки опор ЛС и ЛПВ,
ограничивающих пролет пересечения с ВЛ
Длина элемента скрещивания, м |
35 |
40 |
50 |
60 |
70 |
80 |
100 |
125 |
170 |
Допустимое отклонение, м |
±6 |
±6,5 |
±7 |
±8 |
±8,5 |
±9 |
±10 |
±11 |
±13 |
10) длины пролетов ЛС и ЛПВ в месте пересечения с ВЛ не должны превышать значений, указанных в табл. 2.5.29;
Таблица 2.5.29
Максимально допустимые длины пролетов ЛС и ПВ в месте пересечения с ВЛ
Марки проводов, применяемых на ЛС и ЛПВ |
Диаметр провода, мм |
Максимально допустимые длины пролета ЛС и ЛПВ, м, для линий типов |
|||
О |
Н |
У |
ОУ |
||
Сталеалюминиевые: |
|
|
|
|
|
АС 25/4,2 |
6,9 |
150 |
85 |
65 |
50 |
АС 16/2,7 |
5,6 |
85 |
65 |
40 |
35 |
АС 10/1,8 |
4,5 |
85 |
50 |
40 |
35 |
Биметаллические (сталемедные) БСМ-1, БСМ-2 |
4,0 |
180 |
125 |
100 |
85 |
3,0 |
180 |
100 |
85 |
65 |
|
2,0 |
150 |
85 |
65 |
40 |
|
1,6 |
100 |
65 |
40 |
40 |
|
1,2 |
85 |
35 |
— |
— |
|
Биметаллические (сталеалюминиевые) БСА-КПЛ |
5,1 |
180 |
125 |
90 |
85 |
4,3 |
180 |
100 |
85 |
65 |
|
Стальные |
5,0 |
150 |
130 |
70 |
45 |
4,0 |
150 |
85 |
50 |
40 |
|
3,0 |
125 |
65 |
40 |
— |
|
2,5 |
100 |
40 |
30 |
— |
|
2,0 |
100 |
40 |
30 |
— |
|
1,5 |
100 |
40 |
— |
— |
Примечание. О — обычный, Н — нормальный, У — усиленный, ОУ — особо усиленный, типы линий — в соответствии с «Правилами пересечения воздушных линий связи и радиотрансляционных сетей с линиями электропередачи».
11) опоры ЛС и ЛПВ, ограничивающие пролет пересечения или смежные с ним и находящиеся на обочине автомобильной дороги, должны быть защищены от наездов транспортных средств;
12) провода на опорах ЛС и ЛПВ, ограничивающие пролет пересечения с ВЛ, должны иметь двойное крепление: при траверсном профиле — только на верхней траверсе, при крюковом профиле — на двух верхних цепях;
13) расстояния по вертикали от проводов ВЛ до пересекаемых проводов ЛС и ЛПВ в нормальном режиме ВЛ и при обрыве проводов в смежных пролетах ВЛ должны быть не менее приведенных в табл. 2.5.30.
Расстояния по вертикали определяются в нормальном режиме при наибольшей стреле провеса проводов (без учета их нагрева электрическим током). В аварийном режиме расстояния проверяются для ВЛ с проводами площадью сечения алюминиевой части менее 185 мм2 при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами площадью сечения алюминиевой части 185 мм2 и более проверка по аварийному режиму не требуется.
При разности высот точек крепления проводов ЛС и ЛПВ на опорах, ограничивающих пролет пересечения (например, на косогорах) с ВЛ 35 кВ и выше, вертикальные расстояния, определяемые по табл. 2.5.30, подлежат дополнительной проверке на условия отклонения проводов ВЛ при ветровом давлении, определенном согласно 2.5.56, направленном перпендикулярно оси ВЛ, и при неотклоненном положении проводов ЛС и ЛПВ.
Расстояния между проводами следует принимать для наиболее неблагоприятного случая.
