Как определить скорость автомобиля по тормозному пути: Расчет скорости автомобиля по длине тормозного пути

Содержание

Остановочный путь

Остановочный путь

Путь реакции

Путь реакции это расстояние, которое автомобиль успел проехать с того момента, как вы заметили опасность, до того момента, как вы начали тормозить или поворачивать.

Путь реакции зависит от:
  • Скорости автомобиля. Путь реакции прямо пропорционален скорости: в 2 раза больше скорость = в 2 раза больше путь реакции.
  • Времени реакции. Нормальное время реакции человека составляет 0.5 — 2 сек. На время реакции оказывают влияние опыт, возраст, состояние водителя и многие внешние факторы. Обычно лучшее время реакции у опытных водителей, в возрасте 45 — 54 года.
Путь реакции можно существенно сократить, если вы:
  • Предвидите опасную ситуацию.
  • Внимательно следите за дорогой и готовы к действиям.
Путь реакции может существенно увеличиться, если
Расчет пути реакции

Допустим, автомобиль движется со скоростью 50 км/час и время реакции составляет 1.5 секунды.

  • Переводим км/час в м/с. 50 + 10 % = 55
    55 / 4 = 13.75 м/с
  • Умножаем скорость (в м/с) на время (в сек.) получаем пройденный путь. 13.75 * 1.5 путь реакции = 20.625 метра.

Тормозной путь

Тормозным путем называется расстояние, которое проезжает автомобиль с момента начала торможения и до полной остановки.

Тормозной путь зависит от:
  • скорости автомобиля, рост квадратичный, в 2 раза больше скорость => в 4 раза больше тормозной путь. в 3 раза увеличивается скорость => в 9 раз возрастает тормозной путь.
  • состояния дороги, играют роль уклон, состояние дорожного покрытия, сухая дорога или мокрая и пр.
  • массы автомобиля, у груженого автомобиля тормозной путь больше.
  • колес и тормозов, состояние тормозной системы, количество колес, качество протектора, наличие дополнительных систем торможения и пр.
Расчет тормозного пути

Очень трудно расчитать тормозной путь для абстрактного автомобиля. Обычно большинство задач сводится к тому, что зная тормозной путь на одной скорости, необходимо вычислить его для другой скорости. Зная, что зависимость квардратичная, это достаточно просто. Тем не менее есть некоторые цифры, которые можно брать за основу.

Считается, что средний автомобиль на хорошей сухой дороге, двигаясь со скоростью 10 км/час, имеет тормозной путь 0.4 метра. Соответственно, для скорости 20 км/час он составит 1.6 метра, 30 км/час — 3.6 метра, 50 км/час — 10 метров.

Более точные цифры можно получить, воспользовавшись формулой S = V² / (250 * k), в которой S это тормозной путь, V — скорость автомобиля в км/час, k — коэффициент трения колес по асфальту (0.8 для сухой дороги — 0.1 для льда). Формула дает результат для скорости 50 км/час — 12.5 метров.

Остановочный путь

Остановочный путь есть сумма пути реакции и тормозного пути. Задачи по вычислению остановочного пути сводятся к вычислениям пути реакции и тормозного пути.

Обычно в экзаменационных вопросах разница между вариантами ответов достаточно существенна. Вам не нужно вычислять подобные цифры с точностью до знака после запятой. Если приближенное вычисление показывает ответ «12», то, как правило, этого достаточно, если вам необходимо выбрать между вариантами ответов «5», «10» и «20».

Учебник ПДД | Содержание

Тормозной путь автомобиля

Длину тормозного пути своего автомобиля должен знать каждый водитель. Особенно важно понимать и осознавать, что длина торможения разнится не только от статуса авто, но и от вида дорожного покрытия и времени года.

Длина тормозного пути автомобиля

Длина тормозного пути автомобиля в зависимости от нескольких факторов может составить от 25 до 150 метров. Длина зависит от способности конкретной модели авто сбрасывать скорость до нужного показателя, включая остановку, и при этом оставаться устойчивым и управляемым. Теоретически для оценки тормозных характеристик авто применяют несколько показателей: тормозной путь, максимальное значение замедления, время срабатывания механизмов торможения, диапазон изменения усилий торможения, уменьшение эффективности торможения из-за сильного нагрева.

Расчёт тормозного пути автомобиля

Расчет тормозного пути автомобиля возможен по нескольким формулам. Теоретически длина автомобиля – это не что иное, как зависимость следующих величин: Sт = Vн х tср + Vн2 / 2aт. Умножение начальной скорости движения на время срабатывания тормозной системы, где aт – это замедление хода автомобиля.

Чтобы определить максимальное замедление ТС, нужно воспользоваться следующей формулой: amax=g*µhf, в которой g – это ускорение свободного падения, а под µhf подразумевается коэффициент сцепления шин с дорогой.

Тормозной путь легкового автомобиля

Тормозной путь легкового автомобиля – это расстояние, пройденное им с того момента, как произошло нажатие на педаль тормоза до полного прекращения вращения колес. От чего зависит метраж тормозного пути? Немаловажный фактор – это время года: зимой, когда на дорогах гололед, тормозной путь куда длиннее, и может составить около 100-150 метров. А вот летом, в жару, наоборот, не более 25-30 метров. Но все зависит и от конкретной марки авто и ее личных характеристик. Также коэффициент сцепления шин с дорогой зависит, собственно говоря, от самого дорожного полотна и качества шин.

Совет от Сравни.ру: как говорится, тише едешь – дальше будешь. Если вы планируете поездку в сильный снегопад или гололед, помните, в случае резкого торможения ваше авто не станет, как вкопанное моментально. Будьте внимательны за рулём.

Тормозной путь автомобиля: все что нужно знать

09.04.2020

Реклама наших партнеров

Торможение автомобиля на скорости. Каков тормозной путь на скорости 50, 80 и 110 км/час.

Большинство автопроизводителей любят хвастаться своей продукцией рекламируя таким образом различные технические характеристики машин, заостряя в основном внимание на динамике разгона с 0 — до 100 км/ч. Но ни одна автомобильная компания практически не говорит о том, насколько быстро останавливается на месте тот или иной их автомобиль. По нашему мнению, подобные данные крайне необходимы водителям, чтобы напоминать им о том, что движущейся по дороге объект невозможно остановить мгновенно. Естественно, что у каждого автомобиля из-за особенностей тормозной системы свой индивидуальный тормозной путь. Но все же, существует конкретная таблица усредненных значений показывающая, какой тормозной путь бывает фактически у любого автомобиля на определенной скорости движения. Советуем со своей стороны заучить ее на зубок каждому водителю.

Всем естественно и так понятно и об этом надо помнить, чем выше скорость вашего автомобиля, тем длиннее будет тормозной путь при внезапном экстренном торможении. Также надо учитывать и погодные условия, а заодно дорожное покрытие и само состояние автомобильной резины. Заучив как таблицу умножения параметры тормозного пути на разной скорости, вы сможете лучше контролировать свой автомобиль во время движения, поддерживать правильную дистанцию и в случае необходимости сможете вовремя и экстренно затормозить, избегая тем самым аварии. Особенно это важно для начинающих водителей-новичков, которые только недавно получили права и сели за руль автомобиля.

 

От чего зависит средний тормозной путь любого автомобиля.

Безусловно, тормозной путь любого автомобиля зависит от его скорости движения. Но это еще не все. От того, какой итоговый результат покажет та или иная машина зависит от ее технических характеристик, а также от дорожных и погодных условий, самого технического состояния автомобиля и естественно от износа резины.

Но и это еще не все друзья. Важную роль также играет и реакция водителя на препятствие, образовавшееся на дороге. Да, от того как мы с вами среагируем на опасность в пути на дороге, зависит итоговый (окончательный) тормозной путь автомобиля.

Вот дорогие друзья таблица средних значений тормозного пути при определенных скоростях, из которой Вы можете увидеть два основных и очень важных параметра, которые по-настоящему влияют на пройденное итоговое расстояние автомобиля при торможении.

Как мы с вами можем увидеть из таблицы, тормозной путь на прямую зависит от вашей скорости и от вашей реакции перед началом торможения. Ведь мы знаем, чем больше скорость движения, тем быстрее вы должны среагировать, приняв решение нажать на педаль тормоза. Но на большой скорости и пока вы за считанные доли секунды примете свое решение о торможении, а далее нажмете на педаль тормоза, за это время автомобиль проедет уже определенное расстояние, что в конечном итоге и отразится на итоговом значении тормозного пути машины.

Недавно было проведено исследование, которое показало, какое лишнее расстояние пути в среднем проезжает водитель на автомобиле, прежде чем он примет решение нажать на педаль тормоза. В конечном итоге полученные результаты сложили со средними значениями тормозного пути на определенных скоростях (замер с момента нажатия педали тормоза). В результате исследования были получены окончательные итоговые данные о длине тормозного пути с учетом нашей (водительской) реакции перед нажатием на педаль тормоза.

Скорость

Расстояние, которое проезжает автомобиль пока водитель не нажмет педаль тормоза

Тормозной путь с момента начала торможения

(с момента нажатия педали тормоза)

 

Общая длина тормозного пути

 

32 км/ч

12м или три длины автомобиля

48 км/ч

14м

23м или шесть длин автомобиля

64 км/ч

12м

24м

36м или девять длин автомобиля

80 км/ч

15м

38м

53м или тринадцать длин автомобиля

96 км/ч

18м

55м

73м или восемнадцать длин автомобиля

112 км/ч

21м

75м

96м или двадцать четыре длины автомобиля

Что может влиять на тормозной путь.

Как мы уже выше сказали, тормозной путь автомобилей друг от друга может отличаться в зависимости от различных факторов. Вот главные факторы, которые напрямую влияют на тормозной путь машины:

 

Скорость.

Как вы можете видеть выше на картинке и в самой таблице, высокая скорость автомобиля приводит к увеличенному тормозному пути. Но помимо самой скорости как видно, немаловажную роль играет и скорость вашей реакции перед тем, как вы нажмете на педаль тормоза. В среднем у большинства водителей скорость реакции на экстренную ситуацию на дороге при принятии решения о торможении, примерно одинаковая. Как мы видим из таблицы, чем выше скорость, тем длиннее будет пройденный путь до того самого момента, пока мы не нажмем на педаль тормоза. И это с учетом того, что скорость нашей с вами реакции не изменяется.

Это весомый аргумент тому, чтобы побудить водителей не нарушать скоростной режим движения. Особенно это необходимо в населенных пунктах в черте города. Вот почему во многих городах установлены ограничения скорости в пределах 40 км/час.

 

Дорожные условия.

Также необходимо знать и о том, что на мокрой или обледенелой дороге тормозной путь конечно же увеличивается. Дело в том, что на скользкой поверхности сцепление автомобиля с дорогой сильно снижается, что и приводит в случае торможения к увеличению тормозного пути.

Например, в гололед тормозной путь любого автомобиля может увеличиться в десятки раз!

Состояние алкогольного или наркотического опьянения.

Управление автомобилем в состоянии алкогольного или наркотического опьянения на самом деле тоже влияет на итоговый тормозной путь машины. Дело в том, что алкоголь или наркотики снижают и замедляют скорость реакции водителя в несколько раз. Соответственно все движения за рулем будут осуществляться медленнее. Хотя это может быть и не заметным со стороны, но на самом деле реакция пьяного водителя при торможении (и не только) действительно будет снижена. А на дороге, как мы с вами знаем, все решают обычно какие-то миллисекунды. Именно поэтому водитель в пьяном состоянии за рулем очень опасен. Ведь в случае экстренного торможения водитель в состоянии алкогольного или наркотического опьянения при необходимости нажмет на педаль тормоза с запоздалой реакцией. В итоге автомобиль, прежде чем начнет останавливаться, проедет дополнительно еще какое-то приличное расстояние, что в конечном итоге добавит к тормозному пути еще лишних метров.

 

Шины.

Шины авто также являются важным фактором, который влияет на итоговый тормозной путь автомобиля. Во-первых, такая длина тормозного пути зависит от степени износа протектора резины, а также и от марки покрышек. Естественно, чем дороже марка и модель резины, тем больше и надежней она обеспечивает автомобилю сцепление с дорогой. Кроме того, на мокрой дороге тормозной путь зависит еще и от состояния протектора резины, и от самой ее спецификации. Если резина в достаточной степени изношена, то глубина протектора шины будет небольшой, что приведет к недостаточному отводу воды с покрышек. В результате чего уменьшится сцепление с дорогой, а это в свою очередь повлияет на тормозной путь машины при торможении.

В том числе не стоит забывать и о давлении в шинах, которое необходимо поддерживать в соответствии с рекомендациями автопроизводителя. Помните друзья, что низкое давление в шинах (или слишком высокое) приведет к увеличению тормозного пути на любой в принципе дороге. Поэтому очень важно не только следить за самим состоянием покрышек, но и вовремя менять их на новые, проверяя периодически давление в них.

 

Техническое состояние транспортного средства.

Конечно же, любой автомобиль должен выезжать на дорогу только в приемлемом исправном техническом состоянии. Для этого необходимо периодически проводить плановую диагностику всех важных систем автомобиля, а также заодно вовремя проводить техническое обслуживание и необходимый ремонт.

Помните пожалуйста о том, что техническое состояние автомобиля напрямую влияет на ее тормозной путь в случае экстренного торможения.

Например, плохие тормозные колодки, тормозные диски или барабаны, а также старая тормозная жидкость могут привести к увеличению тормозного пути автомобиля в два раза.

Помните также и о том, что помимо технического состояния транспортного средства вы должны содержать машину в чистом виде. Например, грязное лобовое стекло может стать причиной тому, что вы можете не увидеть (или не вовремя заметите) на дороге препятствие и слишком поздно нажмете на педаль тормоза. В итоге тормозной путь машины может существенно увеличиться, что естественно может привести к аварии.

В том числе и грязные передние фары могут недостаточно освещать дорогу в темное время суток. В таком случае вы друзья рискуете попросту не заметить вовремя опасность на дороге и среагируете на нее слишком поздно, увеличив тем самым тормозной путь своего автомобиля.

 

Отвлечение внимания на дороге.

Когда мы находимся за рулем, то мы должны быть максимально внимательны и сосредоточены конкретно на дороге. Но к большому сожалению, нас часто и что-то отвлекает на дороге, в результате чего наша реакция за рулем снижается и это обычно приводит к ДТП (к аварии).

К примеру, тот же главный враг водителя — мобильный телефон, или смартфон, или планшет. Согласно действующего законодательства в нашей стране действует запрет на использование мобильных устройств во время движения за рулем автомобиля. Но к нашему сожалению, этот действующий закон мало кто из водителей соблюдает.

Но этот запрет друзья на самом деле сделан неспроста. Дело в следующем, согласно проведенным исследованиям такие разговоры по сотовому телефону за рулем автомобиля отвлекают водителя и снижают его внимание. В том числе, из-за мобильного телефона реакция водителя также сильно падает. Например, было официально установлено, что ведущий разговоры по мобильному телефону водитель, во время движения на машине начинает себя вести точно также, как и водитель управляющий автомобилем в состоянии легкого алкогольного опьянения. Почему же так происходит? А дело все в том, что наш с вами мозг не безграничен и не может обрабатывать слишком много информации одновременно. В итоге получается, когда мы с вами разговариваем по телефону за рулем машины, то наша реакция снижается в несколько раз, что часто и становится причиной аварий. Например, из-за того, что водитель не вовремя начал тормозить, это в итоге привело к увеличению тормозного пути машины.

Все вышеуказанные факторы напрямую влияют на итоговый тормозной путь в случае торможения автомобиля. Ведь все эти вещи приводят к увеличению времени для полной остановки машины, что в конечном итоге ведет к более длинному тормозному пути.

Конечно же, в нашей статье мы указали друзья не все причины, по которым может увеличиться тормозной путь. На самом деле их существует огромное количество. Но мы указали самые важные причины и факторы, которые оказывают непосредственное влияние на тормозной путь любого транспортного средства.

 

 

Источник: 1gai.ru

Реклама наших партнеров

Акционные товары

Зависимость тормозного пути от способов торможения

Всем привет! Последнее время я все чаще слышу от разных водителей и инструкторов по контраварийному вождению автомобиля рекомендации хитрых способов воздействия на педаль тормоза, которые, по их мнению, должны сократить тормозной путь при экстренном торможении автомобиля. Например, бытует утверждение, что прерывистое нажатие на педаль тормоза при торможении с АБС на льду позволяет сократить тормозной путь на 30% по сравнению с торможением в пол. Такие лайфхаки слышать все более странно, ведь чем дальше двигается автопром и чем современнее электронные системы активной безопасности, тем меньше вариантов нажатия на педаль тормоза при необходимости экстренной остановки. Спорить и теоретизировать можно долго, поэтому мы с коллегами решили попробовать разные способы торможения, сравнить их друг с другом и снять на видео, чтобы интересующийся читатель мог всё увидеть своими глазами.

Методика измерений

Мы провели сравнительные тесты, не претендующие на точность измерения абсолютной величины тормозного пути, но позволяющие увидеть невооруженным глазом значительную разницу в результатах в зависимости от того или иного способа торможения.

Условия эксперимента

Я хочу продемонстрировать результаты двух экспериментов: на льду и на асфальте.

На льду тормозили на одной и той же машине Mazda RX-8 на шипованных шинах Nokian Hakkapeliitta 7. Повторную серию экспериментов провели на авто Ford Focus III. Покрытие ледяное, слегка присыпанное снегом. Все параметры старались держать неизменными, включая скорость перед началом торможения – 60 км/ч, менялись только способы торможения. За эталон мы приняли тормозной путь при экстренном торможении с АБС и нажатой до отказа педали тормоза, все остальные результаты сравнивали с этим.

На асфальте использовались Mazda RX-8, Volkswagen Touareg и две одинаковые машины ВАЗ 21099.

Единицы измерений

В качестве наглядного ориентира использовались дорожные конусы, расставленные на одной прямой с шагом примерно 10 метров. Начало торможения было всегда в одном и том же месте – у первого конуса, далее засекались точки остановки и сравнивались между собой. Определение тормозного пути в абсолютных единицах (метрах) не проводилось.

На льду сравнивали тормозной путь одной и той же машины при разных способах торможения, на асфальте в некоторых случаях проводили аналогичные сравнения, в некоторых – оценивали разницу в тормозных путях при одновременном торможении двух машин.

Исключение влияния водителя и автомобиля

Кроме того, мы с коллегами менялись водителями, менялись машинами, чтобы понять – все ли объективно, или результаты получились именно такими из-за особенностей водителя или из-за автомобиля. Практика показала, что ни водитель, ни автомобиль, никак не повлияли на результаты (заметные глазу, я имею в виду), поэтому достоверность результатов на видео достаточно высока.

Исключение влияние нестабильности дорожного покрытия

Снежно-ледяное покрытие при постоянном воздействии на него имеет свойство разрушаться, таять, заглаживаться и т.п., что может привести к изменению коэффициента сцепления шин с дорогой. Поэтому, чтобы исключить влияние изменения свойств покрытия на результаты мы замеряли эталонный тормозной путь (при торможении «в пол» с АБС) до и после всех испытаний, чтобы убедиться в их идентичности. Нам повезло: мы получили, что при последнем замере тормозной путь оказался идентичен (на глаз) первоначальному, а значит в процессе всех замеров свойства покрытия изменялись незначительно, и эти изменения не оказали заметного влияния на результаты. Оба замера я продемонстрирую на видео.

Представление результатов

Все результаты были сняты на видео, которые я и хочу вам продемонстрировать. Видео я приведу единичные, хотя реальных измерений было больше – с целью набрать статистику и уменьшить погрешность, и результаты друг от друга практически не отличались.

На самом деле мы с коллегами не увидели ничего нового, поскольку упражнения на отработку экстренного торможения мы регулярно проводим на каждом курсе зимней и летней контраварийной подготовки водителей и все результаты были для нас ожидаемы.

Кроме того, я приведу результаты всех измерений в таблице и сделаю выводы.

Сравнительные тесты способов экстренного торможения на льду

Итак, друзья, видео в студию!

Торможение с АБС «в пол»

Прерывистое торможение с АБС

Торможение на грани срабатывания АБС

Торможение в пол с АБС и маневром (смена полосы движения)

Торможение в пол с АБС на змейке

Торможение без АБС в пол с блокировкой колес- юзом

Прерывистое торможение без АБС

Торможение без АБС на грани блокировки колес

Контрольное торможение с АБС в пол

Кроме того, мы провели отдельное сравнение экстренного торможения при включенной передаче на МКПП и выжатой педали сцепления. На данный момент, эти две видеозаписи недоступны, но, я надеюсь, вы доверяете информации в этом блоге и поверите мне на слово 🙂

Результаты сравнительных измерений тормозного пути при разных способах экстренного торможения на льду

В таблице ниже я привожу результаты от наименьшего тормозного пути к наибольшему. Напомню, начальная скорость автомобиля была во всех замерах 60 км/ч, а эталоном мы считали тормозной путь при торможении с АБС в пол, он составил примерно 12 корпусов легкового автомобиля.

Занятое место

Способ торможения

Отличие от эталонного тормозного пути, в длинах корпуса машины

1

торможение в пол без АБС с блокировкой колес (юзом)

 — 1,5 корпуса

2

торможение в пол с АБС

эталон, ~12 корпусов

3

торможение в пол с АБС с маневром

 +1 корпус

4

торможение в пол с АБС на змейке

 +2 корпуса

5

прерывистое торможение без АБС

 +2 корпуса

6

торможение без АБС на грани блокировки колес (threshold braking)

 +4 корпуса

7

прерывистое торможение с АБС

 +6 корпусов

8

торможение на грани срабатывания АБС

 +8 корпусов

Что же касается сравнения тормозных путей при торможении на передаче и с выжатой педалью сцепления, то они оказались одинаковыми.

Экстренное торможение на скользкой дороге. Выводы и рекомендации водителю

Итак, из результатов нашего эксперимента явно следует, что самый короткий тормозной путь водитель получает при торможении в пол, независимо от наличия АБС в автомобиле. Этот же способ нажатия на педаль тормоза является одновременно наиболее естественным для водителя. Поэтому для необходимости экстренной остановки можно рекомендовать водителю тормозить в пол на любой машине.

Все остальные способы торможения неэффективны для экстренной остановки автомобиля, и особенно ярко проигрыш заметен на автомобиле с АБС. И это неудивительно: неужели хитрый русский водитель и правда надеется обмануть инженеров таких компаний как Bosch, Mercedes, BMW, которые вложили не один миллиард долларов в исследования и разработку электронных систем активной безопасности? 🙂

Отдельно отмечу риск заноса при торможении с блокировкой колес на неоднородном покрытии. Для снижения риска заноса как раз подходит прерывистое торможение, но оно, как видно из таблицы, неэффективно в плане быстрой остановки, а также сложно в исполнении при угрозе столкновения в силу особенностей психофизиологии человека. Поэтому водителю придется выбирать: либо тормозить во избежание столкновения – с блокировкой колес и риском заноса, либо тормозить прерывисто – во избежание заноса, но в ситуации без риска столкновения. Одновременно решить обе задачи на автомобиле без АБС большинству водителей не под силу, и это как раз обеспечивает автомобиль с АБС.

Кроме того, водителям с МКПП я бы рекомендовал экстренно тормозить с выжатой педалью сцепления, поскольку на тормозной путь это не влияет и снижает риск заглушить двигатель в момент остановки. Как, собственно, и предлагают сами разработчики АБС – компания Bosch.

Сравнительные тесты способов экстренного торможения на асфальте

Сравнение торможения юзом и прерывистого торможения

Сравнение торможения юзом и на грани блокировки колес

Сравнительное торможение двух автомобилей – с АБС и без АБС

Часто в этом месте возникают возражения вроде того, что это совершенно разные машины с разными шинами, тормозами, а главное – массой. А значит, проводить такое сравнение некорректно. Чтобы доказать корректность такого сравнения мы сравнили также и тормозные пути при включенной АБС на обоих автомобилях и увидели, что машины тормозят одинаково. А значит, имеющиеся конструктивные отличия автомобилей заметного вклада в тормозной путь не вносят. Вот как это выглядело:

Торможение на асфальте без АБС с блокировкой колес – юзом (80 км/ч)

Торможение на асфальте с АБС (80 км/ч)

Видео для скоростей 90 и 100 км/ч я не выкладываю, поскольку они сняты неудобно для визуального анализа, но констатирую, что разница увеличивается при увеличении скорости.

Результаты сравнительных измерений тормозного пути при разных способах экстренного торможения на асфальте

Результаты для 60 км/ч

В таблице ниже я привожу результаты от наименьшего тормозного пути к наибольшему. Эталоном также считали тормозной путь при торможении с АБС в пол, он при 60 км/ч составил примерно 3 корпуса легкового автомобиля.

Занятое место

Способ экстренного торможения, начальная скорость – 60 км/ч, дорожное покрытие – асфальт.

Отличие от эталонного тормозного пути, в длинах корпуса машины

1

торможение без АБС на грани блокировки колес (threshold braking)

-1 м

2

торможение в пол без АБС с блокировкой колес (юзом)

равен эталону, 3 корпуса

3

торможение в пол с АБС

эталон, 3 корпуса

4

ступенчатое торможение без АБС

 +1 корпус

Экстренное торможение на асфальте до 60 км/ч. Выводы и рекомендации водителю

Как видно, спортивное «кольцевое» торможение (threshold braking) действительно имеет небольшое преимущество перед остальными способами торможения. Однако оно может быть рекомендовано водителям только для спортивного использования. В экстремальной ситуации на дороге с риском ДТП дозировать усилие на педали тормоза крайне сложно, даже несмотря на хорошую натренированность этого навыка, поэтому наиболее вероятно резкое нажатие на педаль с полной блокировкой колес.

При этом видно, что на 60 км/ч тормозной путь юзом идентичен тормозному пути автомобиля с АБС и лишь на 1 метр уступает тормозному пути на грани блокировки. В связи с этим торможение в пол на автомобилях с АБС можно считать не просто наиболее естественным для водителя, но и достаточно эффективным. По крайней мере, на скоростях до 60 км/ч на сухом горячем асфальте.

Ступенчатый же способ торможения привел к увеличению тормозного пути на 1 корпус и также сложен для исполнения при риске столкновения автомобиля, поэтому не имеет смысла при экстренном торможении. Его можно рекомендовать как превентивное торможение на дорогах с неоднородным покрытием во избежание заноса.

Результаты для 80 км/ч и выше

Далее я сравнил тормозные пути с АБС/без АБС юзом, чтобы понять, будет ли влиять перегрев шин в пятне контакта при торможении с блокировкой колес на более высоких скоростях. Замеры сделал на 80, 90 и 100 км/ч. Шины после этого эксперимента стали, выражаясь языком Алексея Попова – бессменного комментатора Формулы 1, оквадрачены :))), но результат того стоил. Из видео видно, что на 60 км/ч тормозные пути юзом и с АБС равны, а на 80 машина юзом уезжает на 1 корпус дальше. При увеличении скорости эта разница возрастает. В итоге вот что получилось:

Скорость до начала торможения

Величина тормозного пути юзом по сравнению с АБС

60 км/ч

равны

80 км/ч

превышает на 1 корпус

90 км/ч

превышает на 2 корпуса

100 км/ч

превышает на 3 корпуса

Экстренное торможение на асфальте выше 60 км/ч. Выводы и рекомендации водителю

Итак, торможение юзом не уступает торможению в пол на автомобиле с АБС до скорости 60 и, видимо даже, 70 км/ч. Уже на 80 км/ч юз проигрывает торможению с АБС в 1 корпус, и эта разница пропорционально растет при увеличении скорости.

Что можно порекомендовать водителю автомобиля без АБС в случае необходимости экстренной остановки на летнем асфальте? Я вижу два разумных варианта:

  • двигаться со скоростями не более 80 км/ч
  • двигаться с максимально разрешенными за городом скоростями, но быть предельно бдительным, чтобы не допустить ситуации, требующей экстренного торможения.

Способы экстренного торможения. Выводы

  • На автомобиле с АБС, коих сейчас подавляющее большинство, самым и единственно эффективным способом экстренной остановки автомобиля является экстренное торможение «в пол» — с резким и сильным однократным нажатием на педаль тормоза, независимо от скорости и типа дорожного покрытия. Если вас кто-то будет убеждать в большей эффективности иных способов торможения с АБС – выводы делайте сами…
  • На автомобилях без АБС в экстремальной ситуации, связанной с угрозой столкновения, также наиболее эффективно торможение в пол – с полной блокировкой всех колес, независимо от типа дорожного покрытия. Такой способ торможения обеспечивает наиболее быструю остановку, однако не дает возможности объезда препятствия во время торможения и создает риск заноса автомобиля в случае неоднородного покрытия. Придется всем этим пожертвовать ради быстрой остановки.
  • Исключение составляет торможение юзом на сухом асфальте при летних температурах и скоростях не более 70 км/ч: оно так же эффективно, как торможение в пол с АБС. При более высоких скоростях юз проигрывает из-за перегрева шин в пятне контакта, чего не наблюдается на скользких покрытиях. Однако за неимением альтернативы торможение юзом для большинства водителей остается единственно выполнимым вариантом даже на больших скоростях. Поэтому водителям автомобилей без АБС крайне рекомендуется предотвращать ситуации, требующие экстренного торможения на асфальте с высоких скоростей.
  • Прерывистое торможение на автомобилях без АБС пригодно лишь для сохранения курсовой устойчивости автомобиля при торможении на неоднородном или очень скользком покрытии в ситуациях без угрозы ДТП. В качестве средства для быстрой остановки в случае угрозы столкновения прерывистое торможение неэффективно.

Скорость автомобиля и безопасность. Часть 1

Эта первая статья из небольшой серии посвященной положительному и отрицательному влиянию скорости на нашу жизнь. Все статьи для сжатия материала будут представлены в виде тезисов.

Серия статей написана на основе Отчета по управлению скоростью от 2006 года составленного по результатам конференции представителей транспортных министерств Европы.

В последующих статьях речь пойдет об окружающей среде, о воздействии на общество в долговременной перспективе, а также о преимуществах, которые предоставляет высокая скорость. Также будут приведены примеры ограничения и принципы назначения скоростных режимов в городах развитых стран.

Но сначала о самом наболевшем – о безопасности. Как известно в России в год гибнет в ДТП 1 человек из 6 000. Разберемся, как скорость влияет на количество ДТП и вероятность смертельного исхода. Основной упор будет сделан на взаимодействие пешехода и автомобиля, как наиболее сильно конкурирующих объектов дорожного движения.

Содержание

Скорость и вероятность ДТП
Скорость и частота ДТП
Влияние неоднородности скорости на ДТП
Влияние скорости на тяжесть ДТП
Влияние скорости на область обзора
Выводы


Скорость и вероятность ДТП

Рассмотрим остановочный путь автомобиля. Длину остановочного пути можно рассчитать, зная время реакции водителя и длину тормозного пути автомобиля после нажатия на тормоз.

Среднее время реакции составляет 1 секунду. При увеличении скорости движения увеличивается и пройденное за 1 секунду расстояние. Расстояние, пройденное с момента нажатия педали до полной остановки, пропорционально квадрату скорости. При увеличении скорости с 50 км/ч до 80 км/ч тормозной путь увеличивается в 2 раза. Соответственно избежать столкновения намного тяжелее.

Необходимо также учитывать, что на сыром асфальте тормозной путь увеличивается на 25%. То есть тормозной путь автомобиля с 60 км/ч на сыром асфальте будет равен тормозному пути на 70 км/ч на сухом асфальте.

При скорости автомобиля 80 км/ч время реакции в пересчете на дистанцию займет 22 метра. Дополнительно на сухом асфальте водителю потребуется минимум 36 метров для полной остановки.

Если ребенок выбежит на дорогу перед водителем на расстоянии 36 метров, то почти наверняка он умрет при начальной скорости автомобиля 70 км/ч, получит увечья при скорости автомобиля 60 км/ч, а при скорости автомобиля 50 км/ч водитель избежит столкновения.

Но если ребенок выбежит на дорогу за 15 метров перед автомобилем, он, скорее всего, получит смертельные травмы, даже если автомобиль двигается со скоростью 50 км/ч.

[box type=»info» style=»rounded»]Рассчитать длину остановочного пути и время торможения, при различных условиях (начальная скорость, время реакции, тип покрытия) можно с помощью калькулятора. На английском языке можно найти упрощенный вариант.[/box]

[box type=»info» style=»rounded»]При нормальных условиях приблизительную длину остановочного пути можно рассчитать по формуле (Скорость [км/ч] разделить на 10 и возвести в квадрат)[/box]

Скорость и частота ДТП

Проектные и функциональные характеристики дорог сильно влияют на зависимость между скоростью и частотой аварий. Влияет, например, наличие и вид пересечений, присутствие пешеходов и велосипедистов.

В более сложных ситуациях риски аварий и влияния скорости больше.

Скоростные магистрали, например, это простые случаи с меньшими рисками аварий. Городские улицы, наоборот, более комплексные с более высокими рисками ДТП.

Основными жертвами ДТП в городских условиях являются пешеходы, велосипедисты, мотоциклисты. Основные факторы, способствующие этому – разница в скорости и в весе.

В южной Австралии проводили сравнение между рисками из-за превышения скорости с рисками из-за содержания алкоголя в крови. Было принято, что при 60 км/ч и 0 промилле относительные риски равны единице.

С 70 км/ч относительные риски начинают резко расти. Это превышение всего на 10 км/ч и соответствует 0.8 промилле алкоголя в крови при 60 км/ч.

Влияние неоднородности скорости на ДТП

Неоднородность скорости в транспортном потоке приводит к увеличению количества обгонов и, как следствие, более высокому уровню рисков. Высокий разброс скоростей тесно связан с авариями со смертельным исходом на всех дорогах — городских и загородных.

Чаще всего снижение скорости приводит к снижению неоднородности скоростей в потоке.

Частота аварий вырастает на 10-15% при превышении средней скорости на 1 км/ч. При превышении средней скорости потока на 10 и более км/ч количество аварий начинает резко расти для городских дорог. Для загородных дорог рост количества аварий не настолько критичен.
Из графика также видно, что уменьшение скорости отдельного автомобиля относительно средней скорости потока не приводит к увеличению числа аварий.

Влияние скорости на тяжесть ДТП

Даже если превышение скорости не является основной причиной аварии, от скорости в момент столкновения сильно зависит тяжесть последствий ДТП. Приблизительная зависимость количества тяжелых аварий и аварий со смертельным исходом от изменения скорости движения представлена на графике.

Повышение скорости на 10% приводит к увеличению количества всех аварий на 21%, к увеличению количества тяжелых аварий или аварий со смертельным исходом на 33%, к увеличению количества аварий со смертельным исходом на 46%. Снижение скорости на 10% — к уменьшению этих видов аварий на, соответственно, 19%, 27% и 34%.

Ситуация сильно зависит от типа дороги и допустимой скорости на этих дорогах. На графике ниже представлен прирост ДТП при изменении скорости движения на 1 км/ч для различных скоростей движения.

Наиболее серьезное влияние на тяжесть аварии при изменении скорости, как видно из таблицы, приходится на дороги с низкими допустимыми скоростями. Это городские дороги.

Тяжесть последствий сильно зависит от участников дорожного движения. Пешеходы, велосипедисты и мотоциклисты имеют большой риск получения серьезных травм, так как они не защищены. У них нет металлического каркаса, ремней и подушек безопасности.

Вероятность гибели пешехода в ДТП увеличивается с ростом скорости столкновения. Расследования показали, что при столкновении с пешеходом на скорости 30 км/ч 90% пешеходов выживают, в то время как столкновения на скорости 50 км/ч приводят к гибели 80% пешеходов.

Водитель и пассажиры автомобиля при этом практически не страдают.

Влияние скорости на область обзора

При увеличении скорости движения область обзора водителя существенно уменьшается. Это физиологическая особенность организма человека. Таким образом, высокая скорость в городских условиях не дает водителю возможность правильно спрогнозировать ситуацию, потому что он не видит окружающую обстановку.

На скорости 40 км/ч угол обзора водителя составляет 100 градусов. Это позволяет видеть препятствия на дороге, а также оценивать ситуацию справа и слева от дороги. На скорости 130 км/ч угол обзора составляет 30 градусов и менее, что значительно снижает возможность оценки водителем потенциальной опасности.

Выводы

Высокая скорость является причиной трети всех ДТП. Кроме того, высокая скорость отягчает последствия ДТП, произошедших по другим причинам.

Влияние скорости на несчастные случаи особо серьезно в городах, где имеет место взаимодействие нескольких групп участников дорожного движения: автомобили, пешеходы, велосипедисты.

Существует порог скорости автомобиля, выше которого организм пешехода физически не может выжить. При столкновении на скорости 45 км/ч выживает только 50 % пешеходов.

Для снижения травматизма на дорогах необходимо принять меры для соблюдения обоснованного скоростного режима, а также свести к минимуму разброс скорости в потоке.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оценка тормозного пути автомобиля с антиблокировочной системой при дорожных испытаниях Текст научной статьи по специальности «Механика и машиностроение»

Транспорт

происходит не за счет непосредственного взимания платы за проезд, а ввиду повышения уровня экономической интеграции хозяйствующих субъектов региона.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Чванов В.В. Оценка эффективности мероприятий по повышению безопасности дорожного движения // Дороги и мосты : сб. ст. ФГУП Ро-сдорНИИ. М., 2005. Вып. 22/2.

2. Отчеты Отдела Государственной инспекции безопасности дорожного движения Управления внутренних дел по городу Красноярску о динамике регистрации транспортных средств и статистике дорожно-транспортных происшествий.

3. Jon Inge Lian, Nils Fearnley The Oslo Toll Ring and Infrastructure Investment Scheme // Institute

of Transport Economics, Oslo, Norway.Paper of European Transport Conference in Strasbourg, 3-5 October 2005.