При применении на ВЛ плавки гололеда следует проверять габариты до проводов ЛС и ЛПВ в режиме плавки гололеда. Эти габариты проверяются при температуре провода в режиме плавки гололеда и должны быть не меньше, чем при обрыве провода ВЛ в смежном пролете;
14) на деревянных опорах ВЛ без грозозащитного троса, ограничивающих пролет пересечения с ЛС и ЛПВ, при расстояниях между проводами пересекающихся линий менее указанных в п. б) табл. 2.5.30 на ВЛ должны устанавливаться защитные аппараты. Защитные аппараты должны устанавливаться в соответствии с требованиями 2.5.229. При установке ИП на ВЛ должно быть предусмотрено автоматическое повторное включение;
Кв в лс калькулятор
Соотношение кВт и лошадиной силы
История
Лошадиная сила (л.с.) это внесистемная единица мощности, которая появилась примерно в 1789 году с приходом паровых машин. Изобретатель Джеймс Уатт ввел термин «лошадиная сила» чтобы наглядно показать насколько его машины экономически выгоднее живой тягловой силы. Уатт пришел к выводу, что в среднем за минуту одна лошадь поднимает груз в 180 фунтов на 181 фут. Округлив расчеты в фунто-футах за минуту, он решил, что лошадиная сила будет равна 33 000 этих самых фунто-футов в минуту. Конечно расчеты брались для большого промежутка времени, потому что кратковременно лошадь может «развивать» мощность около 1000 кгс·м/с, что примерно равно 13 лошадиным силам. Такую мощность называют — котловая лошадиная сила.
В мире существует несколько единиц измерения под названием «лошадиная сила». В европейских странах, России и СНГ, как правило, под лошадиной силой имеется в виду так называемая «метрическая лошадиная сила», равная примерно 735 ватт (75 кгс·м/с).
В автомобильной отрасли Великобритании и США наиболее часто л.с. приравнивают к 746 Вт, что равно 1,014 метрической лошадиной силы. Также в промышленности и энергетике США используются электрическая лошадиная сила (746 Вт) и котловая лошадиная сила (9809,5 Вт).
Онлайн калькулятор перевода кВт в ЛС
Перевод кВт в Л.С. очень важен для:
- расчета ОСАГО
- расчета налога на имущество (транспортное средство). Особенно в момент приобретения нового автомобиля.
Рекомендации
Проверьте данные о мощности, занесенные в ваше свидетельство о регистрации на онлайн калькуляторе.
Пересчитайте кВт в Л.С. Если значение не совпадут с калькулятором, уточните у специалистов страхования, возможно, из- за этой мелочи вы переплачиваете деньги.
сотрудники ГИБДД могут округлить значение мощности автомобиля в большую и не выгодную для вас сторону, что приведет к лишним расходам: стоимость страховки для ТС с 70 л.с. примерно на 20% дешевле, чем стоимость страховки для ТС 71 л.с. Тоже самое касается и налогов.
Ошибка может привести к том, что страховщик выставит вам повышающий коэффициент, что увеличит сумму страховки.
Соотношение кВт и лошадиной силы при вычислении мощности двигателя
1 кВт = 1,3596 л.с.