4. О структуре расходов на оплату услуг членов домашнего хозяйства : отчеты Федеральной службы государственной статистики // Федеральная служба государственной статистики : сайт. URL: http://www.gks.ru/. (дата обращения 10.12.2015).

5. Irina Solskaya, Oksana Freidman Trends Shaping and Performance Evaluation Transport and Logistics Cluster // The 11th International Conference on Logistics & Sustainable Transport 2014. University of Maribor, Faculty of Logistics Celje, Slovenia, 19-21 June 2014.

6. Молотков Ю. И. Системное управление социально-экономическими объектами и процессами. Новосибирск : Наука, 2004. 509 с.

УДК 629.113.066 Витковский Сергей Леонтьевич,

к. т. н., доцент, кафедра «Автомобильный транспорт», Братский государственный университет,

тел. 8950-117-8825, e-mail: [email protected]

ОЦЕНКА ТОРМОЗНОГО ПУТИ АВТОМОБИЛЯ С АНТИБЛОКИРОВОЧНОЙ СИСТЕМОЙ

ПРИ ДОРОЖНЫХ ИСПЫТАНИЯХ

S. L. Vitkovsky

BRAKING PATH EVALUATION OF AUTOMOBILE WITH ABS BY ROAD TESTING

Аннотация. В статье представлена методика вывода параметров, характеризующих процесс торможения автомобиля с антиблокировочной системой. Приводится диаграмма торможения, наглядно представляющая процесс торможения при наличии антиблокировочной системы тормозов. Она наглядно демонстрирует вклад антиблокировочной системы в уменьшение тормозного пути автомобиля. Диаграмма включает четыре характерных участка процесса экстренного торможения до полной остановки, в том числе участок, на котором происходит более интенсивное торможение, определяемое работой АБС. Предлагается способ определения количественных параметров при проведении дорожных испытаний, определяющих исправное состояние антиблокировочной системы. Вводятся понятия «уменьшение тормозного пути при включении АБС» и «длина юзового следа, характеризующая момент выключения АБС» при достижении скорости автомобиля достаточно низкого значения. Предложена формула для вычисления тормозного пути Бт(А], Vот). Приведены данные сравнения величин тормозного пути при экстренном торможении при скоростях 40, 60 и 80 км/ч. Представленную методику можно использовать как элемент встроенной диагностики автомобиля.

Ключевые слова: тормозной путь, антиблокировочная система, безопасность дорожного движения, тормозные свойства автомобиля, проведение дорожных испытаний, диаграмма торможения автомобиля.

Abstract. The term «braking diagram of automobile with ABS» is introduced. Computer program for braking path evaluation has been created. This program gives the same results that are obtained with analytical expression. Braking diagram of automobile with ABS has four parts. The second part shows more intensive braking process, defined by ABS. The terms «decreasing of braking path with ABS» and «wheel-track length that shows when ABS is off» are introduced. Braking distance as a function of automobile velocity is calculated by 40, 60, 80 km/h. Stopping distance decrease 3.5 m, when ABS is on by 80 km/h. Analytical expressions are obtained. These instruments are able to solve many problems as giving one’s expert opinion on road traffic accident.

Keywords: braking path, anti-lock braking system, road safety, brakes operating characteristics, road testing, automobile braking diagram.

Введение

Порядок проведения дорожных испытаний тормозной системы автомобиля представлен в ГОСТ Р 51709-2001 [1]. С 2010 года действует Технический регламент о безопасности колёсных транспортных средств [2], утверждённый постановлением Правительства РФ № 720 от 10 сентября 2009 г. Он содержит требования к АТС, обеспе-

чивающие безопасность дорожного движения. В соответствии с Техническим регламентом тормозные системы эксплуатируемых транспортных средств должны проверяться на эффективность и устойчивость автомобиля при торможении. Эффективность торможения определяют тормозным путём |$г или совокупностью установившегося замедления /уст и временем срабатывания тормозной

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Фх

0,2 0,5

Рис. 1. Эффект работы АБС

1 S

системы Тср. При наличии АБС контролируют надёжность крепления элементов, работу сигнальной лампы АБС, момент отключения АБС (по сигнальной лампе) при снижении скорости не ниже 10 км/ч, отсутствие следов блокирования колёс (юза) и их появление при скорости не более 15 км/ч. Требования к параметрам эффективности такие же, как и для тормозных систем без АБС.

Цель данного исследования состоит в определении конкретных параметров торможения автомобиля с АБС при дорожных испытаниях, что может быть использовано при внесении поправок в Технический регламент. При проведении автотехнических экспертиз также необходимо точно определять значение тормозного пути для установления факта наличия технической возможности избежания наезда при экстренном торможении. Однако дифференциация его в зависимости от наличия или отсутствия АБС в технической литературе отсутствует (например [3]).

Постановка и решение задачи

АБС — техническое средство, обеспечивающее повышение активной безопасности автомобиля. При её работе повышается устойчивость и появляется управляемость в процессе экстренного торможения. Эффект снижения тормозного пути при использовании АБС определяется известной зависимостью [1, 4] коэффициента сцепления колеса с дорогой фх от скольжения (рис. 1). При отсутствии АБС в случае экстренного торможения реализуется эффективность, соответствующая коэффициенту сцепления при 5 =1 (полное скольжение колеса по дороге). АБС реализует несколько больший средний фх, обеспечивая торможение в зоне работы АБС. Установлено, что максимальное значение коэффициента сцепления на чистом

сухом асфальтовом покрытии может превышать значение при полном юзе на 20-25 %. Можно принять, что среднее значение фх повышается примерно на 8 %, а следовательно, на столько же повышается и замедление.

Одним из основных показателей тормозных свойств автомобиля является тормозной путь. В соответствии с работами [1, 3, 4] тормозной путь 5т определяется выражением

S А* 0+05Т н у0

V

2j

(1)

уст

где т0 — время запаздывания тормозной системы, с;

хн — время нарастания замедления, с;

] уст — установившееся замедление, м/с2;

Уо — начальная скорость торможения, м/с. Все параметры выражены в системе единиц

СИ.

Подставляя в выражение (1) несколько большее замедление, получим значение тормозного пути 5абс для автомобиля с АБС. Его можно определить по выражению (2)

S AEC=(t 0+0,5-t н )V0-

V 2

Y r\

V

N

2jуст (1+Nj) 2jуст 1+N

(2)

уст

где Aj = 0,08 — увеличение замедления, определяемое работой АБС;

Vom — скорость, при достижении которой происходит автоматическое отключение АБС.

Третье слагаемое в выражении (2) появляется в результате прибавления к Sm, получаемому при торможении с замедлением [jycm(1 + Aj)] до скорости V = 0, величины тормозного пути, обу-

0

2

+

Транспорт

словленной преходом к замедлению ]уст , в момент автоматического отключения АБС.

Процесс торможения наглядно представляют на диаграмме торможения. Такая диаграмма для торможения автомобиля с АБС представлена на рис. 2. На ней численно рассчитаны зависимости от времени кривых пути, скорости и ускорения (замедления) АТС категории М1 для экстренного торможения по параметрам Технического регламента:

Уо = 40 км/ч = 11,1 м/с — начальная скорость торможения;

т = 0,6 с — время срабатывания тормозной системы;

т0 = 0,11 с — время запаздывания тормозной системы;

т н = 0,49 с — время нарастания замедления;

] уст = 5,2 м/с2 — установившееся замедление, м/с2;

Уот = 15 км/ч = 4,17 м/с — скорость, при достижении которой происходит автоматическое отключение АБС.

Расчёт в системе программирования МаШСАБ с использованием панели инструментов «Программирование» с шагом по времени 0,005 с даёт значение тормозного пути 15,8 м, что соответствует Техническому регламенту.

Рис. 2 представляет собой диаграмму тор-

можения, предложенную автором, позволяющую наглядно увидеть вклад АБС в уменьшение тормозного пути. Кривая зависимости пути от времени (сплошная) очень плавно изменяется и не имеет характерных точек. Кривая зависимости скорости от времени (штрихпунктирная) может быть разбита на четыре участка. Участок 1-2 соответствует времени запаздывания тормозной системы, и скорость не изменяется. Участок с различной кривизной 2-3 видимо, свидетельствует о нарастании интенсивности торможения — его длина равна времени нарастания замедления. Участок 3-4 соответствует торможению с полной интенсивностью, и в том числе обеспечиваемой АБС. Замедление 5,61 м/с2 на 8 % больше установившегося замедления 5,2 м/с2, реализуемого автомобилями без АБС. Последний участок 4-5 — торможение автомобиля с автоматически отключаемой АБС при скорости не более 15 км/ч (4,17 м/с). Меньший уклон этой линии определяется введённым значением увеличения замедления А] = 0,08.

Все четыре участка разделяются изгибами на кривой зависимости замедления от времени (ломаная линия, состоящая из прямолинейных участков). В течение времени запаздывания тормозной системы замедление равно нулю. В период времени нарастания замедления оно линейно растёт до значения 5,2 м/с. Участок АВ представляет зону торможения с интенсивностью большей, чем интенсивность тормозной системы без АБС (за-

т с с С И н

й ц.г — ¿V . м

* , з К м/с

1 У — — / м/р2

А к

Мг . — — — —5т<Н-

/ д . С —я- ■ —I— -4 17

—/ * / * ч 4 ‘ V ■

/ * V р * 1

г * «

*

——

0 0.5 1 1.5 2 2.5 3

Время I, с

Рис. 2. Диаграмма торможения автомобиля с АБС

Т а б л и ц а 1

Начальная скорость автомобиля У0 , км/ч Тормозной путь 5т, м Тормозной путь при работе АБС 5абс, м Величина уменьшения тормозного пути Д5т, м

40 15,8 15,1 0,7

60 32,6 30,8 1,8

80 55,4 52 3,5

медление 5,61 м/с2). .

является верхней границей выполнения этого требования.

V

2

от

2]

(3)

уст

Очевидно, что вклад АБС в уменьшение тормозного пути будет увеличиваться с ростом начальной скорости торможения. В табл. 1 представлены результаты расчёта тормозного пути автомобиля с АБС и без неё, определённые по выражениям (1) и (2) для скоростей 40, 60 и 80 км/ч. При скорости 80 км/ч уменьшение достигает 3,5 м, что может быть вполне существенным при рассмотрении дела о ДТП в суде и проведении автотехнической экспертизы.

При проведении дорожных испытаний при скорости 40 км/ч уменьшение тормозного пути на 0,7 м вполне может быть зафиксировано прибором «Эффект», который определяет ряд параметров торможения, в том числе 5т, с точностью до десятой метра. Работа прибора описана в [4]. Положительной особенностью прибора является также возможность осуществить пересчёт полученного значения тормозного пути для начальной скорости торможения, равной точно 40 км/ч.

В работе [5] приведены значения тормозного пути автомобиля с АБС в разных дорожных условиях: оба колеса (левое и правое) на асфальте, оба колеса на снежном накате, левое колесо на асфальте, правое на снежном накате.

В соответствии с Техническим регламентом во время дорожных испытаний автомобиля с АБС появление следов блокирования колёс (юза) должно фиксироваться при скорости не более 15 км/ч. Для количественного контроля этого требования можно предложить выражение (3). Величина 5Ю, рассчитанная по значению Уо = 4,17 м/с (15 км/ч),

Заключение

Результаты исследования позволяют сделать следующие выводы:

1) Разработана методика вычисления значения тормозного пути автомобиля с антиблокировочной системой тормозов в зависимости от Д/ -доли увеличения замедления, определяемого работой АБС, и Уот — скорости, при достижении которой происходит автоматическое отключение АБС. Предложена формула для вычисления тормозного пути 5т(Д/, Уот).

2) Представлена «Тормозная диаграмма автомобиля с АБС» позволяющая наглядно выявить уменьшение тормозного пути, оценить вклад АБС при торможении с разными начальными скоростями. Диаграмма включает четыре характерных участка процесса экстренного торможения до полной остановки, в том числе участок, на котором происходит более интенсивное торможение, определяемое работой АБС.

3) Приведены данные сравнения величин тормозного пути при экстренном торможении при скоростях 40, 60 и 80 км/ч.

4) Предложена методика определения верхней границы длины юзового следа, появляющегося при скорости 15 км/ч при дорожных испытаниях тормозных систем автомобиля с АБС.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. ГОСТ Р 51709-2001. Автотранспортные средства. Требования безопасности к техническому состоянию и методы проверки. Введ. 2001-01-02.232 с.

2. Технический регламент о безопасности колёсных транспортных средств :. утв. постановлением Правительства РФ № 720 от 10 сентября 2009 г. с изм. и доп. от 10 февраля 2015 г.

3. Балакин В.Д. Экспертиза дорожно-транспортных происшествий. Омск : СибАДИ, 2005. 136 с.

Транспорт

4. Федотов А.И. Технология и организация диагностики при сервисном сопровождении. М. : Академия, 2015. 352 с.

5. Витковский С.Л., Тоцкий Э.С. Тормозной путь автомобиля с АБС при торможении на дороге в зимних условиях // Механики XXI веку : сб. тр. конф. Братск, 2012. С. 200-204.

6. ВАЗ 2107-07к Руководство по эксплуатации, техническому обслуживанию и ремонту + каталог деталей. М. : ИДТР, 2011. 320 с.

7. Витковский С.Л. Диагностика системы питания двигателя на холостом ходу // Особенности эксплуатации автотранспортных средств в дорожно-климатических условиях Сибири и Крайнего Севера : материалы 83 междунар. науч.-техн. конф. Иркутск, 2013. С.285-294.

8. Витковский С.Л., Разумов Ю.А. Диагностика системы питания двигателя с использованием кривой разгона на холостом ходу. Братск : Изд-во БрГУ, 2013. С. 200-204.

9. Витковский С.Л., Илларионов А.П. Коэффициент снижения мощности на холостом ходу. Братск : Изд-во БрГУ, 2011. Т.2. С. 70-75.

10. Двигатели внутреннего сгорания. В 3 кн. Кн. 1. Теория рабочих процессов. М. : Высшая школа, 2007. 479 с.

11.Дулепов Е.Г., Витковский С.Л., Кравченко Е.В. Оценка логической состоятельности утверждений // Системы. Методы. Технологии. 2013. № 18. С. 50-53.

12.Витковский С.Л., Разумов Ю.А. Диагностика системы питания двигателя с использованием кривой разгона на холостом ходу // Механики XXI веку : сб. докл. XI Всерос. науч.-техн. конф. с междунар. участ. Братск, 2013. С.200-204.

13.Витковский С.Л., Стрелков С.П. Удельный эффективный расход топлива двигателя при разгоне на холостом ходу // Механики XXI веку : сб. докл. XI Всерос. науч.-техн. конф. с междунар. участ. Братск, 2012. С. 281-284.

14.Витковский С.Л., Лузгин В.В. Анализ диагностической информации динамических процессов системы зажигания // Системы. Методы. Технологии. 2011. №4 (12). С. 83-89.

УДК 629.4 (23.3:.064.5) Иванов Павел Юрьевич,

к. т. н., ассистент кафедры «Электроподвижной состав», Иркутский государственный университет путей сообщения, тел. 8-950-065-21-77, e-mail: [email protected] Агафонов Владимир Михайлович, аспирант кафедры «Сопротивление материалов и строительной механики», Иркутский государственный университет путей сообщения, Иркутский национальный исследовательский государственный технический университет,

тел. 8-924-631-58-33, e-mail: [email protected] Думский Евгений Юрьевич, к. т. н., доцент кафедры «Электроподвижной состав», Иркутский государственный университет путей сообщения, тел. 8-983-403-46-43, e-mail: [email protected]

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА НАГРЕВА ИЗОЛЯЦИИ ОБМОТКИ СТАТОРА АСИНХРОННОЙ ВСПОМОГАТЕЛЬНОЙ МАШИНЫ ЭЛЕКТРОВОЗА

P. Yu. Ivanov, V. M. Agafonov, E. Yu. Dulskiy

MATHEMATICAL MODELING OF THE PROCESS OF HEATING OF STATOR WINDING INSULATION OF ELECTRIC LOCOMOTIVE’S ASYNCHRONOUS AUXILIARY MACHINE

Аннотация. Широкое распространение электровозов переменного тока на сети железных дорог России определяет актуальность работ, направленных на повышение надежности асинхронных вспомогательных машин (АВМ) электроподвижного состава. Особая роль АВМ связана с обеспечением работоспособности электровоза. Основной причиной выхода из строя АВМ является электрический пробой изоляции обмоток, что является последствием перегрева под действием значительных пусковых токов. Для оперативного реагирования на фактическое предельное состояние изоляции АВМ необходима разработка методов, технических средств мониторинга и контроля её остаточного ресурса. Статья посвящена математическому моделированию процесса нагрева изоляции обмотки АВМ электровоза серии «Ермак» типа НВА-55 от действия значений пускового тока. Моделирование осуществлялось с применением метода конечных элементов в современных программных комплексах.

Ключевые слова: изоляция, асинхронная вспомогательная машина, нагрев, моделирование, метод конечных элементов.

Abstract. Wide use of AC electric locomotives on railways of Russia determines the relevance of activities aimed at improving the reliability of asynchronous auxiliary electric rolling machines. Special role of AAM involves providing electric performance of electric locomotives. The main reason for failure of the AAM is an electrical breakdown of the winding insulation, which is a consequence of overheating under the influence of large inrush currents. In order to promptly respond to the actual limit state, it AAM insulation is necessary to develop methods, technical means of monitoring and control of its remaining life. The article is devoted to the mathematical

что это, значение, принцип работы

Тормозной путь автомобиля — это дистанция до полной остановки, которую успевает преодолеть машина с того момента, как водитель нажал педаль тормоза. Важно понимать, что остановочный путь всегда больше, чем тормозной. Ведь он включает еще и расстояние, пройденное с того момента, как водитель обнаружил опасность и нажал на тормоза.

Как рассчитать тормозной путь

Длина пути рассчитывается по следующей формуле:

l = V2/(2µg), где

  • l — путь,пройденный автомобилем;

  • V — скорость авто;

  • µ — коэффициент, определяющий силу трения

  • g — ускорение свободного падения (9,8м/с2).

Скорость легко определяется по показаниям спидометра, а коэффициент трения покрышек на сухом асфальте колеблется в диапазоне 0,5-0,8.

Для приблизительных расчетов используется µ=0,7.

Для скорости 60 км/час (по системе СИ — 16,7 м/с) тормозной путь равен:

16,72/(2*0,7*9,8)=20,24 метров.

Столько проедет серийная машина с момента начала торможения.

Однако такое значение актуально лишь для условий, приближенных к идеальным. При неравномерном срабатывании тормозов (цилиндров и колодок на каждом колесе) машина может потерять управляемость. Для восстановления контроля придется ослабить нажатие на тормоз. В этом случае тормозной путь будет значительно длиннее.

При расчете пройденного расстояния учитывается квадрат скорости. То есть, с ростом скорости тормозной путь резко удлиняется. При 80 км/час он составит уже 36 м, а на 120 км/час — 81 метр.