1 Л.С. = 0,7355 кВт
Таблица преобразований | |
---|---|
1 квадратный фут, эквивалентный прямому излучению в лошадиных силах = 0,0943 | 70 квадратных футов, эквивалентный прямому излучению в лошадиных силах = 6.6026 |
эквивалентов | |
к лошадиным силам = 0,1886 | 80 квадратных футов эквивалент прямого излучения к лошадиным силам = 7,5459 |
3 квадратных фута, эквивалентных прямому излучению в лошадиных силах = 0.283 | 90 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 8,4891 |
4 квадратных фута, эквивалентное прямому излучению в лошадиных силах = 0,3773 | 100 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 9,4324 |
5 квадратных футов Мощность в лошадиных силах = 0,4716 | 200 квадратных футов Эквивалент прямого излучения в лошадиные силы = 18,8647 |
6 квадратных футов Эквивалент прямого излучения в лошадиных силах = 0.5659 | 300 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 28,2971 |
7 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 0,6603 | 400 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 37,7294 |
8 квадратных футов Мощность в лошадиных силах = 0,7546 | 500 квадратных футов, эквивалентная мощности прямого излучения в лошадиных силах = 47,1618 |
9 квадратных футов, эквивалентная мощности прямого излучения в лошадиных силах = 0.8489 | 600 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 56,5941 |
10 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 0,9432 | 800 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 75,4588 |
20 кв. Футов Мощность в лошадиных силах = 1,8865 | 900 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 84,8912 |
30 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 2.8297 | 1000 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 94,3235 |
40 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 3,7729 | 10000 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 943,2355 |
кв. Футов Мощность = 4,7162 | 100000 квадратных футов Эквивалент прямого излучения в лошадиные силы = 9432,3547 |
60 квадратных футов Эквивалент прямого излучения в лошадиных силах = 5.6594 | 1000000 квадратных футов, эквивалентное прямому излучению в лошадиных силах = 94323,5472 |
Таблица преобразований | |
---|---|
1 лошадиная сила в квадратные футы, эквивалентная 70 л.с. Эквивалент прямого излучения в футах = 742,1265 | |
2 лошадиных силы на квадратные футы, эквивалентное прямое излучение = 21,2036 | 80 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 848.1445 |
3 лошадиных силы на квадратные футы, эквивалентное прямое излучение = 31,8054 | 90 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 954,1626 |
4 лошадиных силы на квадратные футы, эквивалентное прямое излучение = 42,4072 | 100 квадратных футов, эквивалентное прямое излучение Излучение = 1060,1807 |
5 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 53,009 | 200 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 2120.3613 |
6 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 63,6108 | 300 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 3180,542 |
7 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 74,2126 | 400 квадратных футов, эквивалентное прямое излучение Излучение = 4240,7226 |
8 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 84,8145 | 500 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 5300.9033 |
9 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 95,4163 | 600 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 6361,0839 |
10 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 106,0181 | 800 лошадиных сил, эквивалентное прямое излучение Излучение = 8481,4452 |
20 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 212,0361 | 900 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 9541.6259 |
30 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 318,0542 | 1000 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 10601.8065 |
40 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 424.0723 | 9000 9000 лошадиных сил Излучение = 106018,0655|
50 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 530.0903 | 100000 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 1060180.655 |
60 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 636,1084 | 1000000 лошадиных сил на квадратные футы, эквивалентное прямое излучение = 10601806,5496 |
Grundfos 96160142 — 10SQ07-240 — Погружной насос 10SQ07-240 — SQ4 GPM
Технические характеристики Grundfos 10SQ07-240 (96160142)• Производитель: Grundfos
• Номер модели: 10SQ07-240
• Номер детали: 96160142
• Номинальная скорость 10 галлонов в минуту с общим динамическим напором 240 футов
• Концевые ступени насоса: 5 ступеней
• Двигатель серии SQ, 3/4 л.с.,
• Напряжение: 230 Вольт
• Подключение: 2-проводное (2 провода + земля) / однофазное / 60 Гц
• Трубное соединение: 1-1 / 4 «NPT
• Вытяжка усилителя: 8.5 А
• Минимальный диаметр ствола скважины: 2,99 дюйма
• Клапан: насос со встроенным обратным клапаном
Электрические характеристики Grundfos 10SQ07-240 (96160142)
• Тип двигателя MS3
• Потребляемая мощность — P1: 1,65 кВт
• Номинальная мощность — P2: 1,542 л.с.
• Основная частота: 60 Гц
• Номинальное напряжение: 1 x 200-240 В
• Коэффициент использования: 2,05 SF
• Номинальный ток: 8,5 A
• Коэффициент мощности: 1,00
• Номинальная скорость: 10700 об / мин
• Защита двигателя: Да
• Термозащита: внутренняя
• Длина кабеля (провода): 4.922 фута
О насосах Grundfos серии SQ
Насос Grundfos SQ является базовой моделью линейки погружных насосов Grundfos 3 «. Уникальные особенности делают серию SQ очень простой в установке и эксплуатации, а также обеспечивают надежную и постоянную подачу воды всегда; идеально подходит для бытового водоснабжения и любых критических применений водяных насосов с постоянным давлением. SQ может быть установлен без каких-либо дополнительных блоков управления и имеет небольшой диаметр 3 дюйма, что делает SQ отличным выбором для существующего бытового использование водной системы.Больше никогда не беспокойтесь о водоснабжении дома!
Как домашний водяной насос, вы можете быть уверены, что получите максимально надежную работу от насоса Grundfos SQ.
Обладает высококачественным двигателем с постоянными магнитами для высокой эффективности и такими мерами безопасности, как защита от перегрузки, защита от перегрева, защита от сухого хода. Grundfos SQ — очевидный выбор для использования в качестве основного домашнего водяного насоса в вашей системе водоснабжения.
Особые характеристики
• Превосходный низкоэнергетический домашний водяной насос, что делает его чрезвычайно эффективным для ваших домашних нужд водоснабжения
• Grundfos — одно из самых надежных производителей малых насосов. нестабильная подача напряжения за счет снижения скорости или остановки насоса, а также остановки и предотвращения повреждения насоса в случае работы всухую
• Плавный пуск для предотвращения гидроударов и электрических помех
• Автоматический перезапуск обеспечивает надежную подачу воды, когда это возможно
• Высокая пусковой момент, даже при низком напряжении питания, SQ обеспечивает надежное водоснабжение
Grundfos Серия SQ Приложение
• Бытовое водоснабжение
• Малые водопроводные сооружения
• Ирригация
Материалы конструкции
• Насос: полиэтилен / Нержавеющая сталь
• Насос: DIN W.-Нет. 1.4301
• Двигатель: нержавеющая сталь
• Двигатель: DIN W.-Nr. 1.4301
• Двигатель: AISI 304
Жидкость
• Перекачиваемая жидкость: вода
• Максимальная температура жидкости: 95 ° F
• Максимальная температура жидкости: 95 ° F
• Температура жидкости во время работы: 68 ° F
• Плотность: 62,29 фунт / фут³
Ватт / квадратный метр в лошадиные силы (метрические) / квадратный фут Преобразование — Преобразование ватт / квадратный метр в лошадиные силы (метрические) / квадратный фут (Вт / м² в л.с. / фут²)
Вы переводите единицы плотности теплового потока из ватт на квадратный метр в метрические лошадиные силы на квадратный фут
1 Вт / квадратный метр (Вт / м²)
=
0.00013 Метрическая мощность на квадратный фут (л.с. / фут²)
Калькулятор преобразования плотности теплового потока
знак равно
Единицы измерения БТЕ / час квадратный фут (БТЕ / ч ∙ фут²) Калорий / второй квадратный сантиметр (кал / с ∙ см²) фут-фунт / минута Квадратный фут (фут ∙ фунт / мин ∙ фут²) Лошадиная сила (метрическая система) / квадратный фут (л.с. / фут²) Джоуль на секунду квадратный метр (Дж / с ∙ м²) Килокалория / час Квадратный метр (ккал / час ∙ м²) Килокалория / час Квадратный фут (ккал / час ∙ фут²) Киловатт / квадратный метр (кВт / м²) Ватт / квадрат Сантиметр (Вт / см²) Ватт на квадратный дюйм (Вт / дюйм²) Ватт на квадратный метр (Вт / м²) Общие единицы Грамм Калорий / час Квадратный сантиметр (г ∙ кал / ч ∙ см²) БТЕ / минута квадратный фут (БТЕ / мин ∙ фут²) CHU / час квадратный фут (CHU / час ∙ ft²) Дина / час сантиметр (дин / час ∙ см) Эрг / час квадратный миллиметр (эрг / час ∙ мм²) Лошадиная сила (Великобритания) / квадратный фут (л.с. / фут²)