От чего зависит длина тормозного пути

Как видим, на тормозной путь влияют два параметра: скорость и коэффициент трения. Если скорость полностью зависит от действий водителя, то с трением все значительно сложнее. Давайте разберемся, какие факторы на расстояние, необходимое машине для остановки.

Состояние шин

Коэффициент сцепления (µ) зависит от следующих параметров:

Изношенный протектор сильно ухудшает торможение на мокрой, заснеженной или даже грязной дороге. Зато зависимость тормозного пути от температуры нелинейна.

При низких температурах резина теряет эластичность и коэффициент трения уменьшается. Поэтому в холодное время года нужно использовать зимние шины независимо от того, как успешно дорожные службы справляются с уборкой снега. Зимой даже на чистом асфальте тормозной путь на зимней резине будет намного короче, чем на летней.

При высоких температурах резина становится слишком мягкой. При этом она интенсивно изнашивается и начинает легче скользит по асфальту. Поэтому летом быстрее остановиться получится на летней резине, которая сохраняет эластичность, но не «течет» подобно пластилину.

Дорожное покрытие

Коэффициент трения, который на сухом асфальте равен 0.7, меняется в зависимости от погодных условий:

  • 0,1 — гололед;

  • 0,2 — снежный накат;

  • 0,4 — мокрый асфальт.

В летнее время нужно остерегаться больших луж и грязи. Лужи могут вызвать эффект аквапланирования, при котором сцепление с дорогой будет даже хуже, чем на укатанном снегу. Не менее опасна и грязь: тонкий слой мокрой глины, практически невидимый глазом, делает асфальт таким скользким, что на нем становится сложно просто устоять на ногах.

Антиблокировочная система

Как известно из школьного курса физики, сила трения скольжения всегда ниже, чем трения покоя. То есть, при торможении «юзом» тормозной путь больше. Этот эффект давно известен опытным водителями. Чтобы быстрее остановиться и не потерять управление на скользкой дороге, они используют «прерывистое» торможение. Метод заключается в том, что при блокировке колес водитель на мгновение отпускает педаль тормоза и тут же нажимает ее снова.

На большинстве современных серийных авто устанавливается электронная антиблокировочная система. Она контролирует вращение каждого колеса и снижает давление в тормозной магистрали при блокировке. В отличие от «прерывистого торможения», ABS контролирует каждый тормозной цилиндр в отдельности и ослабляет торможение только для заблокированных колес. За счет этого удается достичь минимального тормозного пути на сухом асфальте, гололеде и мокрой дороге.

Однако антиблокировочная система не всегда позволяет остановить авто быстрее, чем торможение «юзом». На снегу и грязи она не позволяет протектору поглубже «зарыться» в дорогу. Особенно заметен эффект при использовании шипованной резины. Поэтому если вы хотите, чтобы шипы эффективно тормозили, «вгрызаясь» в снег, лед или грязь, ABS стоит отключить.

Онлайн-конвертеры единиц измерения

Случайный преобразователь

Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер объёма сухого воздуха и общих измерений при варкеПреобразователь площадиПреобразователь объёма и общего измерения при варкеПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер угловой эффективностиПреобразователь топливной эффективности, расхода топлива и информации о расходе топливаКонвертер единиц Хранение данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаПреобразователь момента инерцииПреобразователь момента силыКонвертер крутящего моментаПреобразователь удельной энергии, теплоты сгорания (на единицу температуры) Преобразователь интерваловКонвертер коэффициента теплового расширенияПреобразователь теплового сопротивленияПреобразователь теплопроводности Конвертер удельной теплоемкости ter Конвертер скорости передачиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер яркостиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрия) в преобразователь фокусного расстоянияПреобразователь оптической мощности (диоптрий) в увеличение (X) Конвертер электрического заряда Конвертер плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объёмной плотности заряда Конвертер электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимостиПреобразователь емкостиПреобразователь индуктивностиПреобразователь реактивной мощности переменного токаПреобразователь единиц магнитного поля в ваттах и ​​дБм Конвертер плотности потока Конвертер мощности поглощенной дозы излучения, Конвертер мощности дозы полного ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

Этот онлайн-конвертер единиц измерения позволяет быстро и точно переводить многие единицы измерения из одной системы в другую. Страница преобразования единиц представляет собой решение для инженеров, переводчиков и для всех, чья деятельность требует работы с величинами, измеренными в различных единицах.

Вы можете использовать этот онлайн-конвертер для преобразования нескольких сотен единиц (включая метрические, британские и американские) в 76 категорий или нескольких тысяч пар, включая ускорение, площадь, электрическую энергию, энергию, силу, длину, свет, массу, массовый расход, плотность, удельный объем, мощность, давление, напряжение, температура, время, крутящий момент, скорость, вязкость, объем и емкость, объемный расход и многое другое.
Примечание: Целые числа (числа без десятичной точки или показателя степени) считаются точными до 15 цифр, а максимальное количество цифр после десятичной точки равно 10.», То есть« умножить на десять в степени ». Электронная нотация обычно используется в калькуляторах, а также учеными, математиками и инженерами.

Общие преобразователи единиц

Конвертер длины и расстояния : метр, километр, сантиметр, миллиметр, нанометр, ярд, фут, дюйм, парсек, световой год, астрономическая единица, расстояние до Луны (от Земли до Луны), лига , миля, морская миля (международная), сажень, длина кабеля (международная), точка, пиксель, калибр, планковская длина…

Конвертер массы : грамм, килограмм, миллиграмм, тонна (метрическая система), фунт, унция, камень (США), камень (Великобритания), карат, зерно, талант (библейский греческий), драхма (библейский греческий язык), денарий (библейский римский), шекель (библейский иврит), масса Планка, масса протона, атомная единица массы, масса электрона (покой), масса Земли, масса Солнца …

Сухой объем и стандартные измерения при приготовлении пищи : литр, бочка сухой (США), пинта сухой (США), квартовый сухой (США), peck (США), peck (Великобритания), bushel (США), bushel (UK), cor (библейский), homer (библейский), ephah (библейский) ), seah (библейский), omer (библейский), cab (библейский), log (библейский), кубометр.

Конвертер площади : миллиметр², сантиметр², метр², километр², гектар, акр, дюйм², фут², ярд², миля², сарай, круглый дюйм, поселок, роуд, род², окунь², усадьба, шест², сабин, арпент, куерда, квадратная верста, квадратный аршин, квадратный фут, квадратный сажень, площадь Планка …

Конвертер объёма и общепринятых единиц измерения температуры : метр³, километр³, миллиметр³, литр, гектолитр, миллилитр, капля, бочка (масло), бочка (США) ), баррель (Великобритания), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), баррель (нефть), баррель (США), баррель (Великобритания ), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), ярд³, фут³, дюйм³, регистровая тонна, 100 кубических футов…

Преобразователь температуры : кельвин, градус Цельсия, градус Фаренгейта, градус Ренкина, градус Реомюра, температура Планка.

Преобразователь давления, напряжения, модуля Юнга : паскаль, килопаскаль, мегапаскаль, миллипаскаль, микропаскаль, нанопаскаль, атмосферно-техническая, стандартная атмосфера, тысячи фунтов на квадратный дюйм, фунт / кв. Дюйм, ньютон на метр², бар, миллибар, килограмм-сила / метр², грамм- сила / сантиметр², тонна-сила (короткая) / фут², фунт-сила / фут², миллиметр ртутного столба (0 ° C), дюйм ртутного столба (32 ° F), сантиметр водяного столба (4 ° C), фут водяного столба (4 ° C) , метр морской воды…

Конвертер энергии и работы : джоуль, килоджоуль, мегаджоуль, миллиджоуль, мегаэлектронвольт, электрон-вольт, эрг, киловатт-час, мегаватт-час, ньютон-метр, килокалория (IT), калория (пищевая), Британские тепловые единицы (IT), мега Btu (IT), тонна-час (охлаждение), тонна нефтяного эквивалента, баррель нефтяного эквивалента (США), мегатонна, тонна (взрывчатые вещества), килограмм в тротиловом эквиваленте, дин-сантиметр, грамм-сила-сантиметр, килограмм-сила-метр, килопонд-метр, фунт-сила-фут, унция-сила-дюйм, фут-фунт, дюйм-фунт, энергия Планка…

Power Converter : ватт, киловатт, мегаватт, милливатт, мощность, вольт-ампер, ньютон-метр в секунду, джоуль в секунду, мегаджоуль в секунду, килоджоуль в секунду, миллиджоуль в секунду, джоуль в час, килоджоуль в час. , эрг / секунда, британские тепловые единицы (IT) / час, килокалория (IT) / час …

Преобразователь силы : ньютон, килоньютон, миллиньютон, дин, джоуль / метр, джоуль / сантиметр, грамм-сила, килограмм- сила, тонна-сила (короткая), кип-сила, килопунт-сила, фунт-сила, унция-сила, фунт, фунт-фут в секунду², пруд, стене, грав-сила, миллиграв-сила…

Конвертер времени : секунда, миллисекунда, наносекунда, пикосекунда, минута, час, день, неделя, месяц, год, декада, век, тысячелетие, планковское время, год (юлианский), год (високосный), год ( тропический), год (сидерический), год (григорианский), две недели, встряхивание …

Конвертер линейной скорости и скорости : метр / секунда, километр / час, километр / секунда, миля / час, фут / секунда, миля в секунду, узел, узел (Великобритания), Скорость света в вакууме, Космическая скорость — первая, Космическая скорость — вторая, Космическая скорость — третья, Скорость Земли, Скорость звука в чистой воде, Мах (стандарт СИ), Мах (20 ° C и 1 атм), ярд / сек…

Преобразователь угла : градус, радиан, град, гон, минута, секунда, знак, мил, оборот, круг, поворот, квадрант, прямой угол, секстант.

Конвертер топливной экономичности, расхода топлива и экономии топлива : метр / литр, километр / литр, миля (США) / литр, морская миля / литр, морская миля / галлон (США), километр / галлон (США), литр / 100 км, галлон (США) / миля, галлон (США) / 100 миль, галлон (Великобритания) / миля, галлон (Великобритания) / 100 миль …

Конвертер чисел : двоичный, восьмеричный, десятичный, шестнадцатеричный, основание-3, основание-4, основание-5, основание-6, основание-7, основание-9, основание-10, основание-11, основание-12, основание-13, основание-14, основание-15, основание-20, основание-21, основание-22, основание-23, основание-24, основание-28, основание-30, основание-32, основание-34, основание-36…

Конвертер единиц информации и хранения данных : бит, байт, слово, четверное слово, MAPM-слово, блок, килобит (10³ бит), кибибит, кибибайт, килобайт (10³ байтов), мегабайт (10⁶ байтов), гигабайт (10⁹ байтов), терабайт (10¹² байтов), петабайт (10¹⁵ байтов), эксабайт (10¹⁸ байтов), гибкий диск (3,5 ED), гибкий диск (5,25 HD), Zip 250, Jaz 2 ГБ, CD (74 минут), DVD (2 слоя 1 сторона), диск Blu-ray (однослойный), диск Blu-ray (двухслойный) …

Курсы обмена валют : евро, доллар США, канадский доллар, британский фунт стерлингов, японская иена, швейцарский франк, аргентинское песо, австралийский доллар, бразильский реал, болгарский лев, чилийское песо, китайский юань, чешская крона, датская крона, египетский фунт, венгерский форинт, исландская крона, индийская рупия, индонезийская рупия, новый израильский шекель , Иорданский динар, малазийский ринггит, мексиканское песо, новозеландский доллар, норвежская крона, пакистанская рупия, филиппинское песо, румынский лей, российский рубль, саудовский риял, сингапурский доллар, Южноафриканский рэнд, южнокорейский вон, шведская крона, новый тайваньский доллар, тайский бат, турецкая лира, украинская гривна…

Размеры женской одежды и обуви : женские платья, костюмы и свитера, женская обувь, женские купальные костюмы, размер буквы, бюст, дюймы, естественная талия, дюймы, заниженная талия, дюймы, бедра, дюймы, бюст, сантиметры, Естественная талия, сантиметры, Заниженная талия, сантиметры, Бедра, сантиметры, Длина стопы, мм, Торс, дюймы, США, Канада, Великобритания, Европа, континентальный, Россия, Япония, Франция, Австралия, Мексика, Китай, Корея ..

Размеры мужской одежды и обуви : мужские рубашки, мужские брюки / брюки, размер мужской обуви, размер букв, шея, дюймы, грудь, дюймы, рукав, дюймы, талия, дюймы, шея, сантиметры, грудь, сантиметры, Рукав, сантиметры, Талия, сантиметры, Длина стопы, мм, Длина стопы, дюймы, США, Канада, Великобритания, Австралия, Европа, континентальный, Япония, Россия, Франция, Италия, Испания, Китай, Корея, Мексика…

Механика

Преобразователь угловой скорости и частоты вращения : радиан / секунда, радиан / день, радиан / час, радиан / минута, градус / день, градус / час, градус / минута, градус / секунда, оборот / день, оборот / час, оборот / минута, оборот / секунда, оборот / год, оборот / месяц, оборот / неделя, градус / год, градус / месяц, градус / неделя, радиан / год, радиан / месяц, радиан / неделя.

Преобразователь ускорения : дециметр / секунда², метр / секунда², километр / секунда², гектометр / секунда², декаметр / секунда², сантиметр / секунда², миллиметр / секунда², микрометр / секунда², нанометр / секунда², пикометр / секунда², фемтометр / секунда² , аттометр в секунду², галлон, галилей, миля в секунду², ярд в секунду², фут в секунду², дюйм / секунду², ускорение свободного падения, ускорение свободного падения на Солнце, ускорение свободного падения на Меркурии, ускорение свободного падения на Венере , ускорение свободного падения на Луне, ускорение свободного падения на Марсе, ускорение свободного падения на Юпитере, ускорение свободного падения на Сатурне…

Конвертер плотности : килограмм / метр³, килограмм / сантиметр³, грамм / метр³, грамм / сантиметр³, грамм / миллиметр³, миллиграмм / метр³, миллиграмм / сантиметр³, миллиграмм / миллиметр³, экзаграмма / литр, петаграмм / литр, тераграмма / литр, гигаграмм / литр, мегаграмм / литр, килограмм / литр, гектограмм / литр, декаграмм / литр, грамм / литр, дециграмм / литр, сантиграмм / литр, миллиграмм / литр, микрограмм / литр, нанограмм / литр, пикограмм / литр , фемтограмм / литр, аттограмм / литр, фунт / дюйм³ …

Конвертер удельного объема : метр³ / килограмм, сантиметр³ / грамм, литр / килограмм, литр / грамм, фут³ / килограмм, фут³ / фунт, галлон (США ) / фунт, галлон (Великобритания) / фунт.

Преобразователь момента инерции : килограмм-метр², килограмм-сантиметр², килограмм-миллиметр², грамм-сантиметр², грамм-миллиметр², килограмм-сила-метр-секунда², унция-дюйм², унция-сила-дюйм-секунда², фунт-фут², фунт-сила-фут-секунда², фунт-дюйм². , фунт-сила-дюйм-секунда², ударный фут².

Конвертер момента силы : метр ньютон, метр килоньютон, метр миллиньютон, метр микроньютон, метр тонна-сила (короткий), метр тонна-сила (длинный), метр тонна-сила (метрический), метр килограмм-сила, грамм-сила-сантиметр, фунт-сила-фут, фунт-фут, фунт-дюйм.

Гидротрансформатор : ньютон-метр, ньютон-сантиметр, ньютон-миллиметр, килоньютон-метр, дин-метр, дин-сантиметр, дин-миллиметр, килограмм-сила-метр, килограмм-сила-сантиметр, килограмм-сила-миллиметр, грамм-сила-метр, грамм- сила-сантиметр, грамм-сила-миллиметр, унция-сила-фут, унция-сила-дюйм, фунт-сила-фут, фунт-сила-дюйм.

Термодинамика — Тепло

Конвертер удельной энергии, теплоты сгорания (на массу) : джоуль / килограмм, килоджоуль / килограмм, калория (IT) / грамм, калория (th) / грамм, британские тепловые единицы (IT) / фунт, BTU (th) / фунт, килограмм / джоуль, килограмм / килоджоуль, грамм / калория (IT), грамм / калория (th), фунт / BTU (IT), фунт / Btu (th), фунт / лошадиная сила-час, грамм / лошадиная сила (метрическая) -час, грамм / киловатт-час.

Конвертер удельной энергии, теплоты сгорания (на объем) : джоуль / метр³, джоуль / литр, мегаджоуль / метр³, килоджоуль / метр³, килокалория (IT) / метр³, калория (IT) / сантиметр³, терм / фут³, терм / галлон (Великобритания), британские тепловые единицы (IT) на фут³, британские тепловые единицы на фут³, CHU / фут³, метр³ / джоуль, литр / джоуль, галлон (США) / лошадиная сила-час, галлон (США) / лошадиная сила (метрическая система) )-час.

Конвертер теплопроводности : ватт / метр / K, ватт / сантиметр / ° C, киловатт / метр / K, калория (IT) / секунда / сантиметр / ° C, калория (th) / секунда / сантиметр / ° C , килокалория (IT) / час / метр / ° C, килокалория (th) / час / метр / ° C, BTU (IT) дюйм / секунда / фут² / ° F, BTU (th) дюйм / секунда / фут² / ° F , Btu (IT) фут / час / фут² / ° F, Btu (th) фут / час / фут² / ° F, BTU (IT) дюйм / час / фут² / ° F, BTU (th) дюйм / час / фут² / ° F.

Конвертер удельной теплоемкости : джоуль / килограмм / K, джоуль / килограмм / ° C, джоуль / грамм / ° C, килоджоуль / килограмм / K, килоджоуль / килограмм / ° C, калория (IT) / грамм / ° C, калория (IT) / грамм / ° F, калория (th) / грамм / ° C, килокалория (IT) / килограмм / ° C, килокалория (th) / килограмм / ° C, килокалория (IT) / килограмм / K , килокалория (th) / килограмм / K, килограмм-сила-метр / килограмм / K, фунт-сила-фут / фунт / ° R, Btu (IT) / фунт / ° F, Btu (th) / фунт / ° F, Btu (IT) / фунт / ° R, Btu (th) / фунт / ° R, Btu (IT) / фунт / ° C, CHU / фунт / ° C.

Конвертер плотности теплового потока : ватт / метр², киловатт / метр², ватт / сантиметр², ватт / дюйм², джоуль / секунда / метр², килокалория (IT) / час / метр², килокалория (IT) / час / фут², калория (IT) / минута / сантиметр², калория (IT) / час / сантиметр², калория (th) / минута / сантиметр², калория (th) / час / сантиметр², дина / час / сантиметр, эрг / час / миллиметр², фут-фунт / минута на фут², лошадиные силы на фут², лошадиные силы (метрические единицы) на фут², британские тепловые единицы (IT) / секунда на фут², британские тепловые единицы (IT) в минуту на фут², британские тепловые единицы (ИТ) на час / фут², британские тепловые единицы (единицы) / секунда на дюйм² , Btu (th) / секунда / фут², Btu (th) / минута / фут², Btu (th) / час / фут², CHU / час / фут².