Единицы измерения БТЕ / час квадратный фут (БТЕ / ч ∙ фут²) Калорий / второй квадратный сантиметр (кал / с ∙ см²) фут-фунт / минута Квадратный фут (фут ∙ фунт / мин ∙ фут²) Лошадиная сила (метрическая система) / квадратный фут (л.с. / фут²) Джоуль на секунду квадратный метр (Дж / с ∙ м²) Килокалория / час Квадратный метр (ккал / час ∙ м²) Килокалория / час Квадратный фут (ккал / час ∙ фут²) Киловатт / квадратный метр (кВт / м²) Ватт / квадрат Сантиметр (Вт / см²) Ватт на квадратный дюйм (Вт / дюйм²) Ватт на квадратный метр (Вт / м²) Общие единицы Грамм Калорий / час Квадратный сантиметр (г ∙ кал / ч ∙ см²) БТЕ / минута квадратный фут (БТЕ / мин ∙ фут²) CHU / час квадратный фут (CHU / час ∙ ft²) Дина / час сантиметр (дин / час ∙ см) Эрг / час квадратный миллиметр (эрг / час ∙ мм²) Лошадиная сила (Великобритания) / квадратный фут (л.с. / фут²)
Наиболее популярные пары преобразования плотности теплового потока
Удаленная лаборатория | Сертификация и обучение
Подключение к удаленной лаборатории
Вы были перенаправлены на эту страницу, потому что у вас есть запланированное лабораторное время для учебного курса под руководством инструктора или самостоятельного учебного курса.Для подключения к удаленному рабочему столу на объекте лаборатории (чтобы вы могли выполнять лабораторные работы) вам потребуется:
- Активное бронирование
- Полномочия
- Учебные материалы
Если вы проходите курс под руководством инструктора, он предоставит вам материалы курса и сведения о полномочиях. Если вы занимаетесь самостоятельной лабораторией, ссылки на материалы были предоставлены в процессе регистрации, а ваши учетные данные указаны в электронном письме с подтверждением, которое направило вас сюда.
Если ваше письмо или инструктор хотят, чтобы вы подключились к VPN, щелкните ссылку ниже, чтобы получить доступ к своей лаборатории.
Примечание: Вам потребуются предоставленные учетные данные.
Если ваше письмо или инструктор хотят, чтобы вы подключились к веб-порталу, щелкните ссылку ниже, чтобы получить доступ к своей лаборатории.
Примечание: Вам потребуются предоставленные учетные данные.
Справка по подключению и использованию
Если у вас по-прежнему возникают проблемы с подключением к лабораторным работам или их использованием, попробуйте следующее:
- Убедитесь, что ваша лаборатория запланирована на запуск, когда вы пытаетесь подключиться.
- Тщательно проверьте предоставленные вам имя пользователя и пароль.
- Если вы используете VPN, убедитесь, что вы выбрали «Студент» в раскрывающемся списке под своим паролем. (Этот выбор недоступен на странице портала)
- Убедитесь, что в вашем браузере есть эти ссылки как надежные веб-сайты:
https://vpn.hperemotelab.com/ и https: //handson.hperemotelab.com / - Примите / подтвердите предупреждения о сертификате, которые вы получаете при попытке доступа.
Мы используем сертификат с подстановочным знаком (*). Проверьте сертификат, чтобы убедиться, что он «от» и «от» законного источника. (Большинство браузеров позволяют просмотреть сертификат перед тем, как принять его.) - Установите, обновите или используйте другой браузер, например Chrome или Firefox.
Вопросы по курсу под руководством инструктора
Обратитесь к партнеру по обучению, у которого вы зарегистрировались.Если вы находитесь в классе, поговорите с инструктором.
Вопросы по самостоятельному курсу
Чтобы найти информацию о вашем фактическом бронировании, посетите веб-сайт HPE Press.
- Щелкните ссылку «Войти» в правом верхнем углу.
- Щелкните «Комплекты удаленной лаборатории» посередине.
Вы также должны были получить электронное письмо относительно вашей регистрации.В нем есть ценная информация.
Пробовали описанное выше, но проблема не устранена?
HP открывает Центр передового опыта 3D-печати и цифрового производства площадью 150 000 кв. Футов
HP Inc. открыла двери в свой новый Центр передового опыта в области 3D-печати и цифрового производства в Барселоне, Испания, который является одним из крупнейших и наиболее передовых в мире центров исследований и разработок для технологий следующего поколения, приведших к Четвертой промышленной революции.Центр объединяет сотни ведущих мировых экспертов в области аддитивного производства на площади более 150 000 квадратных футов — размером примерно с три футбольных поля — чтобы изменить мировые методы проектирования и производства.
Площадка площадью более 3 акров в кампусе в Барселоне предназначена для развития портфеля промышленной 3D-печати HP и обеспечивает крупномасштабную производственную среду для сотрудничества с клиентами и партнерами в области цифровых производственных технологий, революционизирующих их отрасли.
«Новый Центр передового опыта HP в области 3D-печати и цифрового производства является одним из крупнейших и наиболее передовых центров исследований и разработок в области 3D-печати и цифрового производства на земле. Он действительно воплощает нашу миссию по преобразованию крупнейших отраслей мира с помощью устойчивых технологических инноваций», — сказал Кристоф Шелл, президент отдела 3D-печати и цифрового производства в HP Inc. «Мы объединяем значительные ресурсы HP и непревзойденный опыт в области промышленной 3D-печати вместе с нашими клиентами, партнерами и сообществом для внедрения технологий и навыков, которые позволят еще больше раскрыть преимущества цифровых технологий. изготовление.”
Центр передового опыта объединяет в одном месте сотни экспертов в области системной инженерии, анализа данных, программного обеспечения, материаловедения, дизайна, 3D-печати и цифрового производства. Считается, что это самая большая в мире группа специалистов по аддитивному производству.
Специально разработанный для активного сотрудничества между группами инженеров и научно-исследовательских работ HP, клиентами и партнерами, этот объект объединяет гибкие и интерактивные макеты, среды совместной разработки и парк новейших систем HP для 3D-производства пластмасс и металлов, чтобы создавать более быстрые и гибкие продукты. разработка и комплексные решения для заказчиков.Такие лидеры, как BASF, GKN Metallurgy, Siemens, Volkswagen и другие в автомобильном, промышленном, медицинском и потребительском секторах, продолжат сотрудничество с HP в области новых инноваций в области 3D-печати и цифрового производства в Центре.
Центр передового опыта в области 3D-печати и цифрового производства также отражает приверженность HP защите окружающей среды за счет включения фотоэлектрического навеса, обеспечивающего мощность 110 кВт, повторного использования дождевой воды для орошения и санитарных целей, оптимизации отопления, вентиляции и кондиционирования воздуха и естественного освещения, а также использования экологически чистых строительных материалов. с целью получения сертификата LEED (лидерство в энергетическом и экологическом дизайне).На уровне компании цель HP состоит в том, чтобы со временем использовать 100% возобновляемых источников энергии в своих глобальных операциях с целью достижения 60% к 2025 году.