Преобразователь коэффициента теплопередачи : ватт / метр² / K, ватт / метр² / ° C, джоуль / секунда / метр² / K, килокалория (IT) / час / метр² / ° C, килокалория (IT) / час / фут² / ° C, Btu (IT) / секунда / фут² / ° F, Btu (th) / секунда / фут² / ° F, BTU (IT) / час / фут² / ° F, Btu (th) / час / фут² / ° F, CHU / час / фут² / ° C.

Гидравлика — жидкости

Конвертер объемного расхода : метр³ / секунда, метр³ / день, метр³ / час, метр³ / минута, сантиметр³ / день, сантиметр³ / час, сантиметр³ / минуту, сантиметр³ / секунда, литр / день, литр / час, литр / минута, литр / секунда, миллилитр / день, миллилитр / час, миллилитр / минута, миллилитр / секунда, галлон (США) / день, галлон (США) / час, галлон (США) / минута, галлон (США) в секунду, галлон (Великобритания) в день, галлон (Великобритания) в час, галлон (Великобритания) в минуту, галлон (Великобритания) в секунду, килобаррель (США) в день, баррель (США) в день…

Конвертер массового расхода : килограмм / секунда, грамм / секунда, грамм / минута, грамм / час, грамм / день, миллиграмм / минута, миллиграмм / час, миллиграмм / день, килограмм / минута, килограмм / час , килограмм / день, экзаграмм / секунда, петаграмма / секунда, тераграмма / секунда, гигаграмма / секунда, мегаграмм / секунда, гектограмм / секунда, декаграмма / секунда, дециграмм / секунда, сантиграмма / секунда, миллиграмм / секунда, микрограмм / секунда, тон (метрическая) / секунда, тонна (метрическая) / минута, тонна (метрическая) / час, тонна (метрическая) / день …

Конвертер молярной скорости потока : моль / секунда, экзамен / секунда, петамоль / секунда, терамоль / секунда, гигамоль / секунда, мегамоль / секунда, киломоль / секунда, гектомоль / секунда, декамоль / секунда, децимоль / секунда, сантимоль / секунда, миллимоль / секунда, микромоль / секунда, наномоль / секунда, пикомоль / секунда, фемтомоль / секунда, аттомоль в секунду, моль в минуту, моль в час, моль в день, миллимоль в минуту, миллимоль в час, миллимоль в день, километр в минуту, километр в час, километр в день.

Преобразователь потока массы : грамм / секунда / метр², килограмм / час / метр², килограмм / час / фут², килограмм / секунда / метр², грамм / секунда / сантиметр², фунт / час / фут², фунт / секунда / фут².

Конвертер молярной концентрации : моль / метр³, моль / литр, моль / сантиметр³, моль / миллиметр³, километр / метр³, километр / литр, километр / сантиметр³, километр / миллиметр³, миллимоль / метр³, миллимоль / литр, миллимоль / сантиметр³, миллимоль / миллиметр³, моль / дециметр³, молярный, миллимолярный, микромолярный, наномолярный, пикомолярный, фемтомолярный, аттомолярный, зептомолярный, йоктомолярный.

Конвертер массовой концентрации в растворе : килограмм / литр, грамм / литр, миллиграмм / литр, часть / миллион, гран / галлон (США), гран / галлон (Великобритания), фунт / галлон (США), фунт / галлон (Великобритания), фунт / миллион галлон (США), фунт / миллион галлон (Великобритания), фунт / фут³, килограмм / метр³, грамм / 100 мл.

Конвертер динамической (абсолютной) вязкости : паскаль-секунда, килограмм-сила-секунда на метр², ньютон-секунда на метр², миллиньютон-секунда на метр², дин-секунда на сантиметр², равновесие, эксапуаз, петапуаз, терапуаз, гигапуаз, мегапуаз, килопуаз гектопуаз, декапуаз, деципуаз, сантипуаз, миллипуаз, микропуаз, наноуаз, пикопуаз, фемтопуаз, аттопуаз, фунт-сила-секунда / дюйм², фунт-сила-секунда / фут², фунт-секунда / фут², грамм / сантиметр / секунда…

Конвертер кинематической вязкости : метр² / секунда, метр² / час, сантиметр² / секунда, миллиметр² / секунда, фут² / секунда, фут² / час, дюйм² / секунда, стоксы, экзастоки, петастоки, терастоки, гигастоксы, мегастоксы, килостоки, гектостоки, декастоки, децистоки, сантистоки, миллистоки, микростоки, наностоки, пикостоки, фемтостоки, аттостоки.

Преобразователь поверхностного натяжения : ньютон на метр, миллиньютон на метр, грамм-сила на сантиметр, дина на сантиметр, эрг / сантиметр², эрг / миллиметр², фунт на дюйм, фунт-сила / дюйм.

Акустика — Звук

Преобразователь чувствительности микрофона : децибел относительно 1 вольт на 1 паскаль, децибел относительно 1 вольта на 1 микропаскаль, децибел относительно 1 вольта на 1 дин на квадратный сантиметр, децибел относительно 1 вольта на 1 микробар, вольт на паскаль, милливольт на паскаль, микровольт на паскаль.

Преобразователь уровня звукового давления (SPL) : ньютон на квадратный метр, паскаль, миллипаскаль, микропаскаль, дин / квадратный сантиметр, бар, миллибар, микробар, уровень звукового давления в децибелах.

Фотометрия — Свет

Конвертер яркости : кандела на метр², кандела на сантиметр², кандела на фут², кандела на дюйм², килокандела на метр², стильб, люмен на метр² на стерадиан, люмен на сантиметр² на стерадиан, люмен на фут² стерадиан, нит, миллинит, ламберт, миллиламберт, фут-ламберт, апостиль, блондель, брил, скот.

Конвертер силы света : кандела, свеча (немецкий язык), свеча (Великобритания), десятичная свеча, свеча (пентан), пентановая свеча (мощность 10 свечей), свеча Хефнера, единица измерения яркости, десятичный буж, люмен / стерадиан, свеча (Международный).

Конвертер освещенности : люкс, метр-свеча, сантиметр-свеча, фут-свеча, фот, nox, кандела стерадиан на метр², люмен на метр², люмен на сантиметр², люмен на фут², ватт на сантиметр² (при 555 нм) .

Преобразователь частоты и длины волны : герцы, эксагерцы, петагерцы, терагерцы, гигагерцы, мегагерцы, килогерцы, гектогерцы, декагерцы, децигерцы, сантигерцы, миллигерцы, микрогерцы, единицы, микрогерцы / наногерцы, микрогерцы / секунды , длина волны в петаметрах, длина волны в тераметрах, длина волны в гигаметрах, длина волны в мегаметрах, длина волны в километрах, длина волны в гектометрах, длина волны в декаметрах…

Конвертер оптической силы (диоптрии) в фокусное расстояние : Оптическая сила (диоптрическая сила или преломляющая сила) линзы или другой оптической системы — это степень, с которой система сходится или рассеивает свет. Он рассчитывается как величина, обратная фокусному расстоянию оптической системы, и измеряется в обратных метрах в СИ или, чаще, в диоптриях (1 диоптрия = м⁻¹)

Электротехника

Конвертер электрического заряда : кулон, мегакулон , килокулон, милликулон, микрокулон, нанокулон, пикокулон, абкулон, EMU заряда, статкулон, ESU заряда, франклин, ампер-час, миллиампер-час, ампер-минута, ампер-секунда, фарадей (на основе углерода 12), элементарный заряжать.

Преобразователь электрического тока : ампер, килоампер, миллиампер, биот, абампер, ЭДС тока, статампер, ЭДС тока, СГС э.м. единица, CGS e.s. единица, микроампер, наноампер, ток Планка.

Линейный преобразователь плотности тока : ампер / метр, ампер / сантиметр, ампер / дюйм, абампер / метр, абампер / сантиметр, абампер / дюйм, эрстед, гильберт / сантиметр, ампер / миллиметр, миллиампер / метр, миллиампер / дециметр , миллиампер / сантиметр, миллиампер / миллиметр, микроампер / метр, микроампер / дециметр, микроампер / сантиметр, микроампер / миллиметр.

Конвертер поверхностной плотности тока : ампер на метр², ампер на сантиметр², ампер на дюйм², ампер на мил², ампер на круговой мил, абампер на сантиметр², ампер на миллиметр², миллиампер на миллиметр², микроампер на миллиметр², миллиметр на миллиметр², миллиметр на миллиметр². миллиампер / сантиметр², микроампер / сантиметр², килоампер / сантиметр², ампер / дециметр², миллиампер / дециметр², микроампер / дециметр², килоампер / дециметр².

Преобразователь напряженности электрического поля : вольт на метр, киловольт на метр, киловольт на сантиметр, вольт на сантиметр, милливольт на метр, микровольт на метр, киловольт на дюйм, вольт на дюйм, вольт на мил, абвольт на сантиметр, статвольт на сантиметр, статвольт на дюйм, ньютон на кулон, вольт на микрон.

Преобразователь электрического потенциала и напряжения : вольт, милливольт, микровольт, нановольт, пиковольт, киловольт, мегавольт, гигавольт, теравольт, ватт / ампер, абвольт, EMU электрического потенциала, статвольт, ESU электрического потенциала, планковское напряжение.

Преобразователь электрического сопротивления : Ом, мегаом, микром, вольт / ампер, обратный сименс, abohm, EMU сопротивления, статом, ESU сопротивления, квантованное сопротивление Холла, импеданс Планка, миллиом, кОм.

Преобразователь удельного электрического сопротивления : омметр, ом-сантиметр, ом-дюйм, микром-сантиметр, микром-дюйм, ом-сантиметр, статом-сантиметр, круговой мил-ом / фут, ом-кв.миллиметр на метр.

Преобразователь электрической проводимости : сименс, мегасименс, килосименс, миллисименс, микросименс, ампер / вольт, mho, gemmho, micromho, abmho, statmho, квантованная проводимость Холла.

Конвертер электропроводности : сименс / метр, пикосименс / метр, mho / метр, mho / сантиметр, abmho / метр, abmho / сантиметр, статмо / метр, статмо / сантиметр, сименс / сантиметр, миллисименс / метр, миллисименс / сантиметр, микросименс / метр, микросименс / сантиметр, единица электропроводности, коэффициент проводимости, части на миллион, шкала 700, шкала частей на миллион, шкала 500, частей на миллион, шкала 640, TDS, частей на миллион, шкала 640, TDS, части на миллион, шкала 550, TDS, частей на миллион, шкала 500, TDS, частей на миллион, шкала 700.

Преобразователь емкости : фарад, эксафарад, петафарад, терафарад, гигафарад, мегафарад, килофарад, гектофарад, декафарад, децифарад, сантифарад, миллифарад, микрофарад, емкость, нанофарад, аттофарад, фе , статфарад, ЭСУ емкости.

Преобразователь индуктивности : генри, эксагенри, петагенри, терагенри, гигагенри, мегагенри, килогенри, гектогенри, декагенри, децигенри, сантигенри, миллигенри, микрогенри, наногенри, пикогенри, индуктивность U, фемогенри, атогенри , статенри, ЭСУ индуктивности.

Преобразователь реактивной мощности переменного тока : реактивный вольт-ампер, реактивный милливольт-ампер, реактивный киловольт-ампер, реактивный мегавольт-ампер, реактивный гигавольт-ампер.

Американский калибр проводов : Американский калибр проводов (AWG) — это стандартизированная система калибра проводов, используемая в США и Канаде для измерения диаметров цветных электропроводящих проводов, включая медь и алюминий. Чем больше площадь поперечного сечения провода, тем выше его допустимая нагрузка по току.Чем больше номер AWG, также называемый калибром провода, тем меньше физический размер провода. Самый большой размер AWG — 0000 (4/0), а самый маленький — 40. В этой таблице перечислены размеры и сопротивление AWG для медных проводников. Используйте закон Ома для расчета падения напряжения на проводнике.

Магнитостатика, магнетизм и электромагнетизм

Преобразователь магнитного потока : Вебер, милливебер, микровебер, вольт-секунда, единичный полюс, мегалин, килолин, линия, максвелл, тесла-метр², тесла-сантиметр², гаусс-сантиметр², квант магнитного потока.

Конвертер плотности магнитного потока : тесла, Вебер / метр², Вебер / сантиметр², Вебер / дюйм², Максвелл / метр², Максвелл / сантиметр², Максвелл / дюйм², Гаусс, линия / сантиметр², линия / дюйм², гамма.

Radiation and Radiology

Конвертер мощности поглощенной дозы излучения, общей мощности дозы ионизирующего излучения : серый цвет в секунду, эксагрей в секунду, петагрей в секунду, тераграрей в секунду, гигагрей в секунду, мегагрей в секунду, килограмм в секунду, гектограмм / секунда, декаграй / секунда, дециграй / секунда, сантигрей / секунда, миллиграй / секунда, микрогрей / секунда, наногрей / секунда, пикграй / секунда, фемтогрей / секунда, аттогрей / секунда, рад / секунда, джоуль / килограмм / секунда, ватт на килограмм, зиверт в секунду, миллизиверт в год, миллизиверт в час, микрозиверт в час, бэр в секунду, рентген в час…

Радиоактивность. Конвертер радиоактивного распада : беккерель, петабеккерель, терабеккерель, гигабеккерель, мегабеккерель, килобеккерель, миллибеккерель, кюри, килокюри, милликюри, микрокюри, нанокюри, пикокюри, резерфорд, одна / секунда, дезинтеграции в секунду.

Конвертер облучения : кулон на килограмм, милликулон на килограмм, микрокулон на килограмм, рентген, миллирентген, микрорентген, тканевый рентген, Паркер, респ.

Радиация. Конвертер поглощенной дозы : рад, миллирад, джоуль / килограмм, джоуль / грамм, джоуль / сантиграм, джоуль / миллиграмм, серый, эксагрей, петагрей, терагрей, гигагрей, мегагрей, килограмм, гектагрей, декагрей, децигрей, сантигрей, микрогрей, миллиграй , наногрей, пикграй, фемтогрей, аттогрей, зиверт, миллизиверт, микрозиверт …

Прочие преобразователи

Конвертер метрических префиксов : нет, yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deka , деци, санти, милли, микро, нано, пико, фемто, атто, зепто, йокто.

Преобразователь передачи данных : бит / секунда, байт / секунда, килобит / секунда (SI по умолчанию), килобайт / секунда (SI по умолчанию), кибибит / секунда, кибибайт / секунда, мегабит / секунда (SI по умолчанию) , мегабайт в секунду (SI по умолчанию), мебибит в секунду, мебибайт в секунду, гигабит в секунду (SI по умолчанию), гигабайт в секунду (SI по умолчанию), гибибит в секунду, гибибит в секунду, терабит в секунду (SI по умолчанию). .), терабайт в секунду (по умолчанию SI), тебибит в секунду, тебибайт в секунду, Ethernet, Ethernet (быстрый), Ethernet (гигабит), OC1, OC3, OC12, OC24, OC48 …

Типографика и цифровой Конвертер единиц изображения : твип, метр, сантиметр, миллиметр, символ (X), символ (Y), пиксель (X), пиксель (Y), дюйм, пика (компьютер), пика (принтер), точка (DTP / PostScript) ), point (компьютер), point (принтер), en, cicero, em, Didot point.

Конвертер единиц измерения объема пиломатериалов : кубический метр, кубический фут, кубический дюйм, футы для досок, тысяча футов для досок, шнур, шнур (80 фут3), футы для шнура, узел, поддон, поперечина, стяжка.

Калькулятор молярной массы : Молярная масса — это физическое свойство, которое определяется как масса вещества, деленная на количество вещества в молях. Другими словами, это масса одного моля определенного вещества.

Периодическая таблица : Периодическая таблица представляет собой список всех химических элементов, упорядоченных слева направо и сверху вниз по их атомным номерам, электронным конфигурациям и повторяющимся химическим свойствам, расположенным в форме таблицы таким образом, чтобы элементы с похожие химические свойства отображаются в вертикальных столбцах, называемых группами.У некоторых групп есть имена, а также номера. Например, все элементы группы 1, кроме водорода, являются щелочными металлами, а элементы группы 18 — благородными газами, которые ранее назывались инертными газами. Различные строки таблицы называются периодами, потому что это расположение отражает периодическое повторение сходных химических и физических свойств химических элементов по мере увеличения их атомного номера. Элементы одного периода имеют одинаковое количество электронных оболочек.

Возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Уход за водителем — знай свой тормозной путь

What a o ne-s econd a dvantage c an m ean t y

Каждый хочет подарить больше времени, но насколько ценным может быть для вас одна жалкая, убогая секунда? Когда дело доходит до использования тормозов на шоссе, это может означать … ну, намного больше, чем вы можете себе представить.

Исследования показали, что среднему водителю требуется от половины до трех четвертей секунды, чтобы почувствовать необходимость нажать на тормоз, и еще три четверти секунды, чтобы переместить ногу с газа на тормоз. педаль. Время реакции у всех разное, но это может составлять полторы секунды между моментом, когда вы впервые начинаете понимать, что у вас проблемы, и даже до того, как вы начинаете замедляться.

Это фундаментально — физиология человека не меняется.Но давайте посмотрим, как это влияет на вашу способность останавливать машину.

В таблице ниже показано расстояние, которое требуется среднему автомобилю, чтобы остановиться на сухом асфальте с разной скоростью, включая расстояние, пройденное всего за одну секунду времени восприятия и реакции.

Скорость Расстояние восприятия / реакции Тормозной путь Общий тормозной путь Равно примерно длине кабины (на расстоянии 15 футов)
30 миль / ч 44 фута 45 футов 89 футов 6
40 миль / ч 59 футов 80 футов 139 футов 9
50 миль / ч 73 футов 125 футов 198 футов 14
60 миль / ч 88 футов 180 футов 268 футов 18
70 миль / ч 103 футов 245 футов 348 футов 23
80 миль / ч 117 футов 320 футов 439 футов 29

Обратите внимание, что когда вы удваиваете скорость — скажем, с 30 миль в час до 60 или с 40 до 80 — ваш общий тормозной путь увеличивается более чем вдвое: он увеличивается втрое!

Когда дело доходит до торможения, всегда следуйте этим трем ключевым принципам безопасного вождения:

  • Снизьте скорость. Чем медленнее вы едете, тем короче ваш тормозной путь.
  • Загляните далеко вперед, чтобы увеличить время предупреждения. Всегда глядя на дорогу как можно дальше, вы быстрее увидите возникающие опасности и стоп-сигналы автомобилей, идущих впереди вас.
  • Рано двигайте ногой. Снимая ногу с педали газа и слегка нажимая на педаль тормоза при первом признаке того, что вам нужно замедлить скорость, вы резко увеличиваете время реакции и защищаете свою заднюю часть, давая водителям позади вас более ранний предупреждающий знак.