Инвестиции HP в центр Барселоны создают одно из крупнейших в мире центров исследований и разработок в области 3D-печати и цифрового производства. Он значительно расширяет глобальные возможности HP в области 3D-печати и цифрового производства и расширяет возможности существующих инновационных центров в Корваллисе, штат Орегон; Пало-Альто, Калифорния; Сан-Диего, Калифорния; Ванкувер, Вашингтон; Барселона, Испания; и Сингапур, где HP недавно начала революционное сотрудничество с Технологическим университетом Наньян (NTU) и Сингапурским национальным исследовательским фондом (NRF) для продвижения 3D-печати, искусственного интеллекта, машинного обучения, материалов и приложений, а также инноваций в области кибербезопасности.
HP Inc.
www.hp.com/go/3DPrint
Система фильтрации Sta-Rite AG 100 кв. Футов с насосом 1,5 л.с. SRPLM100OF1260
Максимальная мощность при минимальном обслуживании
Удобство и эксплуатация, практически не требующая обслуживания, делают эту наземную систему разумным выбором. Благодаря модульной технологии среды Sta-Rite, эти системы справляются с нагрузками до 15 раз больше, чем песчаные фильтры аналогичного размера. Доступен с прочным насосом серии OptiFlo® большой производительности.
Характеристики
- Типовая установка — надземные бассейны
- Компактный дизайн — легко помещается в тесных помещениях. Элегантный матовый черный цвет
- Easy доступа — Позитив-Lok ™ стопорное кольцо проста в использовании. Конструкция с разделенным баком позволяет производить чистку с ополаскиванием на месте
- Превосходная загрузка грязи — гидросистема бака со сбалансированным потоком направляет воду через каждую сторону фильтрующего модуля.Равномерная загрузка грязью предотвращает засорение
- Удобное для чтения — информационные панели и установленный сверху манометр расположены для удобного считывания
- Варианты мощности — насос OptiFlo от 1 до 1-1 / 2 л.с.
Примечание. Рабочие пределы — рассчитаны на максимальное постоянное рабочее давление 50 фунтов на квадратный дюйм. Максимальная температура воды 104 ° F (40 ° C).
Технические характеристики:
Насос HP | 1-1 / 2 |
Шнур насоса | 3 фут.Заглушка Twist Lock |
Комплект шлангов (футы) | 6 |
Напряжение насоса | 115 |
Полный размер трубы насоса (дюймы) | 1-1 / 2 |
Напорный насос | горизонтальный |
Площадь фильтрации (кв.Футов) | 100 |
Расход (галлонов в минуту) | 100 |
Диаметр резервуара (дюймы) | 15 |
Высота резервуара (дюймы) | 28 |
Размер порта резервуара (дюймы) | 2 |
Максимальная мощность при минимальном обслуживании
The System: 2 Mod Media system от Sta-Rite — это сверхмощный фильтр, идеально подходящий для надземных бассейнов.Система Mod Media справляется с загрязнениями в 15 раз больше, чем песчаные фильтры аналогичного размера. Гидравлическая система бака со сбалансированным потоком направляет воду через каждую сторону фильтрующего модуля для равномерного загрязнения. Это предотвращает засорение и улавливает больше грязи между чистками, чтобы минимизировать время обслуживания. Вы можете пройти весь сезон, прежде чем вам понадобится чистка ваш наземный фильтр PLM.
- Чистить часто не получится, но сделать это легко — просто промойте место с помощью садового шланга
- Варианты бесшумных и высокоэффективных насосов снижают эксплуатационные расходы
- Компактная конструкция легко помещается в тесноте
Система Mod Media удаляет частицы размером до 20 микрон (средняя песчинка на пляже имеет диаметр от 100 до 2000 микрон!).
Простота распыления
Система System: 2 Mod Media представляет собой цельный фильтрующий модуль, который просто опускается в легкодоступный резервуар. Это надежно! Когда очистка необходима, просто снимите крышку (инструменты не требуются) и промойте модуль спреем, пока он еще находится на месте. * Тщательная очистка и быстрое возвращение в эксплуатацию занимает всего несколько минут.
Удобство и универсальность
Системы Mod Media малого диаметра идеально подходят для новых и модернизируемых установок.