Классическое исследование, проведенное в 1980-х годах, показало, что 90 процентов всех аварий можно было бы избежать, если бы водитель отреагировал всего на секунду раньше. Использование этих советов по безопасному торможению может дать вам необходимое преимущество в одну секунду.

какие факторы влияют на тормозной путь тормозной путь скорость размышления скорость кинетическая энергия время реакции эксперименты торможение дорожного транспортного средства фрикционные тормоза igcse / gcse 9-1 Физика примечания к пересмотру

5.Время реакции и тормозной путь, например, дорожные транспортные средства и решение проблем с использованием уравнения 2-го закона Ньютона и расчетов кинетической энергии

Док Брауна Примечания к редакции школьной физики: физика GCSE, физика IGCSE, O level физика, ~ американские классы 8, 9 и 10 школьные курсы естественных наук или эквивалентные для ~ 14-16 лет студенты-физики

Какая формула остановки расстояние? Какие факторы влияют на расстояние мышления?

Какие факторы влияют на тормозной путь? Какая связь между тормозной путь и кинетическая энергия? Можете ли вы придумать простой эксперимент, чтобы измерить время реакции?

Подиндекс этой страницы

(а) Введение — тормозной путь и скорость дорожная техника

б) Как рассчитать дистанцию ​​мышления и тормозной путь от скорости — графики времени

(в) Факторы, влияющие на расстояние мышления (следовательно, и тормозной путь)

(г) Факторы, влияющие на тормозной путь (следовательно, и тормозной путь)

e) Графический анализ тормозного пути, скорости и кинетической энергии движущегося автомобиля

(ж) Подробнее о физике торможение автомобиля и кинетическая энергия

(г) Проблемы здоровья и безопасности, связанные с столкновениями с участием автотранспортных средств и велосипедистов

(высота) Некоторые продвинутые расчеты тормозной силы и кинетической энергии

(i) Простая реакция время эксперименты


а) Введение — s расстояние до верха и скорость автотранспорт

При вождении автомобиля, очевидно, нужно будьте внимательны к любым внезапным изменениям в вашей ситуации, особенно если вам нужно Аварийный тормоз для остановки.

В этой ситуации вы хотите остановить автомобиль (или любое другое дорожное транспортное средство) в кратчайшие сроки до произведите соответствующую аварийную остановку!

Это означает приложение максимальной силы на педаль тормоза.

The дольше реагирует и больше времени требуется для остановки , тем больше риск сбоя в объект на вашем пути.Время реакции каждого «думающего» на ситуацию Требование быстрой физической реакции отличается, хотя обычно в диапазоне От 0,2 до 0,8 секунды. В биологии вы, возможно, изучали нервная система, включая рефлекторную дугу.

Расстояние, необходимое для остановки дорожного транспортного средства в аварийной ситуации определяется по следующей формуле:

РАССТОЯНИЕ ОСТАНОВКИ = РАССТОЯНИЕ МЫШЛЕНИЯ + ТОРМОЗНОЕ РАССТОЯНИЕ

Расстояние мышления — это как далеко вы путешествуете во время вашей реакции, которое является временным интервалом от вас воспринимает опасность и начинает действовать e.грамм. затормозить.

Тормозной путь фактический расстояние, с которого вы путешествуете, когда вы впервые нажимаете на тормоза, до остановка.

Тормозной путь — это общий время, необходимое от первоначального зрительного стимула до фактической остановки движения.

В приведенной выше таблице приведены типичные или средние значения для обдумывания расстояния, тормозного пути и тормозного пути и цитируется из дорожного кодекса Великобритании буклет с инструкциями.

Вы можете видеть, что расстояние мышления довольно значительная часть общего тормозного пути, особенно на меньшие скорости, НО посмотрите, насколько резко общий тормозной путь увеличивается с увеличением скорости.

Эти значения следует удвоить для мокрые дороги и умноженные на 10 для покрытых льдом дорог. Снег будет где-то посередине, но где?, так что будьте осторожны при вождении любые из этих неблагоприятных условий вождения.

Позже на этой странице я использовал это данные для построения графиков и расчетов, касающихся тормозного пути до скорость и кинетическая энергия автомобиля.


ВЕРХ СТРАНИЦЫ и субиндекс


(б) Как рассчитать дистанцию ​​мышления и тормозной путь от скорости — графики времени

Графики 1а

Вы, наверное, уже встречались с графиками скорости и времени, поэтому вы должны знать, что область под частью графика скорость-время равно пройденному расстоянию на этом участке (в единицах м / с x s = m).

Графики предполагают одну и ту же машину и водителя. так что замедление при максимальном торможении такое же, поэтому отрицательный градиент — это одно и то же значение на обоих графиках.

График слева от 1a показывает начальную ситуацию водителя быстрее реагирует на поездку на более низкой скорости .

Прямоугольная область A1 = начальная скорость v1 x время реакции t1 = расстояние мышления

Площадь A1 равна расстоянию мышления, то есть расстояние, которое проезжает автомобиль, за время, необходимое водителю, чтобы реагирует на ситуацию и начинает тормозить.

Прямоугольный треугольник A2 = x начальная скорость v1 x время торможения t2 = тормозной путь

Площадь A2 — это тормозной путь, то есть расстояние, на которое транспортное средство движется от максимальной начальной скорости, когда начинается торможение, пока не останавливается.

Общая площадь = A1 + A2 = остановка расстояние

График справа от 1a показывает более медленную реакцию водителя и транспортное средство движется с большей скоростью .

Это означает, что были учтены два фактора. изменено, чтобы подчеркнуть, насколько легко и драматично тормозной путь увеличено .

Итак, v2> v1 и времена t1 и t2 равны увеличивается, поэтому увеличиваются как области A1, так и A2.

Пурпурные заштрихованные области указывают на увеличение расстояние мышления A1 и тормозной путь A2.

Это может означать отсутствие ухода и внимание e.грамм. устал и не зацикливаясь на скоростном режиме.

Прямоугольная область A1 = начальная скорость v2 x время реакции t1 = расстояние мышления

Прямоугольный треугольник A2 = x начальная скорость v2 x время торможения t2 = тормозной путь

Итак, обе области A1 и A2 сильно увеличена, увеличивая вероятность аварии при вождении беспечно!

Общая площадь = A1 + A2 = остановка расстояние, а намного больше, чем до .

Если вы следовали вышеуказанному логические аргументы, вы сможете интерпретировать графики, если только один факторов изменилось.


ВЕРХ СТРАНИЦЫ и субиндекс


(c) Факторы, влияющие на расстояние мышления (в конечном итоге влияет и на тормозной путь)

Скорость — это первый очевидный фактор.

Чем быстрее ты , тем дальше вы будете путешествовать с тем же самым «лучшим» временем реакции, которое вы можете управлять, тем больше дистанция мышления, на которой вы ничего не можете о.

Чем длиннее ваш время реакции , тем больше ваша расстояние мышления.

Вы можете свести это к минимуму, только будучи полностью бдительными и способен реагировать так быстро, как только может ваше тело.

Последствия усталости и алкоголя повлияют на ваше бдительность и увеличить время отклика и дистанцию ​​мышления.

Есть и другие факторы.

Вы принимаете лекарства, может повлиять на вашу бдительность?

Вы отвлекаетесь на просмотр / размышления? о чем-то еще, кроме предстоящей дороги?

Ты с кем-нибудь разговариваешь? в машине дети глупые?

Даже легальное использование мобильного телефона с ручным набором, все еще потенциально отвлекает.

Плохая видимость напр. туман или дым, задержит обнаружение опасности и реакцию на нее, поэтому эффективно увеличивая время на размышления.


ВЕРХ СТРАНИЦЫ и субиндекс


(d) Факторы, влияющие на тормозной путь (в конечном итоге влияет и на тормозной путь)

Опять же, скорость — это первый очевидный фактор.

Чем быстрее вы едете тем больше кинетической энергии должно быть удалено из кинетической накопитель энергии. При постоянной скорости торможения потребуется больше времени большая скорость, потому что больше кинетической энергии должно быть преобразовано в тепло энергия в тормозной колодке и дисковой системе.

Это показано справа (тормозные колодки P контактируют с диск D).

Все факторы, обсуждаемые здесь, становятся особенно имеет решающее значение при экстренном торможении , или вы внезапно обнаружите Сам слишком близко к машине впереди .

Чем больше ваша скорость, тем больше вы останавливаетесь расстояние и большее расстояние, которое вы должны разрешить между одним транспортным средством и другой, например, расстояние в два шеврона для скорости 70 миль в час, которое вы видите на некоторых участки автострады.

Какими бы хорошими ни были тормоза, их нет. хорошо быть слишком близко к другому транспортному средству, т. е. в пределах остановки расстояние, если вы хотите избежать аварии, если впереди идущий автомобиль экстренный тормоз или транспортный поток быстро останавливается!

Ограничение скорости — это не просто снижение скорости, они также о сокращении тормозного пути там, где выше скорость считается опасной для определенного участка дороги.Этот для безопасности участников дорожного движения и пешеходов, например 20 миль / ч в узком улицы в застроенных районах, где может быть много людей ходьба и пересечение дорог.

Дорога состояние и погода : Неблагоприятное состояние дороги уже было упомянуто. При сухой дороге (и шинах в хорошем состоянии) вы получите максимальное сцепление с дорогой от контакта шины с дорожным покрытием при торможении, давая вам минимальное пройденное расстояние — минимальное расстояние для размышлений.Если дорога мокрая от дождя, покрыта снегом или льдом, сцепление с дорогой ослаблено. пониженный (лед> снег >> стоячая вода, все приводит к заносу на торможение). Современные шины отлично справляются с торможением, даже если дорога немного мокрая. и никакой очевидной стоячей воды — где можно получить «аквапланирование» / «аквапланирование» когда вы скользите по слою воды на дорожном покрытии. Листья и расколотое масло также уменьшите трение между шиной и дорогой. Все эти условия уменьшить трение шины на дороге и увеличить время торможения и тормозной путь

Состояние шин : Шины предназначены для обеспечивают максимальное сцепление с дорогой и удаляют воду из-под шин на мокрой дороге дороги.Если шины изношены (лысый или небольшой протектор), сцепление ухудшается. и жизненно важная функция трения и вытеснения воды для замедления транспортного средства уменьшаются, и поэтому увеличивает тормозной путь и вероятность Тяжелая . Кроме того, в шинах должно быть достаточно воздуха, чтобы обеспечить правильный рабочее давление.

Эффективность тормозов : Если тормоза не в хорошем состоянии, функция торможения может быть нарушена. Тормозные колодки могут быть изношенная или негерметичная гидравлическая тормозная система может быть источником торможения обесценение.Сбалансированы ли тормоза, чтобы вы замедляли движение по прямой? — это касается и состояния шин.


ВЕРХ СТРАНИЦЫ и субиндекс


(e) Графический анализ тормозного пути, скорости и кинетической энергии движущегося автомобиля

видеть расчеты

Диаграмма ПОЗ. : KE = кинетическая энергия ( Дж, ), м = масса ( кг, ), u = начальная скорость ( м / с ), v = конечная скорость ( м / с ), с = скорость ( м / с )

a = ускорение или замедление ( м / с 2 ), Вт = работа сделано ( Дж, ), F = усилие ( Н, ), d = расстояние ( м )

График 1б

График 1b выше принимает дистанцию ​​обдумывания, торможение данные о расстоянии и тормозном пути и отображают их в зависимости от типичной скорости дорожного транспортного средства.

Очевидно, все расстояния увеличиваются с увеличением скорость, но обратите внимание на два других очень важных момента.

Вы должны заметить …

(i) два графика изгибаются вверх , так что «разгонного» влияния скорости на тормозной путь и в целом тормозной путь (последнее происходит из-за увеличения тормозного пути) расстояние).

Тормозной путь и торможение расстояние не пропорционально скорости, и, что особенно важно, тормозной путь пропорционален квадрату скорости .Это означает тормозной путь увеличивается быстрее, чем увеличивается скорость.

например удвоение скорости увеличивает тормозной путь в 4 раза (2 ==> 2 2 = 4) и трехкратная скорость увеличивает тормозной путь в девять раз (3 ==> 3 2 = 9).

Расстояние мышления примерно пропорционален скорости , график ~ линейный и не изгиб вверх.Это потому, что ваше время отклика, если оно полностью бдительно, довольно постоянна, поэтому, если ваша скорость удвоится, вы просто будете вдвое больше далеко за то же время отклика.

(ii), и если вы внимательно изучите график или данные, вы видно, что удвоение скорости увеличивает тормозной путь в четыре раза.

Это означает удвоение вашего скорость, примерно увеличивает тормозной путь в 4 раза, очевидно кое-что, о чем нужно помнить, чем быстрее вы едете.

Удвоение скорость увеличивает тормозной путь в четыре раза, а скорость в три раза увеличивает его девять раз! (см. НАПОМИНАНИЕ ниже)

Это обсуждается далее и связано с формулой для кинетической энергии KE = mv 2 .

Удвоив скорость, вы увеличите кинетической энергии автомобиля, следовательно, вы в четыре раза увеличили кинетическую энергию автомобиля. энергия, которая должна быть снята при торможении (потому что KE v 2 ).См. Графики 2 и 3 и примечания ниже.

Следовательно, при удвоении скорости для постоянного тормозного усилия вам нужно удалить в четыре раза больше KE и потребуется в четыре раза большее расстояние, чтобы удалить его.

Подробнее о кинетической энергии расчеты см. Кинетический расчеты накопителя энергии

Вопрос, чтобы проиллюстрировать некоторые из идеи выше и используя приведенную ниже таблицу.

При движении со скоростью 20 миль / ч водитель расстояние мышления составляет 6,0 м, а тормозной путь — 6,0 м.

(а) Какой тормозной путь?

тормозной путь = расстояние для размышлений + тормозной путь = 6,0 + 6,0 = 12,0 м

(b) Оценить общий тормозной путь на скорости 40 миль в час (масштаб 2).

Если расстояние мыслей 6 м на 20 миль в час, это будет вдвое больше, чем на скорости 40 миль в час, 6 x 40/20 = 12 м.

Из аргумента KE и KE v2 тормозной путь увеличивается пропорционально квадрату масштабного коэффициента.

Так тормозной путь 6 x 2 2 = 24 м

Следовательно, тормозной путь равен 12 + 24 = 36 мес (см. график)

(c) Оценить общий тормозной путь на скорости 80 миль в час (масштабный коэффициент 4).

Если расстояние мыслей 6 м на 20 миль в час, это будет в четыре раза больше, чем на скорости 40 миль в час, 6 x 80/20 = 24 м

Тормозной путь увеличивается на квадрат масштабного коэффициента.

Так тормозной путь 6 x 2 4 = 96 м

Следовательно, тормозной путь равен 24 + 96 = 120 м (нет на графике)


ВЕРХ СТРАНИЦЫ и субиндекс


(f) Подробнее о физике торможение автомобиля и кинетическая энергия

В механический процесс торможения в первую очередь зависит от трения между тормозами колодка и стальной диск (показан справа).Когда вы нажимаете педаль тормоза гидравлический система толкает колодки на поверхность диска , вызывая работу должно быть выполнено из-за сил сопротивления между поверхностями.

Возникающий эффект трения передает энергию от накопитель кинетической энергии автомобиля в накопитель тепловой энергии торможения система, которая в конечном итоге рассеивается в накопитель энергии окружающей среды.

г. трение вызывает нагрев тормозов — тормозные колодки и диск должны быть способны выдерживать высокие температуры — оба изготовлены из тугоплавких сплавов.

Немного KE теряется как звук.

Если колеса колеса буксуют на дороге, трение будет генерировать тепловую энергию, а дорога и шины увеличатся в температура.

В конце концов вся кинетическая энергия дорожный транспорт рассеивается в накопитель тепловой энергии окружение.

Итак, когда работа выполняется между тормозами и колесом кинетическая энергия дисков преобразуется в тепловую / тепловую энергию.

Чем быстрее автомобиль едет, тем больше у него запаса кинетической энергии и больше работы должно быть сделано, чтобы остановить машину.

Это также означает, что необходимо большее усилие. применяется для остановки транспортного средства при определенном торможении / остановке расстояние.

Чем больше тормозное усилие, тем больше замедление.

Сильное замедление может быть опасным, так как тормоза могут перегреваться, что влияет на их действие И вероятность заноса гораздо выше, особенно если дорожное покрытие скользкое из-за уже описанных условий.

Чтобы рассмотреть вопрос о кинетической энергии в контексте, изучите график 2 ниже.

График 2

График 2 показывает, как кинетическая энергия дорожное транспортное средство (например, автомобиль весом 1200 кг) меняется в зависимости от его скорости.

Вы можете увидеть, что удвоив скорость, вы в четыре раза увеличиваете кинетическую энергию автомобиля, следовательно, вы в четыре раза увеличиваете кинетическая энергия снимается при торможении.

Это потому, что KE = mv 2 . Его скорость 2 термин, придающий этому решающее математическое значение.

При условии равномерного замедления и равномерного уменьшение скорости уменьшения кинетической энергии, означает торможение расстояние зависит от кинетической энергии и скорости 2 . Видеть график 3 сейчас.

График 3 показывает линейную зависимость между кинетическими энергия автомобиля и тормозной путь (с использованием данных правил дорожного движения Великобритании и автомобиля массой 1200 кг).

График 3

Это результат KE = mv 2 и данные о тормозном пути предполагает равномерное замедление и равномерное снижение скорости снижения кинетическая энергия за счет трения тормозов.

Как уже было сказано, торможение расстояние увеличивается быстрее скорости.

Общий объем работ по остановке дороги транспортное средство равно начальной максимальной кинетической энергии транспортного средства.

Работы по остановке транспортного средства = всего KE транспортного средства = тормозная сила x тормозной путь

W = F x d = KE = mv 2 (в двух словах!)

W = работа в J до остановки, и вся работа выполняется за счет тормозов (при условии отсутствия заноса) через трение от накопителя KE транспортных средств к накопителю тепловой энергии тормоза и окружающая среда

F = тормозное усилие в Н (предполагается, что быть постоянным для тормозов автомобиля),

d = тормозной путь в м, м = масса автомобиля в кг, v = скорость автомобиля в м / с

При заносе на сухой дороге, резина, оставленная на дороге, говорит о том, что шины немного пошатнулись тормозной работы тоже!

Если предположить постоянное тормозное усилие (максимальное нажатие на педаль тормоза), и поскольку кинетическая энергия автомобиля равна пропорционально скорости 2 , то тормозной путь равен пропорциональна начальной кинетической энергии автомобиля.

Вот и работа проделана уравнение говорит для постоянной тормозной силы:

KE BD и график тоже.

Дополнительное последствие: если ваша машина полна людей или грузовик полностью загружены, то кинетическая энергия при заданной скорость больше, чем если бы в транспортном средстве находился только водитель. Следовательно, при наличии дополнительной массы в транспортном средстве следует допускать дополнительное расстояние. для вашего тормозного пути из-за дополнительной кинетической энергии .

Примеры т. тип. массы для дорожных транспортных средств :

вагонов 1000-1500 кг; большой фургон / одноэтажный автобус ~ 9 000 -10 000 кг; груженый грузовик ~ 30 000 — 40 000 кг.


ВЕРХ СТРАНИЦЫ и субиндекс


(грамм) Проблемы здоровья и безопасности, связанные с столкновениями с участием автотранспортных средств и велосипедистов

(мотоциклы, автомобили, грузовики, автобусы и др.))

Введение

Большое замедление (быстрое замедление вниз) предметов (аварии автомобилей или людей, падающих и ударяющихся о землю) требует значительных усилий и, очевидно, может привести к травмам.

Почему? Большие замедления требуют большого резистивная сила. Вспомните уравнение 2-го закона движения Ньютона …

F = ma , для создания большого разгон а , нужно относительно большое усилие F , независимо от массы м ,

также, чем больше масса м , тем большее усилие F необходимо для данного замедления.

В принципе, сила, испытываемая объект можно уменьшить, уменьшив замедление («более медленное» замедление вниз).

Отзыв: ускорение = изменение скорость / затраченное время, a = ∆v / ∆t , увеличьте ∆t, чтобы уменьшить

С точки зрения импульса вы пытаетесь изменить импульс в течение как можно более длительного времени, чтобы минимизировать силу вовлеченный.

В следующем разделе мы применим эти идеи разработать меры безопасности, которые увеличивают время столкновения — время от первоначальное столкновение объекта с препятствием на пути к остановившемуся объекту (∆t в терминах приведенных выше уравнений), т.е. уменьшить скорость замедления.

Вам нужно знать о таких вещах, как воздух сумки и ремни безопасности в автомобилях, зоны деформации спереди и сзади автомобилей, защитные шлемы для езды на велосипеде.

Применение физики сил к расчету безопасности

При столкновении дорожного транспортного средства с неподвижный объект нормальное контактное усилие между ними вызовет работа предстоит сделать.

Столкновение вызовет выделение энергии. передается из накопителя кинетической энергии транспортного средства в несколько других источников энергии магазины.

Тепловая энергия (ударное трение) и запасы упругой потенциальной энергии (эффект «хрустящего») двух объектов будут увеличится, и часть кинетической энергии перейдет в звук.

Когда все «успокоилось» после авария, теоретически, весь запас кинетической энергии движущегося транспортного средства в конечном итоге приводит к увеличению запаса тепловой энергии в окружающей среде.

Вы можете встроить в конструкцию элементы безопасности. дорожных транспортных средств и, при необходимости, защитной одежды.

В большинстве случаев вы пытаетесь замедлить замедление — увеличить время столкновения или поглотить кинетическая энергия любого быстрого замедления и тем самым минимизировать силу a переживания тела человека. Быстрый удар вызывает резкое замедление — гораздо больше, чем даже при экстренном торможении.

Все дело в минимизации травм люди в условиях быстрой смены движения .

С точки зрения физики, все о поглощение энергии удара и увеличение времени замедления — минимизация а в F = ma !

Из 2-го закона движения Ньютона: F = ma , поэтому для данной массы m , если можно сделать a замедление меньше , тормозящая сила F также уменьшен до и сводит к минимуму удары по телу и травмы.

Ремень безопасности снижает силу воздействия замедление.

При столкновении или экстренном торможении ремень безопасности немного растягивается, увеличивая время замедления и уменьшая силу вашего опыт тела против ремня безопасности. Скорость изменения импульса равна уменьшенный ( F = ∆mv / ∆t )

Быстродействующие подушки безопасности, смягчат ваше тело от сильного удара они также увеличивают время торможения и уменьшают силу ваше тело переживает.Опять же, скорость изменения импульса снижается ( F = ∆mv / ∆t )

Подушки безопасности быстро расширяются, а затем сжимаются. когда в него врезается водитель автомобиля.

Сжатие длится дольше, чем если вы врезались в приборную панель разбитой машины, или даже если вы слишком зажат ремнем безопасности.

Кузов автомобиля может иметь зоны деформации. в дизайн кузова автомобиля, как спереди, так и сзади, чтобы поглотить кинетическая энергия любого сильного удара.Это увеличивает время замедления, тем самым уменьшая силу, которую испытывает ваше тело.

Фотографии (подделки) умеренно резкое столкновение автомобиля с кирпичной стеной дает представление о том, что такое «зона деформации» — это все.

Вы увидите аналогичные повреждения сзади вашего автомобиля (2-я зона деформации), если кто-то врезался в вас сзади.

Велошлемы и защитные шлемы

Шлемы, которые носят велосипедисты или мотоциклисты наездники (мотоциклисты) имеют внутреннюю подкладку из пены (или другой энергетической поглощающий материал), чтобы смягчить голову при ударе.

Пена увеличивает время до того, как ваша голова перестанет двигаться из-за удара.

г. меньшее замедление в течение большего периода времени снижает силу удара, которую испытывает ваша голова.

ВЕЛОСИПЕДНЫЕ ШЛЕМЫ

Все разработано с учетом безопасности (и комфорта).

Основная Характеристики безопасности мотоциклетного защитного шлема — это твердая защитная внешняя оболочка и «мягкий» вкладыш, поглощающий энергию удара. Комфортная набивка из пеноматериала. поглотит кинетическую энергию при ударе.

Изображение из

КАЛИФОРНИЯ ПРОГРАММА БЕЗОПАСНОСТИ МОТОЦИКЛИСТОВ

и при поддержке Калифорнийского дорожного патруля

Схема советует мотоциклистам в шлемах которые не соответствуют всем проиллюстрированным конструктивным характеристикам безопасности, должны поменять шлем!

На прогулке наткнулся на пара мотоциклистов, любезно разрешившая мне сфотографировать.Оба пережили серьезная авария, но как только защитный шлем оказался в ситуации удара, его необходимо заменить. Вы можете четко увидеть все функции, описанные в диаграмма выше.

Итак, мотоциклисты-подростки, покупайте самые безопасные шлем, он может стоить дороже, но без лучшего шлема он может стоить вам даже больше.

Исследования постоянно развиваются новые материалы для повышения эффективности функций безопасности, будь то автомобильные кузова или шлемы.

Те же идеи применимы к безопасности в игре зоны для детей и безопасности в таких видах спорта, как гимнастика

Игровое оборудование установлено на безопасность коврики, поглощающие силу удара при падении на них ребенка.

Они должны быть из резины или поролона. материалы.

Идея этой «мягкой» пьесы полы должны увеличить время воздействия за счет использования материала, который сжимается при ударе, чего не может случиться с твердой поверхностью.

Если гимнасткам необходимо совершить приземление из куска устройство, которым они должны приземлиться на мягкой поверхности, чтобы уменьшить удар заставьте ноги испытать и избежать травм.

Коврики безопасности особенно необходимы, когда изучение новых процедур, в которых с большей вероятностью могут возникнуть ошибки и несчастные случаи. случаться.

Как на соревнованиях, так и на тренировках использование матов теперь является обязательным на большинстве мероприятий, и гимнастки могут использовать дополнительные мат для приземления, без вычетов, пока они приземляются в пределах указанного расстояние.

Даже футболистов носят скромные накладки на голень чтобы защитить свои ноги от жестких подкатов!

Толстый слой материала поглощает энергию удар ногой или ботинком «отлавливающего», увеличивая время удара и уменьшение силы удара.


ВЕРХ СТРАНИЦЫ и субиндекс


(h) Некоторые расширенные расчеты тормозной силы и кинетической энергии

Диаграмма ПОЗ. : KE = кинетическая энергия ( Дж, ), м = масса ( кг, ), u = начальная скорость ( м / с ), v = конечная скорость ( м / с ), с = скорость ( м / с )

a = ускорение или замедление ( м / с 2 ), Вт = проделанная работа ( Дж, ), F = усилие ( Н, ), d = расстояние ( м )

1 квартал Предположим, что автомобиль массой 1200 кг движется со скоростью 18 м / с (~ 40 миль в час) и должен пройти аварийная остановка с опасностью в 30 м впереди.

(a) Рассчитайте замедление автомобиль и (b) задействованное тормозное усилие .

(a) Сначала используйте уравнение движения v 2 — u 2 = 2ad для расчета замедления.

где v = конечная скорость, u = начальная скорость, a = ускорение (∆v / ∆t), d = пройденное расстояние

Предполагая равномерное замедление и v = 0 ( остановка), u = 18 м / с, d = 30 м

v 2 — u 2 = 2ad, 0 — 18 2 = 2 х а х 30

60a = -324, поэтому a = -324/60 = -5.4 м / с 2 (обратите внимание на отрицательный знак замедления)

(Это проще сделать, если у вас учитывая время торможения, можно просто использовать a = ∆v / ∆t, что я сделал в предыдущем разделе, сравнивая автомобиль и грузовой автомобиль, и назвал его 2 квартал)

(b) Затем вы используете уравнение 2-го закона Ньютона. F = ma ,

где F = замедляющее тормозное усилие, m = масса автомобиля,

а = замедление автомобиля = изменение скорости / затраченное время

Подставляя в уравнение (можно игнорировать знак ускорения здесь, а НЕ вверху)

F = ma = 1200 x 5.4 = 6480 N

Комментарий: Вот почему ваше тело выбрасывается вперед. В замедление составляет чуть более половины значения ускорения, которое вы опыт из-за гравитационного поля Земли. Если ты при высокоскоростном ударе сила может быть намного больше и следовательно, разрушительно для вас и для машины!

См. Раздел на характеристики безопасности автомобильного транспорта

Q2 Небольшой отечественный автомобиль весом 1000 кг (1 тонна) с двумя осями на скорости 60 миль в час (26.84 м / с)

будет иметь кинетическую энергию = 0,5 мВ 2 = x 1000 х 26,84 2 = 3,6 x 10 5 J (360 кДж, 3 с.ф.)

Тяжелый седельный тягач из 6 оси могут весить с полной нагрузкой до 43000 кг (43 тонны) на скорости 60 миль в час. (26,84 м / с)

будет иметь кинетическую энергию = 0,5 мВ 2 = x 43000 x 26,84 2 = 1.55 x 10 8 Дж (15 500 кДж, 3 н.д.)

Теперь обе эти машины должны быть возможность остановиться на таком же безопасном расстоянии в аварийной ситуации.

Двухосный вагон будет иметь четыре комплекта тормозных колодок.

Шестиосный грузовой автомобиль будет иметь двенадцать комплектов тормозных колодок, в три раза больше, чем у автомобиля.

Это значит остановиться в такой же безопасности расстояние, тормозное усилие, прилагаемое каждым комплектом колодок в товарах Автомобиль должен быть намного больше, чем для автомобиля.

При скорости 50 миль / ч (22,37 м / с) предположим, что безопасный тормозной путь — 38 м.

Затем мы можем подсчитать общую тормозное усилие необходимо для остановки через три секунды.

(я) для обоих автомобилей замедление a = ∆v / ∆t = 22,37 / 3 = 7,457 м / с 2

(ii) F = ma из 2-го закона Ньютона, сила в ньютонах, масса в кг, замедление в метров в секунду 2

Для автомобиля: F = 1000 х 7.457 = 7 460 N (3 н.ф.),

то есть Тормозное усилие 1865 Н на комплект из четырех тормозных колодок.

Для товаров автомобиль: F = 43 000 x 7,457 = 321 000 N (3 н.ф.).

это Тормозное усилие 26750 Н на комплект тормозных колодок.

Это означает Тормозные колодки для грузовых автомобилей должны создавать тормозное усилие более чем в 14 раз. из машины.

(Для тех знатоков в физике дорожных транспортных средств, я ценю, что они упрощены расчеты)

Подробнее о расчетах F = ma видеть Второй закон Ньютона Движение и расчет импульса

Q3 Предположим автомобиль, движущийся со скоростью 30 м / с (~ 70 миль в час), должен сделать аварийную остановку, чтобы избежать опасность.

Если масса автомобиля составляет 1500 кг, то тормозное усилие автомобиля 6000 Н и уставшего водительского время реакции — 1.5 секунд, рассчитайте следующее:

(a) Рассчитайте мышление расстояние водителя (s = скорость (м / с), d — расстояние (м), t = время (s))

s = d / t, d = s x t = 30 x 1,5 = 45 м = мышление расстояние

(b) Рассчитайте начальную кинетическую энергия автомобиля (m = масса автомобиля в кг, v = скорость автомобиля (м / с)

KE = mv 2 = 0.5 х 1500 х 30 2 = 675000 = 6,75 х 10 5 Дж = начальная КЭ автомобиля

(c) Рассчитать тормозной путь для остановки автомобиля (W = проделанная работа торможения (J), d = торможение расстояние (м)

Работа, выполняемая при торможении автомобиля, должна равны кинетической энергии автомобиля (см. График 3 обсуждение)

W = F x d = KE = mv 2 = 6.75 x 10 5 Дж

W = F x d, d = W / F = 6,75 х 10 5 /6000 = 113 м = тормозной путь (3 с.ф.)

(d) Рассчитайте тормозной путь автомобиля

тормозной путь = мышление расстояние + тормозной путь

= 45 + 113 = 158 м = тормозной путь

Q4 См. реакция время эксперимент

Q5 Автомобиль с полноприводным двигателем массой 1500 кг, путешествующий в возрасте 18 лет.0 м / с (~ 40 миль / ч) съезжает с дороги, не снижая скорости до столкновения и снос кирпичной стены.

Если на снос потребовалось 0,200 секунды стены, вычислить следующие

(а) Какова начальная кинетическая энергия машины?

KE = mv 2 = 0,5 x 1500 х 18 2 = 243 000 = 2,43 х 10 5 J

(б) Какие работы выполняются на стене и машина при остановке машины?

2.43 х 10 5 J , потому что вся кинетическая энергия автомобиля должна быть удаленный.

(c) Что происходит с кинетической энергия автомобиля после удара?

Накопитель кинетической энергии автомобиль снижается до нуля и энергия преобразуется в тепло (сжатием или трением) и некоторой звуковой энергией (которая закончится как тепло тоже). Так накопитель тепловой энергии стены, автомобиля и окружающий воздух увеличен .

(d) Рассчитать ставку замедление

Замедление = изменение скорости / затраченное время = ∆v / ∆t = (0 — 18) / 0,2 = -90 м / с 2

(e) Что такое тормозящая сила, действующая на автомобиль?

Из Ньютона 2-й закон: F (N) = m (кг) x a (м / с 2 )

замедление сила = 1500 х -90 = 135 000 = -1.35 х 10 5

Сила (от стены) отрицательно, потому что действует в противоположном направлении. направление движения автомобиля.

Если бы машина была при торможении вовремя замедляющая сила будет положительной (в каждом смысл слова!).

Q6 Представьте себе машину 1000 кг при движении со скоростью 20 м / с при аварийной остановке на расстоянии 25 м — тормозной путь.

Рассчитать среднее тормозное усилие производится водителем при нажатии на педаль тормоза.

Для решения этого вопроса используйте несколько формул.

(a) Рассчитайте кинетическую энергию машина.

KE = 0,5 мВ 2 = 0,5 x 1000 x 202 = 200 000 Дж

(b) Какие работы необходимо сделать, чтобы машина остановилась? Поясните свой ответ.

Если кинетическая энергия автомобиля составляет 200000 Дж, то 200 000 Дж работы должны быть выполнены, чтобы довести KE автомобиля до нуля, т.е. нулевая скорость.

(c) Рассчитайте среднее торможение. требуется сила.

Работа (Дж) = сила (Н) x расстояние (м)

работа = 200 000 Дж и торможение дистанция 25 м

усилие = работа / расстояние = 200 000 / 25 = Среднее тормозное усилие 8000 Н.

Q7 Массовый фургон 2000 кг отклоняется от дороги со скоростью 30 м / с и становится неподвижным после наезда каменная стена.

(a) Если сила удара на фургон 48 000 Н, рассчитайте время остановки.

F = m∆v / ∆t , заменяя

48 000 = 2000 х (30-0) / ∆t

48 000 = 60 000/ ∆t

∆t = 60 000/48 000 = 1.25 с

(b) Объясните, как ремень безопасности и надувание подушки безопасности может спасти жизнь водителю.

При ударе тело водителя разогнался вперёд.

(i) Ремень безопасности растягивается достаточно, чтобы уменьшить скорость изменения количества движения — увеличение времени замедления.

(ii) «Мягкая» надутая подушка безопасности также снижает скорость изменения количества движения и поглощает кинетические энергия при столкновении с телом водителя.

Q8 A 20000 кг дорога автомобиль приходит к аварийной остановке.

Равномерное тормозное усилие 8000 Н применяется водителем до тех пор, пока транспортное средство не остановится в расстояние 20 м.

(a) Рассчитайте скорость автомобиль незадолго до того, как были задействованы тормоза.

Работа при торможении = тормозная сила x расстояние задействованных тормозов = 8000 x 20 = 160000 Н

Всего работ выполнено в торможение = кинетическая энергия транспортного средства в момент сначала включаются тормоза.

KE = 0,5 мВ 2 , перестановка дает v = √ {(KE / (0,5 x m)}

v = √ {(160 000 / (0,5 x 20 000)} = 4 м / с

(б) Каковы основные энергоносители? происходит передача магазина?

Кинетическая энергия автомобиль в основном преобразуется за счет трения, чтобы увеличить накопитель тепловой энергии частей автомобиля и окружающей среды воздушный или автомобильный.

Подробнее о кинетической энергии расчеты см. Кинетический расчеты накопителя энергии


ВЕРХ СТРАНИЦЫ и субиндекс


(i) Простая реакция время экспериментов

Но может сопровождаться умеренно сложные расчеты!

Ваше время реакции на ситуацию обычно может быть 0.2 к 0,8 секунды при полной готовности. Однако на время вашей реакции могут повлиять усталость, плохое самочувствие, наркотики, алкоголь, другими словами все, что влияет на скорость работы вашего мозга.

См. Введение к нервной системе, включая рефлекторную дугу

Вы можете провести довольно простые эксперименты, чтобы проверить свой время реакции на ту или иную ситуацию. Однако, поскольку время реакции слишком короткий, секундомер бесполезен, но есть способы измерить ваш время реакции косвенно путем проведения других измерений, из которых вы можете рассчитайте время своей реакции.

(a) Экран компьютера — где вы как можно быстрее отвечаете на что-то появляется на экране.

В этой ситуации компьютер программное обеспечение генерирует что-то на экране и автоматически ваш ответ, отслеживая ваш контакт с клавиатурой или щелкнув мышью.

Я быстро написал чрезвычайно простая компьютерная программа для проверки вашей реакции на появление X на экран.

Время отклика test: вероятно, работает только на платформах Microsoft, и может не все?

Ваша антивирусная защита может запросить его, потому что это файл .exe , но он написан с составлен BBC BASIC и не должен представлять никакой угрозы. К сожалению, Я так и не научился писать на многоплатформенном профессиональном компьютере язык программирования, но мне не хватает проектов для веб-сайтов!

(b) Простой тест на физическую реакцию — падение линейка для испытания на падение

Вы заставляете кого-то держать линейку вертикально , с большой и указательный пальцы над чужой рукой, готовый поймать большим и указательным пальцами.

Первое изображение справа. В линейку следует держать наверху шкалы и твердыми руками от оба человека.

Ловящий человек должен иметь середина их большого пальца и палец примыкают к нулю на см шкала — присядьте, чтобы убедиться, что вы читаете шкалу по горизонтали.

Тогда, без предупреждения, человек, держащий линейку, отпусти это. Второй человек должен отреагировать как можно быстрее и поймать упавшую линейку между большим и указательным пальцами.

Второе изображение справа. Чем больше расстояние, тем медленнее ваша реакция!

Когда поймают, вы читаете, как далеко линейка упала, считая показания с точностью до сантиметра, откуда находятся середина их большого пальца и пальца.

Вы повторяете эксперимент номер раз, чтобы получить среднее значение , но это не особенно точное эксперимент.

У вас должны быть устойчивые руки, а не пусть линейка раскачивается или падает под углом, отличным от вертикального. Ты также должны использовать ту же линейку и те же люди, которые роняют линейку и ловить его (критерии честного тестирования), хотя, очевидно, можно сравнить результаты одного человека с другим.

Чем меньше время отклика, тем далее правитель падает до того, как его поймают. Вы можете повторить поэкспериментируйте, отвлекая фон — группу людей разговариваете поблизости, или кто-то пытается вовлечь вас в разговор или Музыка.

Q4 Затем вы можете сделать несколько «изящных» вычисления, чтобы на самом деле получить реальное время отклика — так что вы использование косвенных данных для получения времени отклика.

Он включает двухэтапный расчет.

Предположим, что линейка поймана после среднее падение 25 см.

(i) Вы используете уравнение v 2 — u 2 = 2ad , для расчета конечной скорости (подробнее расчеты по этому уравнению)

v = конечная скорость (м / с), u = начальная скорость (м / с), a = ускорение = 9.8 м / с 2 (ускорение свободного падения),

и d = пройденное расстояние (м)

Так как u = 0 и d = 25/100 = 0,25 м

v 2 — 0 = 2 x 9,8 x 0,25 = 4,9

v = √4.9 = 2.214 м / с (ее не так точно, но мы оставим н.ф. до конца)

(ii) Теперь мы можем использовать ускорение формула для расчета времени отклика.

а = ∆v / ∆t, где a = ускорение (9,8 м / с 2 ), ∆v = изменение скорость (м / с) и ∆t = время отклика

Следовательно: 9,8 = 2,214 / ∆t, ∆t = 2,214 / 9,8 = 0,23 с (2 н.ф.)

Итак, дальше В среднем время отклика составило около четверти секунды.


ВЕРХ СТРАНИЦЫ и субиндекс


Движение и связанные силы отмечает индекс (включая законы Ньютона Движение)

1.Скорость и скорость — взаимосвязь между расстояние и время, графики расстояние-время gcse Physics

2. Ускорение, интерпретация графика скорость-время и расчеты. решение проблем Примечания к редакции физики gcse

3. Ускорение, трение, эффекты сопротивления и эксперименты с конечной скоростью Примечания к редакции физики gcse

4. Первый, второй и третий законы Ньютона. Расчет движения, инерции и F = ma Примечания к редакции физики gcse

5.Время реакции тормозной путь и пример расчеты Примечания к редакции физики gcse

6. Упругие и неупругие столкновения, импульс. вычислений и 2-го закона Ньютона движение заметки gcse по физике



Версия IGCSE заметки тормозной путь скорость торможения кинетическая энергия KS4 физика научные заметки на тормозной путь скорость торможения кинетическая энергия руководство по физике GCSE заметки по тормозному пути скорость торможения кинетическая энергия для школ колледжи академии научные курсы репетиторы изображения рисунки диаграммы для тормозного пути скорость торможения кинетическая энергия наука пересмотр примечания на тормозной путь скорость торможения кинетическая энергия для пересмотра модулей физики разделы физики заметки для помощи в понимании тормозной путь скорость торможения кинетическая энергия университетские курсы физики карьера в науке и физике вакансии в машиностроении технический лаборант стажировка инженер стажировка по физике США 8 класс 9 класс 10 AQA Примечания к редакции GCSE 9-1 по физике, тормозной путь скорость торможения кинетическая энергия GCSE примечания по тормозному пути скорость торможения кинетическая энергия Edexcel GCSE 9-1 физика наука пересмотр примечания к тормозной путь скорость торможения кинетическая энергия для OCR GCSE 9-1 21 век физика научные заметки о тормозном пути скорость торможения кинетическая энергия OCR GCSE 9-1 Шлюз физики примечания к изменениям тормозного пути Скорость торможения кинетическая энергия WJEC gcse science CCEA / CEA gcse science

ВЕРХ СТРАНИЦЫ и субиндекс

Реакция, тормозной путь и формула

от Zutobi · Обновлено 11 марта 2021 г.

Важной частью предотвращения наезда сзади является знание вашего тормозного пути и того, как быстро ваш автомобиль может полностью остановиться. Создайте запас безопасности, обеспечивающий достаточное расстояние между впереди идущим автомобилем, чтобы было время среагировать и безопасно остановиться. Чтобы полностью остановиться до столкновения, необходимо мысленно рассчитать тормозной путь.

Знание того, как скорость влияет на тормозной путь, жизненно важно для безопасного водителя. Но сначала давайте рассмотрим важную информацию.

Что такое расстояние реакции?

Расстояние реакции — это расстояние, которое проходит ваш автомобиль, пока вы реагируете.Таким образом, время, которое проходит с момента появления опасности до фактического начала торможения. Время реакции варьируется от водителя к водителю.

Что такое тормозной путь?

Тормозной путь — это расстояние, которое требуется автомобилю для полной остановки, начиная с момента, когда вы нажимаете на тормоз.

Что такое тормозной путь?

Тормозной путь = путь реакции + тормозной путь. Таким образом, расстояние, необходимое вашему автомобилю для полной остановки с момента обнаружения опасности.

Формула тормозного пути

Скорость очень сильно влияет на вашу способность вовремя останавливаться и существенно влияет на ваши шансы попасть в аварию:

  1. При 30 милях в час вам нужно примерно 120 футов, чтобы добраться до полная остановка (65 футов для реакции и 55 футов для торможения) в хороших условиях.
  2. При скорости 60 миль в час вам нужно примерно 360 футов, чтобы полностью остановиться (130 футов для реакции и 190 футов для торможения) в хороших условиях.

Небольшое увеличение скорости также влияет на тормозной путь . Увеличение скорости всего на 10 миль / ч с 50 до 60 миль / ч увеличивает общий тормозной путь до 40%.

Как правило, удвоение скорости увеличивает тормозной путь в четыре раза, а утроение скорости увеличивает тормозной путь в девять раз.

Другие факторы, влияющие на тормозной путь

Мокрые и другие скользкие условия, а также сухие грунтовые дороги также добавляют значительный тормозной путь к полному тормозу.На тормозной путь влияют:

  • время реакции
  • состояние шин, включая глубину протектора и давление воздуха
  • дорожные условия
  • погодные условия
  • состояние автомобиля и тормозная способность
грунтовые дороги требуют более длинного тормозного пути, чтобы довести автомобиль до полная остановка

Расчет тормозного пути — Движение транспортных средств — Edexcel — Редакция GCSE Physics (Single Science) — Edexcel

Важно уметь:

  • оценить, как тормозной путь транспортного средства изменяется в зависимости от скорости
  • рассчитать работу, проделанную для остановки движущегося транспортного средства

На диаграмме показаны некоторые типичные тормозные пути для среднего автомобиля в нормальных условиях.

Важно отметить, что расстояние мышления пропорционально начальной скорости. Это потому, что время реакции принято как постоянное, а расстояние = скорость × время.

Тормозное усилие

Однако тормозной путь увеличивается в четыре раза каждый раз, когда стартовая скорость удваивается. Это связано с тем, что работа, выполняемая при остановке автомобиля, означает удаление всей его кинетической энергии.

Выполненная работа = кинетическая энергия

Выполненная работа = тормозная сила × расстояние

Итак, при фиксированной максимальной тормозной силе тормозной путь пропорционален квадрату скорости.

Пример расчета дистанции мышления

Автомобиль движется со скоростью 12 м / с. Водитель имеет время реакции 0,5 с и видит, что впереди на дорогу выбегает кошка. Какова дистанция мышления, когда водитель реагирует?

расстояние = скорость × время

\ [d = v \ times t \]

\ [d = {12} \\ м / с \ times {0,5} \\ s \]

\ [мышление \\ distance = 6 \ m \]

Пример расчета тормозного пути

Автомобиль в предыдущем примере имеет общую массу 900 кг.{2}} {2,000} \]

\ [braking \\ distance = 32 \\ m \]

Пример расчета тормозного пути

Каков тормозной путь для автомобиля выше?

тормозной путь = расстояние мысли + тормозной путь

тормозной путь = 6 + 32

тормозной путь = 38 м

вопрос

Рассчитайте тормозной путь для автомобиля и водителя в приведенном выше примере, когда движется со скоростью 24 м / с.

Показать ответ

\ [мышление \ расстояние = 24 \ м / с \ умножить на 0.{2}} {100} \]

тормозное усилие ~ 87 000 Н

Скорость и тормозной путь

Скорость автомобиля и тормозной путь

Vision Zero призывает к соблюдению ограничений скорости 30 км / ч на большинстве городских улиц отчасти потому, что тормозной путь автомобиля резко увеличивается с увеличением его скорости.

Автор: Райан МакГреал
Опубликовано 29 августа 2016 г.

Еще в апреле я раскрыл некоторые аспекты физики, лежащие в основе приверженности Vision Zero ограничению скорости 30 км / ч.Совсем недавно Мишель Мартин внимательно изучила факторы когнитивной психологии, в частности снижение периферического зрения на высоких скоростях.

Но есть еще один компонент скорости транспортного средства, который должен подтолкнуть нас к принятию более низких скоростей транспортного средства: тормозной путь движущегося автомобиля. Очевидно, что большая часть повышения безопасности дорог заключается в предотвращении аварий и столкновений, а более короткий тормозной путь означает, что водитель с большей вероятностью может затормозить, чтобы избежать столкновения с другим водителем, велосипедистом, пешеходом или чем-то еще.2 / 2мкг

где v — начальная скорость, μ — коэффициент трения (от 0 до 1), а g — сила тяжести земли.

Но тормозной путь также включает время, которое водитель тратит на размышления перед тем, как начать тормозить. Высококвалифицированный, внимательный водитель может начать тормозить чуть более чем за полсекунды, но среднему водителю потребуется не менее секунды, а некоторым водителям, в том числе пожилым водителям с более медленным временем реакции, может потребоваться 1,5 секунды, две секунды или больше, чтобы реагировать.

Для сухого асфальта коэффициент трения обычно составляет около 0,7, хотя он выше с антиблокировочной системой тормозов. И, конечно же, гравитация Земли составляет 9,8 метра в секунду в секунду.

Итак, если мы консервативно предположим, что время обдумывания составляет одну секунду и коэффициент трения 0,8 для сухого асфальта, мы можем рассчитать общий тормозной путь транспортного средства на различных скоростях.

Тормозной путь автомобиля по скорости, сухой асфальт
Скорость (км / ч) Расстояние (м)
Мышление Торможение Всего
10 2.78 0,49 3,27
20 5,56 1,97 7,52
30 8,33 4,43 12,76
40 11,11 7,87 18,98
50 13.89 12,30 26,19
60 16,67 17,72 34,38
70 19,44 24,11 43,56
80 22,22 31,49 53,72
90 25.00 39,86 64,86
100 27,78 49,21 76,99

На гистограмме с накоплением ниже синяя полоса обозначает дистанцию ​​мышления, а красная полоса — тормозной путь.


Диаграмма: остановочный путь автомобиля по скорости, сухой асфальт

Между 30 и 40 км / ч тормозной путь увеличивается на 50 процентов!

Если асфальт мокрый или ледяной, коэффициент трения значительно снижается.Давайте посмотрим на те же скорости автомобиля, но с коэффициентом трения 0,4:

.
Тормозной путь автомобиля по скорости, мокрый асфальт
Скорость (км / ч) Расстояние (м)
Мышление Торможение Всего
10 2,78 0,98 3,76
20 5.56 3,94 9,49
30 8,33 8,86 17,19
40 11,11 15,75 26,86
50 13,89 24.60 38,49
60 16.67 35,43 52,10
70 19,44 48,23 67,67
80 22,22 62,99 85,21
90 25,00 79,72 104,72
100 27.78 98,42 126.20

Опять же, на гистограмме с накоплением ниже синяя полоса обозначает дистанцию ​​мышления, а красная полоса — тормозной путь.


Диаграмма: остановочный путь автомобиля по скорости, мокрый асфальт

При более высокой скорости транспортного средства не только увеличивается кинетическая энергия, но и требуется гораздо большее расстояние, чтобы остановиться, что снижает вероятность того, что водитель сможет избежать столкновения.

В сочетании с тем фактом, что периферийное зрение ухудшается с увеличением скорости, доказательства совершенно очевидны: если мы хотим, чтобы улицы были безопасными для всех людей, использующих их, включая людей, идущих и едущих на велосипеде, мы должны снизить скорость транспортных средств.

Вот почему глобальное движение Vision Zero требует ограничения скорости 30 км / ч. На более высоких скоростях сделать наши улицы безопасными и инклюзивными просто невозможно.

Расчет тормозного пути

Если вы хотите поэкспериментировать с формулой тормозного пути, следующая форма вычислит мышление, торможение и общий тормозной путь на основе значений в полях ввода над ней.

Райан МакГреал, редактор Raise the Hammer, живет в Гамильтоне со своей семьей и работает программистом, писателем и консультантом. Райан работает волонтером в Hamilton Light Rail, общественной группе, занимающейся доставкой легкорельсового транспорта в Гамильтон. Райан вел колонку о городских делах в Hamilton Magazine , а несколько его статей были опубликованы в Hamilton Spectator . Его статьи также были опубликованы в журналах The Walrus , HuffPost и Behind the Numbers .У него есть личный веб-сайт, он, как известно, делится мимолетными мыслями в Твиттере и Фейсбуке, а иногда публикует фотографии кошек в Инстаграм.

Отправить комментарий

Вы должны войти в систему, чтобы оставлять комментарии.

Как рассчитать тормозной путь!

Во время вашего теоретического теста вас спросят о тормозном пути при определенных скоростях, цифры перечислены ниже:

Теперь вы можете просто попытаться запомнить эти цифры, но их может быть довольно сложно запомнить, поэтому это методы для вычисления цифр, вам просто нужно относительно хорошо разбираться в математике.


Дистанция мышления:

Это то, сколько времени в среднем требуется, чтобы «подумать» о торможении для предупреждения об опасности. Дистанция мышления (в футах) — это просто скорость. Например, при 20 милях в час расстояние для мышления составляет 20 футов, при 30 милях в час — 30 футов и так далее.

Тормозной путь:

Это то, сколько времени в среднем требуется, чтобы «затормозить» до полной остановки при возникновении опасности, приведенный ниже расчет может решить это:

((Первая цифра скорости [в миль / ч] / 2) x Скорость)

Например, тормозной путь на скорости 40 миль в час:

Первая цифра скорости: 4

4, деленная на 2 = 2

2 X 40 = 80 футов

В кодексе автомобильных дорог говорится, что Фактический тормозной путь на скорости 40 миль в час составляет 78 футов, мы получили 80 футов.Таким образом, это 2 фута, однако на тесте по теории вам будут предложены вопросы с несколькими вариантами ответов, поэтому просто выберите ответ, наиболее близкий к тому, который вы рассчитали.

Общий тормозной путь:

Это просто «мысленное расстояние», добавленное к «тормозному пути», поэтому на скорости 40 миль в час это будет 40 + 80 = 120 футов. Опять же, мы находимся в двух футах от фактического ответа, но этих расчетов должно быть достаточно, чтобы выполнить его для вашего теоретического теста.


Вышеуказанные книги являются незаменимой покупкой при обучении вождению.

В реальном мире

Как вы можете подозревать, цифры в Правилах дорожного движения не очень точны в реальном мире, это связано с различными факторами, которые могут повлиять на ваш тормозной путь, например, автомобиль (состояние / качество шин и тормозов, вес автомобиля) и водителя (отвлекаются ли они, т. е. пользуются мобильным телефоном или разговаривают с пассажирами? Устали / утомлены?).

Если мы возьмем пример водителя, который отвлекается на использование своего мобильного телефона при движении со скоростью 50 миль в час, и как это влияет на расстояние их мышления.Водитель смотрит на свой телефон 2 секунды, это недолго, верно? На скорости 50 миль в час вы путешествуете со скоростью 75 футов в секунду, поэтому за те 2 секунды, которые вы посмотрели в свой телефон, вы проехали 150 футов или 11,4 длины автомобиля. Другими словами, если бы перед вами было другое транспортное средство длиной в 11 машин, вы бы ударили его со скоростью 50 миль в час, прежде чем даже поставили ногу на тормоз или даже не отвели взгляд от телефона!

Если у вашего автомобиля также были недопустимые шины с низким протектором, а тормозные колодки были сильно изношены, это также резко увеличило бы ваш тормозной путь.Отвлеченный водитель с автомобилем в плохом состоянии — это ожидающая авария авария, у него очень мало шансов среагировать в аварийной ситуации.

Что ты умеешь?

  1. Не отвлекайтесь — например, Мобильный телефон, пассажиры, громкая музыка
  2. Поддерживайте свой автомобиль в хорошем состоянии — Выполняйте еженедельные проверки безопасности Show Me Tell Me и обслуживайте свой автомобиль в соответствии с руководством производителя (обычно один раз в год или каждые 10 000 миль)
  3. Соблюдайте безопасную дистанцию ​​ — Правила дорожного движения рекомендуют соблюдать МИНИМУМ 2 секунды от идущего впереди автомобиля (в хороших сухих дорожных условиях).Чтобы оценить 2-секундный промежуток, вы ждете, пока впереди идущая машина не пролетит фиксированный объект (например, фонарный столб или дорожный знак), а затем отсчитываете 2 секунды, это можно сделать, произнеся фразу «только дурак тормозит две секунды. правило »(на произнесение которого уходит 2 секунды), если вы можете произнести фразу до достижения фиксированного объекта, тогда вы находитесь на безопасном расстоянии позади, если вы не можете произнести фразу, они увеличивают ваше следующее расстояние (т.е. машина впереди). Во влажных условиях должен сохраняться, по крайней мере, 4-секундный интервал, а в условиях обледенения — как минимум 20-секундный интервал.

Готовы ли вы к внезапной остановке идущего впереди автомобиля?

Езда по двойной проезжей части со скоростью 70 миль в час и капот автомобиля впереди открывается, заставляя его резко и резко тормозить

Транспортные средства впереди внезапно останавливаются

Автомобиль, идущий впереди, внезапно тормозит, может ли водитель сзади отреагировать вовремя?

Шина идущего впереди грузовика ударяет, успеваете ли вы вовремя остановиться, чтобы не врезаться в заднюю часть грузовика?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *