Роторный двигатель принцип работы видео: Как работает роторный двигатель: Принцип Двигателя Ванкеля

Содержание

принцип работы и наглядное видео

Роторный двигатель (РД) считается двигателем внутреннего сгорания, который практически полностью отличается от привычного поршневого агрегата. Как известно, в цилиндре поршневого двигателя выполняется несколько тактов: впуск, сжатие, затем рабочий ход и в заключении – выпуск.

Что касается РД, то он осуществляет все те же такты, при этом они осуществляются в разных частях камеры. Сравнить их можно было бы лишь в том случае, если в поршневом агрегате присутствовал отдельный цилиндр для каждого из тактов и поршень постепенно перемещался бы от цилиндра к цилиндру.

Роторный движок изобрел и сконструировал доктор Феликс Ванкель, поэтому его часто называют двигателем Ванкеля.

Принцип работы

Роторный двигатель использует давление, возникающее во время сгорания топливовоздушной смеси. Такое давление в поршневых двигателях создается в цилиндрах, что привод в движение поршни.

Коленчатый вал и шатуны приводят поршень во вращательное движение и благодаря этому колеса автомобиля начинают вращаться. В данном двигателе, давление при сгорании возникает в камере, которая сформирована частью самого корпуса и закрыта одной из сторон треугольного ротора, выполняющего роль поршней.

В данном видео, вам покажут, как работает роторный двигатель для Mazda RX-8. Приятного просмотра!

Вращения ротора напоминают линию, которая нарисована спирографом. Такая траектория позволяет вершинам ротора контактировать с корпусом движка, что образует при этом три разделенных между собой объема газа.

Когда ротор вращается, эти объемы поочередно расширяются и сжимаются.Именно это обеспечивает поступление в движок топливовоздушной смеси, а также сжатие и выпуск выхлопа. Он обладает системой зажигания и впрыска топлива, которые похожи на используемые системы в поршневых агрегатах.

Его конструкция полностью отличается от поршневого движка. Ротор обладает тремя выпуклыми сторонами, которые исполняют роль поршней. На каждой стороне устройства, присутствует специальное углубление, увеличивающее скорость вращения самого ротора.

Это оставляет для топливовоздушной смеси больше свободного места. На вершине всех граней расположены металлические пластины, которые разделяют все свободное место на камеры. На каждой из сторон ротора присутствуют два кольца из металла, формирующие стенки камер.

В центральной части устройства, находится зубчатое колесо, зубья которого смотрят внутрь. Это колесо сопрягается с шестерней, которая закреплена на корпусе двигателя. Данное сопряжение задает направление и траекторию вращения в корпусе движка.

Особенности роторного двигателя

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют. Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

Достоинства и недостатки

На роторный двигатель в свое время обратило внимание множество ведущих производителей авто.

Благодаря своей конструкции и принципу работы, он обладал весомыми преимуществами перед поршневыми движками. В первую очередь, роторный агрегат отличается лучшей сбалансированностью и подвергается минимальной вибрации.

Помимо этого, такой двигатель отличается превосходными динамическими характеристиками (на низкой передаче автомобиль с таким движком можно без особых усилий разогнать более чем на 100 км/ч при высоких оборотах).

Данный агрегат гораздо легче и компактнее поршневого движка. В данном двигателе используется меньше узлов, и он отличается высокой мощностью по сравнению с поршневым агрегатом.

Среди недостатков роторного движка следует выделить:

  • повышенный расход топлива при низких оборотах;
  • сложность производства отдельных деталей, которое требует использования дорогостоящего высокоточного оборудования;
  • склонность к перегреву из-за особенной формы камеры сгорания;
  • износ уплотнителей, которые расположены между форсунками из-за частых перепадов давления;
  • потребность в своевременной и частой смене моторного масла (замена должна производиться каждые 5000 километров).

К эксплуатации роторных агрегатов нужно подходить ответственнее, чем к обслуживанию поршневых агрегатов.

Стоянка запрещена знак. Более детальную информацию, ищите на нашем сайте.

Здесь, вы найдёте много картинок с предупреждающими знаками дорожного движения.

При помощи данной статьи, вы сможете ознакомится с рейтингом видеорегистраторов 2015 года.

Их капитальный ремонт и техобслуживание важно проводить вовремя.

Особенность двигателей автомобилей Mazda

Компания Mazda начала производство моделей с роторными движками еще в далеком 1963-ом году.

Наиболее успешным авто компании оснащенным роторным агрегатом стала модель RX-7, выпущенная в 1978-ом году. Правда, до нее было выпущено множество машин, автобусов и грузовиков с роторными двигателями. После модели RX-7, производство которой было остановлено в 1995-ом году, роторным двигателем начали снабжать модель RX-8.

Данный двигатель считался лучшим агрегатом в 2003-ом году. Данный движок с двумя роторами производил 250 лошадиных сил. Однако в 2008-ом году компания прекратила продажу Mazda RX-8 в Европе из-за выбросов ее движка, которые не соответствовали европейским стандартам.

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам.

Система впрыска была значительно переработана, благодаря чему топливо расходуется гораздо экономнее.

Помимо этого, корпус движка изготовлен из современного алюминиевого сплава. Компания также выпустила роторный агрегат, который может работать на водороде. Последней разработкой производителя с роторным двигателем на данный момент является модель Premacy Hydrogen RE Hybrid.

Устройство роторного двигателя. Принцип работы роторного двигателя — видео (2022)

  1. История создания роторного двигателя
  2. Строение и принцип работы роторного двигателя
  3. Строение роторного двигателя
  4. Фазы работы
  5. Плюсы и минусы
  6. КПД роторно-поршневой конструкции
  7. Перегревы и высокие нагрузки
  8. Ресурс
  9. Машины с роторным двигателем
  10. Видео: как устроен и работает роторный двигатель
  11. Подведем итоги

История создания роторного двигателя


Второе имя роторного двигателя (РПД) — ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля — это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней — разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор,—это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатиесмеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом:в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, котораяздесь же перемешивается.После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия этипроходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.


Как самому полировать фары автомобиля? Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного моторасразу распознали.

Опять же, производительность —это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали —ротор и статор, а проще этого ничего не придумаешь.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.





Как самостоятельно полировать автомобиль? Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного моторане было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже —нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр долженбыть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотораэтот же показатель составляет 20%.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия. Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения. Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Плюсы и минусы

Есть ряд преимуществ:
  • меньшее количество деталей, как минимум на 35% меньше относительно поршневого. Меньше деталей — меньше поломок;
  • если сопоставить с конкурентом такой же мощности, то РПД будет в 2 раза меньше по размеру;
  • отсутствие высокой нагрузки даже на больших оборотах и если на низких передачах разогнаться сильнее сотни километров в час;
  • меньше весит, поэтому машину проще уравновесить, она становится более устойчивой;
  • нет проблемы вибрации даже у самых легких авто. Поршневой вибрирует гораздо сильнее, ввиду чего роторный лучше сбалансирован.

Но есть и недостатки:

  • главный минус — небольшой ресурс, это издержка простой конструкции. Рабочий угол уплотнителей постоянно меняется, из-за чего они быстро изнашиваются. Износ усиливается и от того, что через каждый такт меняется температура. Вдобавок давление, оказываемое на трущиеся поверхности, от этого есть только одно средство — впрыскивание масла в коллектор;
  • при износе уплотнителей образуются утечки между камерами. Разница в давлении очень большая, от этого страдает КПД. Вред для экологии усиливается;
  • из-за серповидной конфигурации камер топливо сгорает не полностью. Из-за небольшой длины рабочего хода и скорости вращения ротора выталкиваются несгоревшие газы высокой температуры. Выделяются не только продукты сгорания бензина, но и масло, ввиду чего окружающая среда подвергается крайне негативному влиянию. Поршневые двигатели не настолько вредные для экологии;
  • про высокий расход топлива уже было сказано, но это касается не только бензина, но и масла. Такой двигатель съедает до литра на тысячу километров. Если забыть про масло, то можно столкнуться с необходимостью дорогого ремонта или вовсе замены мотора;
  • высокая себестоимость. Требуются качественные дорогие материалы и высокотехнологичное оборудование.

У роторного двигателя достаточно недостатков, но и его конкурент не совершенный. Поэтому соревнование между ними длилось достаточно долго. Сейчас гонка окончена, но никто не может сказать, навсегда или нет.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).
Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.
  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.


В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.


После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Машины с роторным двигателем

В разработке усовершенствованных концепций силового агрегата с базовым элементом конструкции в виде подвижного ротора участвовали и российские конструкторы, включая Зуева, Желтышева, ингушских изобретателей братьев Ахриевых.

Игнорируя инновации, на автомобили по-прежнему устанавливают двигатели Ванкеля.

В число моделей с РПД входят:

  1. Мазда RX-8. Конструкторское бюро японского концерна достигло прогресса в усовершенствовании. Их последняя разработка вместимостью 1,3 л развивает мощность 215 л.с. Более поздняя версия с аналогичным объемом выдает 231 л.с. Производство прекращено с августа 2011 г. в результате снижения спроса.
  2. ВАЗ 2109-90. Такими машинами пользовались в служебных целях сотрудники российских правоохранительных органов. Милицейские автомобили за 8 секунд могли разогнаться до 100 км/ч и развивали скорость 200 км/ч, легко догоняя преступников. Производились и агрегаты с большей мощностью. Но большая цена и малый ресурс не позволили прижиться РПД, и полицейским пришлось пересесть на транспортные средства с поршневыми моторами.
  3. Мерседес С-111. Впервые был представлен автолюбителям на женевском автосалоне в 1970 г. Спортивный автомобиль оснащался трехкамерным двигателем Ванкеля. Максимальная скорость составляла 275 км/ч. На разгон до первой сотни уходило 5 секунд.
  4. ВАЗ 21019 Аркан. Модель также закупалась для нужд МВД. Советских милиционеров на таких машинах догнать было невозможно и, тем более, уйти от погони. Большинство преследований завершалось поимкой преступников. Объяснение тому – способность служебного транспорта развивать предельную скорость 160 км/ч. Трехсекционный мотор в 1,3 л выдавал 120 л.с.

Видео: как устроен и работает роторный двигатель

Подведем итоги

Моторы роторно-поршневого типа превосходно показывают себя в гонках. У них есть для этого высокая мощность, большое количество оборотов. Немаловажно, что машины на нем очень легкие относительно других, так как двигатель меньше и легче. Ресурс двигателя для гонок — не самый важный показатель, как и прожорливость. Но в обычной жизни нельзя этого не учитывать.

Вне недостатки обусловлены строением и принципом работы роторно-поршневого двигателя. Их нельзя отнести к недоработкам, скорее, это особенности. Но в теории есть способ вновь начать пользоваться РПД. Для этого нужно сделать его более экологичным, повысить ресурс и сделать его более экономичным.

Источники

  • https://dolauto.ru/informations/articles/chto-takoe-rotornyy-dvigatel/
  • https://krossovery.info/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy-sistemy/
  • https://www.syl.ru/article/158520/new_rotornyiy-dvigatel-printsip-rabotyi-plyusyi-i-minusyi-rotornogo-dvigatelya
  • https://geekometr.ru/statji/kak-rabotaet-rotorno-porshnevoy-dvigatel-v-mashine.html
  • https://zewerok.ru/dvigatel-vankelya/
  • https://remontautomobilya.ru/princip-raboty-rotornogo-dvigatelya-plyusy-i-minusy.html

Принцип работы роторного двигателя

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Почему этот вариант не прижился

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

На видео показано строение и принцип работы роторного двигателя:

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества ротора, или Как японцы взялись за дело

На видео показан принцип работы роторного двигателя Ахриевых:

Но имеются у РПД и преимущества. В частности, к ним можно отнести особую динамику агрегата. Расход у роторного двигателя очень большой, а кроме этого, у такого агрегата очень маленький ресурс — всего шестьдесят тысяч километров — что делает его непригодным для езды в условиях города. Если объём роторного двигателя будет равен 1,3 л, то он способен будет потреблять до двадцати литров топлива.

Кстати, большой расход бензина также является причиной того, что роторный двигатель не обрёл популярности. Дело в том, что в 1973 году, когда роторные двигатели только вышли, на Аравийском полуострове накалилась обстановка. Там проходили настоящие военные действия, а как известно, арабские страны до сих пор остаются основными поставщиками топлива. В связи с этим делом, цена на бензин резко поднимается. А роторный двигатель пожирал его просто как вечно голодный чревоугодник. Вот и получилось, что он стал лишним.

Зато такой агрегат при этом будет выдавать целых 250 л. с, оставаясь малогабаритным.

На видео показано строение и принцип работы роторного двигателя Ванкеля:

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л. с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

На видео рассмотрено устройство и принцип работы роторного двигателя Желтышева:

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб. Но проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Заглянем внутрь РПД

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

На видео показан принцип работы роторно-поршневого двигателя Зуева:

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом. В первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается.

После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

принцип работы с видео, устройство

Роторный двигатель является одной из разновидностей тепловых ДВС. Первый роторный двигатель, принцип работы которого кардинально отличается от традиционного двигателя внутреннего сгорания, появился в 19 веке.

Его особенностью было использование не возвратно поступательных движений, как в классическом ДВС, а вращение в специальном овальном корпусе трехгранного ротора. Такая схема применялась в первых поршневых паровых машинах и дала толчок к активному проектированию и созданию роторных паровых двигателей. С роторного парового двигателя и начиналась история двигателя внутреннего сгорания роторного типа. Впервые схему классического роторно-поршневого (двигателя Ванкеля) разработали в конце 1950-х годов в немецкой фирме NSU, авторами стали Феликс Ванкель и Вальтер Фройде.

Конструкция

Давайте рассмотрим основные части РПД:

  • корпус двигателя;
  • ротор;
  • выходной вал.

Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.

Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:

  • впуск;
  • сжатие;
  • воспламенение;
  • выпуск.

Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.

Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.

Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.

Рабочие такты РПД

Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.

Начало такта впуска происходит в момент прохода одной из вершин ротора впускного канала корпуса мотора. В этот момент в постепенно расширяющуюся камеру сгорания всасывается топливно-воздушная смесь либо просто воздух, в зависимости от компоновки системы подачи топлива. При дальнейшем вращении ротора к точке, когда вторая вершина проходит впускной канал, начинается такт сжатия топливно-воздушной смеси. Давление смеси вместе с движением ротора постепенно нарастает и достигает своего пика в момент прохождения зоны свечей зажигания. В момент воспламенения начинается такт рабочего хода ротора.

В связи с особой формой камеры сгорания, вытянутой вдоль стенки корпуса, целесообразно использовать две свечи зажигания. Использование двух свечей позволяет быстро и равномерно произвести поджиг топливно-воздушной смеси, что гарантирует быстрое, плавное и равномерное распространение фронта пламени.

Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.

Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала,  начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.

Система питания и смазка

Роторный мотор не имеет принципиальных отличий от классического ДВС в системах зажигания, топливоподачи и охлаждения. Однако система смазки имеет свои особенности. Для смазывания движущихся частей масло подается прямо в камеру сгорания через специальное отверстие, поэтому сгорает вместе с топливно-воздушной смесью как в двухтактном двигателе.
Как и любая техническая конструкция, роторный мотор обладает своими преимуществами и недостатками.

 Достоинствами роторно-поршневого двигателя

  1. Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;
  2. более высокая удельная мощность по сравнению с классическими моторами;
  3. более ровная и широкая полка крутящего момента;
  4. отсутствие кривошипно-шатунного механизма, клапанов, пружин, газораспределительного механизма, а вместе с ним и распредвалов, ремня грм или цепи;
  5. хорошая сбалансированность и плавность работы РПД, которую можно сравнить с работой рядной «шестерки»;
  6. меньшая склонность к детонации;
  7. отсутствие кривошипно-шатунного механизма, а вследствие этого отсутствие необходимости преобразования возвратно-поступательного движения поршней во вращение коленчатого вала, делает РПД более оборотистым нежели обычный мотор;

Недостатки

  1. Необходимость применения эксцентрикового механизма для соединения ротора и вала увеличивает давление между трущимися деталями, что вместе с высокой температурой повышает износ двигателя. Именно поэтому выдвигаются повышенные требованию к качеству масла и периодичности его смены;
  2. быстрый износ уплотнителей ротора вследствие малой площади пятна контакта и высокому перепаду давлений. Таким образом, роторный мотор быстро теряет свой КПД, экологические показатели ухудшаются;
  3. линзовидная форма камеры сгорания гораздо хуже отдает тепло, нежели сферическая камера сгорания, что обуславливает склонность к перегреву;
  4. низкие показатели экономичности на малых и средних оборотах, по сравнению с обычным двигателем внутреннего сгорания;
  5. роторный мотор имеет очень высокие требования к обработке деталей и квалификации персонала при производстве данного типа двигателя;
  6. необходимость добавления масла во время рабочих тактов РПД обуславливает плохие экологические характеристики;

Современные реалии

В настоящее время наибольших успехов в производстве роторных двигателей добились инженеры корпорации Mazda. Последняя генерация их двигателя Ванкеля, под названием «Renesis», совершила настоящий прорыв. Им удалось не только решить главные проблемы данного типа ДВС, такие как повышенный расход топлива и токсичность, но и снизить потребление масла на 50%, тем самым доведя экологические показатели до норм Euro 4. Новое поколение РПД Mazda могут использовать в качестве топлива как бензин, так и водород, что делает этот мотор интересными и перспективными для использования в будущем.

Что такое асинхронный электродвигатель определение. Принцип работы роторного двигателя, плюсы и минусы системы. Принцип работы роторного двигателя Ахриевых на видео

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Машины с роторным двигателем

Исходя из точной математической кинематики, ее движение было сначала равномерно круговым, прежде чем принимать гораздо более сложную нелинейную геометрию, так что этот роторный двигатель больше не нуждается в системе кривошипно-стержневого механизма. Полезно знать: среди наиболее известных двигателей, соответствующих этому определению, мы находим недавнюю и перспективную квазитурбину и Ванкель.

Вращающийся двигатель: принцип работы

Этот двигатель внутреннего сгорания одновременно использует 3 стороны своего роторного треугольного поршня, чтобы выполнить 4 раза. Карбюраторный воздух или чистый, если прямой впрыск, всасывается одним или несколькими периферийными огнями, пробитыми через статор и управляемыми тремя краями треугольного поршня. Существует также вариант с боковым допуском через фланец. потребление может быть перегружено. Благодаря эксцентрическому вращению поверхность поршня ближе к трохоидной рубашке статора. После достижения сжатия свеча зажигания (зажигания) зажигает заряд предыдущий прохладный. Третий раз: расслабление. Как всегда, горячие газы увеличивают свое давление, которое воздействует на одну из трех сторон треугольного поршня. Это принудительно включает фиксированную фиксированную ось, которая направляет свое конкретное движение, передавая свою мощность через эксцентриковый выходной вал. Время пробега: выхлоп. Как и два хода без клапанов, одна и та же поверхность поршня смывает газы сожженные бесполезны через выхлопной свет. Вторая ступень: воспламенение от сжатия. . Таким образом, элемент, играющий роль поршня, больше не похож на классический кусок и часто берет имя ротора.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

Экономические критерии роторных двигателей

Он, скорее, треугольная форма, он вращается эксцентрично внутри рубашки в форме арахиса, называемого эпитрохоидом. Примечание. Чтобы передать свое движение, он соединен шестернями на вращающемся выходном валу и коленчатым. Крайне важно обратить внимание на финансовую проблему, прежде чем покупать роторный автомобиль, жадность, загрязнение и часто трудно продать, за исключением случаев, когда это коллекционная машина.

Покупка роторного автомобиля

Покупка страсть к тому, кто хочет попробовать прелести биропера! Конечно, мы будем пользоваться всеми налоговыми льготами, связанными со статусом старинных автомобилей.

Перепродажа роторного автомобиля
Техническое обслуживание должно быть тщательно соблюдено с маслами самого высокого качества, даже специфическими.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В случае старинных автомобилей, которые по определению очень малы, преобладают технические и исторические интересы. Специализированные клубы имеют большую часть частей, ценные советы и хорошие адреса для правильного восстановления этих специальных автомобилей.

Другие критерии выбора роторных двигателей

Из-за их крайней редкости, их цена перепродажи поддерживается. Ротари не обязательно подходят для всех типов водителей, особенно для горожан.

Какое удовольствие от вождения для роторных машин
Линейные и высокоэластичные транспортные средства с роторными двигателями мощны на высоких скоростях и поэтому быстро. В восстановлении, или начиная с очень низкой скорости, запись хуже с отсутствием кричащей пары. С другой стороны, в случае остановки, перезапуск часто бывает затруднен.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Внимание: даже больше, чем с его альтернативными тепловыми кузенами, Ванкелес должен достичь своей нормальной рабочей температуры перед любым откровенным ускорением: когда холодно, на ускорителе должно быть очень мягко. При возврате, обратная операция: необходимо будет охладить вращающийся двигатель, пока он медленно катится за несколько минут до его остановки.

Ротационные двигатели: для инвалидных колясок и автомагистрали

Ротационные двигатели не подходят для городских цепей, где вас ждут недостатки крутящего момента, перегрева и очень высокого расхода топлива. В этих сложных условиях катализатор и свечи зажигания очень быстро загрязняются, а еще одна особенность заключается в том, что его тормоз двигателя слаб.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Вращающиеся двигатели: и окружающая среда во всем этом?

Чтобы оптимизировать их работу, необходимо поощрять маршруты прокатки или даже шоссе, поскольку эти роторные двигатели не толерантны, особенно для более старых. На этом уровне Ванкели никогда не были хорошими, по дизайну. Их камера сгорания слишком велика, что в значительной степени отменяет теоретический выигрыш поршня в прямом вращении со средним избыточным потреблением более 20%.

Преимущества и недостатки роторных моторов

Если двигатель Ванкеля наконец известен только тем, кто интересуется минимальной механикой, это происходит потому, что он не был установлен во многих моделях транспортных средств. В любом случае роторный двигатель отличается от других тепловых двигателей своей простотой и небольшим количеством движущихся частей. Если двигатель Ванкеля носит имя своего изобретателя, немецкого инженера Феликса Ванкеля, это прежде всего кульминация отражения, начатого несколько веков назад. Итальянский военный инженер, который является субъектом и который подписывает эту книгу, подробно описывается принцип лопастного насоса, который в настоящее время считается предком вращающегося двигателя под названием «Ванкель».

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Когда придет время, инженеры и изобретатели будут сосредоточены на разработке двигателя с использованием принципа роторного поршня. Обученный в прецизионной механике, немецкий инженер будет постоянно совершенствовать свой двигатель до конца Второй мировой войны, чему в значительной мере помогает немецкая военная промышленность.

Удивительно, как может показаться, первое промышленное использование этой техники не будет, по сути, новым блоком двигателя, а системой, которую можно сравнить с турбокомпрессором. Именно здесь принцип Ванкеля проиллюстрирован его способностью, среди прочих качеств, работать во всех положениях, что значительно упрощает охлаждение. К сожалению, чрезмерное потребление топлива и надежность проблемы затмили бы эту прохладную революционную кабину двигателя.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Для этой цели создана Европейская автомобильная строительная компания. Двигатель Ванкеля сильно нагревается. Лучше не оставлять шоколадные батончики в чемоданах, потому что багажник, под которым проходит глушитель, является настоящей печью! Имея более чем 000 проданных копий, это самый широко используемый и самый успешный роторный двигатель в жизни Феликса Ванкеля.

Брэнд будет внедрять инновации, одновременно используя несколько роторов. Известные технические разработки включают использование самосмазывающегося углерода для сегментации, частично решая проблемы повторного захвата и износа. Напротив, это наоборот!

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Двигатель Ванкеля отличается от любого другого двигателя внутреннего сгорания, который обычно преобразует линейное движение поршней во вращательное движение через коленчатый вал. Здесь «поршень», называемый ротором, потому что он вращается, естественно управляет валом двигателя таким же образом.

Недостатки роторных моторов

Ротор в № 6 вращается в трохоиде, тем самым определяя три камеры. Следовательно, это трехтактный двигатель.


В конце взрыва шестерня вала двигателя, соединенная с ротором редуктором, позволяет обеспечить передачу механической энергии, создаваемой таким образом на вал двигателя, и соединена с коробкой передач. который сам определит скорость вращения колес транспортного средства.

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

В этом упрощенном представлении ясно, что техническая трудность обеспечения уплотнения между каждой камерой, сегментом на каждой вершине ротора, особенно маленьким и, следовательно, хрупким местом. Мы также видим большую простоту этого типа двигателя, потому что, хотя эта диаграмма упрощена для объяснения концепции, почти все есть.

С подшипниками, ротором и его сегментами в качестве единственных движущихся частей этот чрезвычайно простой двигатель имеет почти в 20 раз меньше активных частей, чем его 4-тактный эквивалент мощности. Проблемы износа и надежности сегментации были решены благодаря техническим достижениям, таким как использование никелильных и керамических покрытий для трохоидного корпуса. Из-за того, что баланс почти естественным образом совершенен, двигатель поддерживает очень небольшую вибрацию.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

Двигатель Ванкеля работает на цикл из трех двигателей за один оборот. Первые эксперименты на мотоцикле мотивированы внутренними характеристиками, которые позволяют получить отличную плотность мощности и массу, две критические точки для двухколесных транспортных средств.

Благодаря своему принципу мощности и эксплуатации двигатель Ванкеля очень толерантен к используемому топливу, включая его качество. Из-за формы фронта пламени чрезмерное потребление остается слабым местом этого двигателя, при этом недостаток порядка 15-20% по сравнению с традиционным поршневым двигателем.

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Несомненно, стоит помнить, что общее перемещение составляет всего 308 куб. Но насколько это важно для этого типа двигателя? Ну нет, потому что наши обычные тесты здесь неприменимы. Однако его расход составляет 10, 4 литра на 100 км. Здесь, опять же, меньшее перемещение не означает меньше загрязнения!

Нам еще нужно видеть спектакли. Антуан де Сент-Экзюпери сказал: «Кажется, что совершенство достигается не тогда, когда больше нечего добавить, но когда больше нечего обрезать». Таким образом, можно задать законный вопрос: двигатель г-на Ванкеля, однако, избегаемый большинством производителей, не является ли это окончательным упрощением и, следовательно, логической эволюцией двигателя внутреннего сгорания!

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Меньше движущихся деталей

Вместо цилиндров вместо ротора. Не известно из-за плохой диффузии в автомобильном ландшафте, роторный двигатель является альтернативой традиционным двигателям. Это нишевая архитектура, которая оборудовала очень мало серийных моделей и была разработана несколькими строителями на протяжении многих лет.

Основной причиной ограничения развития двигателя является гораздо более высокий расход топлива, чем цилиндровые двигатели, в сочетании с высокой скоростью несгоревших углеводородов. В эпоху, которая направлена ​​на повышение эффективности и снижение расхода топлива, легко понять, почему на данный момент на рынке нет автомобилей с этим движением.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти. Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Не многие знают, что наряду с классическими поршневыми двигателями, в автомобилестроении применяются роторные агрегаты, называемые по фамилии изобретателя моторами Ванкеля. Они являются двигателями с внутренним принципом сгорания топлива, однако, его устройство и принципы работы совершенно иные. Сегодня мы поговорим роторных моторах более подробно.

Конструктивное устройство роторного двигателя

Основные части двигателя Ванкеля по своему устройству не имеют ничего общего с классическими ДВС.

Его главные части следующие:

1. Основная рабочая камера

Корпус любого роторного агрегата представляет собой овальную металлическую камеру, в которой происходят основные рабочие процессы – режим впуска, такт сжатия, процесс сгорания горючего и выпуск отработанных газов. Форма камеры неслучайна. Она выполнена таким образом, чтобы при взаимодействии с ротором, её стенки осуществляли соприкосновение со всеми его вершинами, образуя несколько закрытых контуров. Впускные и выпускные отверстия таких моторов не имеют клапанов. Они находятся непосредственно на боковых частях рабочей камеры и подключаются напрямую к выхлопной трубе и системе питания.

2. Ротор

Форма ротора чем-то напоминает треугольник, грани которого имеют выпуклое наружу закругление. Помимо этого, каждая его сторона изготовлена с небольшой выборкой, увеличивающей объем образовывающейся замкнутой камеры сгорания и повышающей скоростные показатели вращения ротора. Назначение этого компонента аналогично функциям поршней в обычном ДВС. Возникновение тактов работы происходит методом создания уже упомянутых выше трех дочерних камер. Центральная часть ротора наделена зубчатым отверстием, соединяющим ротор с приводом, закрепленным в свою очередь с выходным валом. Это звено и определяет, в каком направлении и по какой траектории будет двигаться ротор внутри основной рабочей камеры.

3. Выходной вал

Функции выходного вала роторного двигателя аналогичны функциям коленвала классических силовых агрегатов. Он наделен полукруглыми выступами-кулачками, имеющими несимметричное выстраивание с явным смещением от центральной рабочей оси. На валу размещается несколько роторов, надеваемых на свой рабочий кулачок. Их несимметричное расположение создает предпосылки для образования крутящего момента, происходящего в результате силового давления каждого из роторов.

Думаем, вы уже догадались, что роторные двигатели имеют многослойное строение, подразумевающее создание несколько рабочих камер, в которых вращаются несколько роторов. Единственным объединяющим звеном этой работы служит выходной вал, вращающийся в результате этого синхронного взаимодействия. «Слои» надежно скрепляются между собой множеством болтов, расположенных по краям. Охлаждение таких двигателей проточное. Оно подразумевает нахождение антифриза не только вокруг общего блока, но и в каждой из его частей.

В двигателе Ванкеля вся работа выстраивается тем же методом сгорания топливной смеси, что и у поршневых движков. Однако никаких статических камер сгорания у них не предусматривается. Давление, возникающее при сгорании горючего, создается в отдельно образуемых камерах, которые отделяются от общей рабочей камеры роторными гранями.

Сам ротор постоянно контактирует своими вершинами со стенками камеры, в каждый момент времени создавая очередной замкнутый контур. При его вращении контуры попеременно то расширяются, то осуществляет сжатие. Во время этих циклов внутрь камеры попадает воздух и топливо, которое в результате силового воздействия ротора сжимается и воспламеняется, своим расширением придавая ротору очередной вращательный импульс. Отработанные газы сквозь отверстия выбрасываются в выхлопную систему, после чего камера снова заполняется топливно-воздушным составом.

Преимущества и недостатки роторных моторов

Применение роторных моторов имеет ряд неоспоримых преимуществ.

  • Меньшее количество внутренних компонентов . Аналогичный четырехцилиндровому поршневому двигателю роторный «собрат» наделен всего четырьмя основными частями: общая камера, пара роторов и кулачковый вал. Классический ДВС со схожими тактами работы состоит минимум из сорока подвижных частей, каждая из которых подвержена износу.
  • Мягкость работы . При функционировании роторных агрегатов практически не возникает вибраций, благодаря тому, что все подвижные части осуществляют вращение лишь в одном направлении. Думаем, вы знаете, что работа поршней в обычном двигателе разнонаправленная. Она чередует поступательное движение с реверсивным ходом.
  • Невысокий ритм . Ввиду того, что каждый ротор ответственен за вращение лишь одной трети полного круга выходного вала, движение, необходимое для этого, происходит заметно медленнее, чем существенно повышает надежность мотора Ванкеля.

Отрицательные факторы применения роторных двигателей исключать, разумеется, нельзя.

  • Ни один роторный двигатель не может четко подстроиться под регламенты экологических норм различных стран . Его никак нельзя назвать экологичным из-за серьезного количества выбросов углекислого газа, снизить которые нереально.
  • Дороговизна изготовления . Производство роторных движков весьма затратно, главным образом, в силу малых серийных партий. Концерны выпускают их совсем немного, что не требует особенной оптимизации затрат при изготовлении.
  • Ограниченность ресурса . Функциональный запас роторных моторов Ванкеля весьма ограничен. Редко когда он превышает 100-150 тысяч километров, по достижении которого им требуется полная переборка (капитальный ремонт) или замена.
  • Повышенное топливное потребление . Главной причиной увеличенной «прожорливости» является их низкая степень сжатия. Двигатель, удерживая необходимую мощность, компенсирует её за счет большего количество подаваемого внутрь замкнутых камер горючего.

Итог

Подводя итоги, скажем, что роторные силовые агрегаты, конечно, имеют право на существование. Они обладают рядом неоспоримых «плюсов», которые делают возможным их, пусть и небольшое, применение в автомобильном производстве. С другой стороны, тяжесть «минусов» весьма ощутима. Во многих странах мира они попросту не могут применяться из-за существующих экологических стандартов, а серьезное топливное потребление и ограниченный рабочий ресурс делает приобретение автомобилей с роторными двигателями совершенно нерентабельным. Прогнозируем, что какое-то время они еще будут на рынке, но достаточно скоро их вытеснят гибридные силовые системы, развитие которых осуществляется совершенно грандиозными темпами.

Принцип работы роторного двигателя ваз. Принцип работы роторного двигателя Ахриевых на видео. Перегревы и высокие нагрузки

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая — регулирующая движение ротора и состоящая из пары шестерен; и вторая — преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 — впускное окно; 2 выпускное окно; 3 — корпус; 4 — камера сгорания; 5 – неподвижная шестерня; 6 — ротор; 7 – зубчатое колесо; 8 — вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо — как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД — высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя — невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности — две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики — избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей — ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла — поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего — во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область — камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80 . Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» — пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen , Mazda , ВАЗ . Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов — Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 — спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Не многие знают, что наряду с классическими поршневыми двигателями, в автомобилестроении применяются роторные агрегаты, называемые по фамилии изобретателя моторами Ванкеля. Они являются двигателями с внутренним принципом сгорания топлива, однако, его устройство и принципы работы совершенно иные. Сегодня мы поговорим роторных моторах более подробно.

Конструктивное устройство роторного двигателя

Основные части двигателя Ванкеля по своему устройству не имеют ничего общего с классическими ДВС.

Его главные части следующие:

1. Основная рабочая камера

Корпус любого роторного агрегата представляет собой овальную металлическую камеру, в которой происходят основные рабочие процессы – режим впуска, такт сжатия, процесс сгорания горючего и выпуск отработанных газов. Форма камеры неслучайна. Она выполнена таким образом, чтобы при взаимодействии с ротором, её стенки осуществляли соприкосновение со всеми его вершинами, образуя несколько закрытых контуров. Впускные и выпускные отверстия таких моторов не имеют клапанов. Они находятся непосредственно на боковых частях рабочей камеры и подключаются напрямую к выхлопной трубе и системе питания.

2. Ротор

Форма ротора чем-то напоминает треугольник, грани которого имеют выпуклое наружу закругление. Помимо этого, каждая его сторона изготовлена с небольшой выборкой, увеличивающей объем образовывающейся замкнутой камеры сгорания и повышающей скоростные показатели вращения ротора. Назначение этого компонента аналогично функциям поршней в обычном ДВС. Возникновение тактов работы происходит методом создания уже упомянутых выше трех дочерних камер. Центральная часть ротора наделена зубчатым отверстием, соединяющим ротор с приводом, закрепленным в свою очередь с выходным валом. Это звено и определяет, в каком направлении и по какой траектории будет двигаться ротор внутри основной рабочей камеры.

3. Выходной вал

Функции выходного вала роторного двигателя аналогичны функциям коленвала классических силовых агрегатов. Он наделен полукруглыми выступами-кулачками, имеющими несимметричное выстраивание с явным смещением от центральной рабочей оси. На валу размещается несколько роторов, надеваемых на свой рабочий кулачок. Их несимметричное расположение создает предпосылки для образования крутящего момента, происходящего в результате силового давления каждого из роторов.

Думаем, вы уже догадались, что роторные двигатели имеют многослойное строение, подразумевающее создание несколько рабочих камер, в которых вращаются несколько роторов. Единственным объединяющим звеном этой работы служит выходной вал, вращающийся в результате этого синхронного взаимодействия. «Слои» надежно скрепляются между собой множеством болтов, расположенных по краям. Охлаждение таких двигателей проточное. Оно подразумевает нахождение антифриза не только вокруг общего блока, но и в каждой из его частей.

В двигателе Ванкеля вся работа выстраивается тем же методом сгорания топливной смеси, что и у поршневых движков. Однако никаких статических камер сгорания у них не предусматривается. Давление, возникающее при сгорании горючего, создается в отдельно образуемых камерах, которые отделяются от общей рабочей камеры роторными гранями.

Сам ротор постоянно контактирует своими вершинами со стенками камеры, в каждый момент времени создавая очередной замкнутый контур. При его вращении контуры попеременно то расширяются, то осуществляет сжатие. Во время этих циклов внутрь камеры попадает воздух и топливо, которое в результате силового воздействия ротора сжимается и воспламеняется, своим расширением придавая ротору очередной вращательный импульс. Отработанные газы сквозь отверстия выбрасываются в выхлопную систему, после чего камера снова заполняется топливно-воздушным составом.

Преимущества и недостатки роторных моторов

Применение роторных моторов имеет ряд неоспоримых преимуществ.

  • Меньшее количество внутренних компонентов . Аналогичный четырехцилиндровому поршневому двигателю роторный «собрат» наделен всего четырьмя основными частями: общая камера, пара роторов и кулачковый вал. Классический ДВС со схожими тактами работы состоит минимум из сорока подвижных частей, каждая из которых подвержена износу.
  • Мягкость работы . При функционировании роторных агрегатов практически не возникает вибраций, благодаря тому, что все подвижные части осуществляют вращение лишь в одном направлении. Думаем, вы знаете, что работа поршней в обычном двигателе разнонаправленная. Она чередует поступательное движение с реверсивным ходом.
  • Невысокий ритм . Ввиду того, что каждый ротор ответственен за вращение лишь одной трети полного круга выходного вала, движение, необходимое для этого, происходит заметно медленнее, чем существенно повышает надежность мотора Ванкеля.

Отрицательные факторы применения роторных двигателей исключать, разумеется, нельзя.

  • Ни один роторный двигатель не может четко подстроиться под регламенты экологических норм различных стран . Его никак нельзя назвать экологичным из-за серьезного количества выбросов углекислого газа, снизить которые нереально.
  • Дороговизна изготовления . Производство роторных движков весьма затратно, главным образом, в силу малых серийных партий. Концерны выпускают их совсем немного, что не требует особенной оптимизации затрат при изготовлении.
  • Ограниченность ресурса . Функциональный запас роторных моторов Ванкеля весьма ограничен. Редко когда он превышает 100-150 тысяч километров, по достижении которого им требуется полная переборка (капитальный ремонт) или замена.
  • Повышенное топливное потребление . Главной причиной увеличенной «прожорливости» является их низкая степень сжатия. Двигатель, удерживая необходимую мощность, компенсирует её за счет большего количество подаваемого внутрь замкнутых камер горючего.

Итог

Подводя итоги, скажем, что роторные силовые агрегаты, конечно, имеют право на существование. Они обладают рядом неоспоримых «плюсов», которые делают возможным их, пусть и небольшое, применение в автомобильном производстве. С другой стороны, тяжесть «минусов» весьма ощутима. Во многих странах мира они попросту не могут применяться из-за существующих экологических стандартов, а серьезное топливное потребление и ограниченный рабочий ресурс делает приобретение автомобилей с роторными двигателями совершенно нерентабельным. Прогнозируем, что какое-то время они еще будут на рынке, но достаточно скоро их вытеснят гибридные силовые системы, развитие которых осуществляется совершенно грандиозными темпами.

Паровые машины и двигатели внутреннего сгорания обладают одним общим недостатком — возвратно-поступательное движение поршня должно быть преобразовано во вращательное движение колёс. Отсюда и заведомо низкий КПД, и высокая изнашиваемость элементов механизма. Многим хотелось построить двигатель внутреннего сгорания так, чтобы все подвижные части в нём только вращались — как это происходит в электромоторах.

Однако задача оказалась не простой, успешно решить её удалось только механику-самоучке, который за всю свою жизнь так и не получил ни высшего образования, ни даже рабочей специальности.

Феликс Генрих Ванкель (Felix Heinrich Wankel, 1902–1988) родился 13 августа 1902 года в небольшом немецком городке Лар. Во время Первой мировой войны погиб отец Феликса, из-за чего будущему изобретателю пришлось бросить гимназию и пойти работать учеником продавца в книжной лавке при издательстве. Благодаря этой работе Ванкель пристрастился к чтению книг, по которым он самостоятельно изучал технические дисциплины, механику и автомобилестроение.
Существует легенда, что решение задачи пришло семнадцатилетнему Феликсу во сне. Правда это или нет — неизвестно. Зато очевидно, что Феликс обладал весьма незаурядными способностями к механике и «незамыленным» взглядом на вещи. Он понял, как все четыре цикла работы обычного двигателя внутреннего сгорания (впрыск, сжатие, сгорание, выхлоп) можно осуществить при вращении.
Довольно быстро Ванкель пришёл к первой конструкции двигателя, и в 1924 году он организовал небольшую мастерскую, которая также служила и импровизированной «лабораторией». Здесь Феликс и начал проводить первые серьёзные исследования в области роторно-поршневых ДВС.
С 1921 года Ванкель был активным членом НСДАП. Он выступал за партийные идеалы, был основателем всегерманского военного юношеского объединения и юнгфюрером различных организаций. В 1932 году он вышел из партии, обвинив одного из своих бывших коллег в политической коррупции. Однако по встречному обвинению ему самому пришлось провести в тюрьме шесть месяцев. Освободившись из заключения благодаря заступничеству Вильгельма Кепплера (Wilhelm Keppler), он продолжил работы над двигателем. В 1934 он создал первый опытный образец и получил на него патент. Он сконструировал новые клапаны и камеры сгорания для своего мотора, создал несколько различных его вариантов, разработал классификацию кинематических схем различных роторно-поршневых машин.

В 1936 году прототип двигателя Ванкеля заинтересовал BMW — Феликс получил деньги и собственную лабораторию в Линдау для разработки опытных авиадвигателей.
Впрочем, до самого разгрома фашистской Германии ни один двигатель Ванкеля в серию не пошёл. Возможно, на доведение конструкции до ума и создания массового производства требовалось слишком много времени.
После войны лаборатория была закрыта, оборудование вывезено во Францию, а Феликс остался без работы (сказалось былое членство в национал-социалистической партии). Однако вскоре Ванкель всё же получил должность инженера-конструктора в компании NSU Motorenwerke AG, являющейся одним из старейших производителей мотоциклов и автомобилей.
В 1957 году совместными усилиями Феликса Ванкеля и ведущего инженера NSU Вальтера Фрёде (Walter Froede) роторно-поршневой двигатель впервые был установлен на автомобиль NSU Prinz. Первоначальная конструкция оказалась далека от совершенства: даже для замены свечей требовалось разбирать почти весь «движок», надёжность оставляла желать лучшего, а про экономичность на данном этапе разработки и вовсе говорить было грешно. В результате испытаний в серию пошёл всё же автомобиль с традиционным ДВС. Тем не менее первый роторно-поршневой двигатель DKM-54 доказал свою принципиальную работоспособность, открыл направления для дальнейшей доводки и продемонстрировал колоссальный потенциал «роторников».
Таким образом, новый тип ДВС получил, наконец, свою путёвку в жизнь. В дальнейшем его ждёт ещё немало усовершенствований и доработок. Но перспективы роторно-поршневого двигателя настолько привлекательны, что инженеров уже ничто не могло остановить в деле доведения конструкции до эксплуатационного совершенства.

Прежде чем разбирать достоинства и недостатки роторно-поршневых ДВС, стоит всё-таки подробней рассмотреть их конструкцию.
В центре ротора проделано круглое отверстие, изнутри покрытое зубцами как у шестерёнки. В это отверстие вставлен вращающийся вал меньшего диаметра, также с зубцами, что обеспечивает отсутствие проскальзывания между ним и ротором. Отношения диаметров отверстия и вала подобраны так, чтобы вершины треугольника двигались по одной и той же замкнутой кривой, которая называется «эпитрохоида», — искусство Ванкеля как инженера заключалось в том, чтобы сначала понять, что это возможно, а потом всё точно рассчитать. В итоге, поршень, имеющий форму треугольника Рело, отсекает в камере, повторяющей форму найденной Ванкелем кривой, три камеры переменного объёма и положения.
Конструкция роторно-поршневого ДВС позволяет реализовать любой четырехтактный цикл без применения специального механизма газораспределения. Благодаря этому факту «роторник» оказывается значительно проще обычного четырёхтактного поршневого двигателя, в котором в среднем почти на тысячу деталей больше.
Герметизация рабочих камер в роторно-поршневом ДВС обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к «цилиндру» ленточными пружинами, а также центробежными силами и давлением газа.
Ещё одна его техническая особенность — это высокая «производительность труда». За один полный оборот ротора (то есть за цикл «впрыск, сжатие, воспламенение, выхлоп»), выходной вал совершает три полных оборота. В обычном поршневом двигателе таких результатов можно добиться только используя шестицилиндровый ДВС.

После первой же успешной демонстрации роторного ДВС в 1957 году крупнейшие автогиганты стали проявлять к разработке повышенный интерес. Сначала лицензию на двигатель, получивший неформальное название «ванкель», купила корпорация Curtiss-Wright, через год, Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего за весьма короткий промежуток времени лицензии на новую технологию приобрели около ста компаний во всём мире, включая таких монстров как Rolls-Royce, Porsche, BMW и Ford.Такой интерес к «ванкелю» столь крупных игроков автомобильного рынка объясняется его большим потенциалом и значительными достоинствами — в роторно-поршневом двигателе на 40% меньше деталей, он проще в ремонте и производстве.

К тому же «ванкель» почти в два раза компактней и легче традиционного поршневого ДВС, что в свою очередь улучшает управляемость автомобиля, облегчает оптимальное расположение трансмиссии и позволяет сделать более просторный и удобный салон.


Картинка кликабельна:

Роторно-поршневой двигатель развивает высокую мощность при довольно скромном расходе топлива. Например, современный «ванкель» объёмом всего 1300 смі развивает мощность в 220 л.с., а с турбокомпрессором — все 350. Ещё один пример — миниатюрный двигатель OSMG 1400 весом 335 г (рабочий объем 5 смі) развивает мощность в 1,27 л.с. Фактически, эта кроха на 27% сильнее лошади.
Ещё одно важное преимущество — низкий уровень шумов и вибраций. Роторно-поршневой двигатель отлично уравновешен механически, кроме того масса движущихся частей (и их количество) в нём значительно меньше, благодаря чему «ванкель» работает гораздо тише и не вибрирует.
И, наконец, роторно-поршневой двигатель отличается великолепными динамическими характеристиками. На низкой передаче можно без особой нагрузки на движок разогнать автомобиль до 100 км/ч на высоких оборотах двигателя. Кроме того, сама конструкция «ванкеля» за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционный ДВС.

После вышедшего в 1964 году NSU Spyder последовали легендарная модель NSU Ro 80 (в мире до сих пор существует множество клубов владельцев этих машин), Citroen M35 (1970), Mercedes C-111 (1969), Corvette XP (1973). Но единственным массовым производителем стала японская Mazda, выпускавшая с 1967 года порой по 2-3 новые модели с РПД. Роторные двигатели ставили на катера, снегоходы и легкие самолеты. Конец эйфории пришел в 1973 году, в разгар нефтяного кризиса. Тут-то и проявился основной недостаток роторных двигателей — неэкономичность. За исключением Mazda, все автопроизводители свернули роторные программы, а у японской компании продажи по Америке сократились со 104960 проданных машин в 1973 году до 61192 — в 1974-м. Наряду с неоспоримыми достоинствами, «ванкель» также обладал и целым рядом очень серьёзных недостатков. Во-первых, долговечность. Один из первых прототипов роторно-поршневых двигателей на испытаниях выработал свой ресурс всего за два часа. Следующий, более успешный DKM-54 уже выдержал сто часов, но этого для нормальной эксплуатации автомобиля всё равно было недостаточно. Основная проблема крылась в неравномерном износе внутренней поверхности рабочей камеры. На ней в процессе эксплуатации появлялись поперечные борозды, которые получили говорящее имя «метки дьявола».

В компании Mazda после приобретения лицензии на «ванкель» был сформирован целый отдел, занимавшийся усовершенствованием роторно-поршневого двигателя. Довольно скоро выяснилось, что при вращении треугольного ротора, заглушки на его вершинах начинают вибрировать, в результате чего и образуются «метки дьявола».
В настоящее время проблему надежности и долговечности окончательно решили, применив высококачественные износостойкие покрытия, в том числе керамические.
Другая серьезная проблема — повышенная токсичность выхлопа «ванкеля». По сравнению с обычным поршневым ДВС «роторник» выделяет в атмосферу меньше окислов азота, но гораздо больше углеводородов, за счёт неполного сгорания топлива. Довольно быстро инженеры Mazda, уверовавшие в блестящее будущее «ванкеля», нашли простое и эффективное решение и этой проблемы. Они создали так называемый термальный реактор, в котором остатки углеводородов в выхлопных газах просто «дожигались». Первым автомобилем, реализовавшим такую схему, стал Mazda R100, также называемый Familia Presto Rotary, выпущенный в 1968 году. Эта машина, одна из немногих, сразу прошла весьма жёсткие экологические требования, выдвинутые США в 1970 году для импортируемых авто.
Следующая проблема роторно-поршневых двигателей частично вытекает из предыдущей. Это экономичность. Расход топлива стандартного «ванкеля» из-за неполного сгорания смеси существенно выше, чем у стандартного ДВС. И снова инженеры Mazda принялись за работу. При помощи целого комплекса мер, включающих переработку термореактора и карбюратора, добавление теплообменника в выхлопную систему, разработку каталитического конвертера и внедрение новой системы зажигания, компания добилась снижения потребления топлива на 40%. В результате этого несомненного успеха в 1978 году был выпущен спортивный автомобиль Mazda RX-7.

Стоит отметить, что в это время во всём мире машины с роторно-поршневыми двигателями выпускала только Mazda и… АвтоВАЗ.
Именно в провальном 1974 году советское правительство создает на Волжском автозаводе специальное конструкторское бюро РПД (СКБ РПД) — социалистическая экономика непредсказуема. В Тольятти начались работы по строительству цехов для серийного производства «ванкелей». Поскольку ВАЗ изначально планировался как простой копировальщик западных технологий (в частности, фиатовских), заводскими специалистами было принято решение воспроизводить двигатель Mazda, напрочь откинув все десятилетние наработки отечественных двигателестроительных институтов.
Советские чиновники довольно долго вели переговоры с Феликсом Ванкелем на предмет покупки лицензий, причем некоторые из них проходили прямо в Москве. Денег, правда, не нашли, и поэтому воспользоваться некоторыми фирменными технологиями не удалось. В 1976 году заработал первый волжский односекционный двигатель ВАЗ-311 мощностью 65 л.с., еще пять лет ушло на доводку конструкции, после чего была выпущена опытная партия в 50 штук роторных «единичек» ВАЗ-21018, мгновенно разошедшихся среди работников ВАЗа. Тут же выяснилось, что двигатель только внешне напоминал японский — сыпаться он стал очень даже по-советски. Руководство завода было вынуждено за полгода заменить все двигатели на серийные поршневые, сократить на половину штат СКБ РПД и приостановить строительство цехов. Спасение отечественного роторного двигателестроения пришло от спецслужб: их не очень интересовал расход топлива и ресурс двигателя, зато сильно — динамические характеристики. Тут же из двух двигателей ВАЗ-311 был сделан двухсекционный РПД мощностью 120 л.с., который стал устанавливаться на «спецединичку» — ВАЗ-21019. Именно этой модели, получившей неофициальное название «Аркан», мы обязаны бесчисленным количеством баек про милицейские «Запорожцы», догоняющие навороченные «Мерседесы», а многие стражи порядка — орденами и медалями. До 90-х годов внешне непритязательный «Аркан» действительно легко догонял все машины. Помимо ВАЗ-21019 на АвтоВАЗе также выпускаются малые партии автомобилей ВАЗ-2105, -2107, -2108, -2109, -21099. Максимальная скорость роторной «восьмерки» составляет около 210 км/ч, а до сотни она разгоняется всего за 8 секунд.
Оживший на спецзаказах СКБ РПД стал делать двигатели для водного и автоспорта, где машины с роторными двигателями стали настолько часто завоевывать призовые места, что спортивные чиновники были вынуждены запретить применение РПД.
В 1987 году умер руководитель СКБ РПД Борис Поспелов и на общем собрании был выбран Владимир Шнякин — человек, пришедший в автомобилестроение из авиации и недолюбливающий наземный транспорт. Главным направлением СКБ РПД становится создание двигателей для авиации. Это была первая стратегическая ошибка: самолетов у нас выпускается несоизмеримо меньше автомобилей, а завод живет с проданных двигателей.
Второй ошибкой стала ориентация в сохранившемся производстве автомобильных РПД на маломощные двигатели ВАЗ-1185 в 42 л.с. для «Оки», хотя более прожорливые, но более динамичные роторные двигатели так и просятся на самые быстроходные отечественные машины — например, на «восьмерки». Те же японцы устанавливают «ванкели» только на спортивные модели. В итоге на российских дорогах оказалось всего несколько роторных микролитражек «Ока». В 1998 году был наконец-то подготовлен гражданский вариант двухцилиндрового роторного 1,3-литрового двигателя ВАЗ-415, который стали устанавливать на ВАЗ-2105, 2107, 2108 и 2109.

В мае 1998 г был омологирован кольцевой ВАЗ-110 «РПД-спорт» (190 л. с., 8500 об/мин, 960 кг, 240 км/ч). Увы, дальше одного-единственного образца, чаще демонстрируемого на выставках, чем стартующего в гонках, дело не пошло. 110-я была самой мощной в пелотоне, но откровенно сырая конструкция всякий раз не давала ей продемонстрировать весь свой потенциал. Однако обидней всего то, что на «ВАЗе» быстро охладели к роторному направлению, а уникальную «Ладу» переделали в ралли-кар с обычным ДВС.

Так почему же все ведущие производители автомобилей ещё не пересели на «ванкели»? Дело в том, что для производства роторно-поршневых двигателей требуется, во-первых, отточенная технология со множеством самых разнообразных нюансов и далеко не каждая компания готова пройти путь той же Mazda, попутно наступая на многочисленные «грабли». А во-вторых, нужны специальные высокоточные станки, способные вытачивать поверхности, описанные такой хитрой кривой как эпитрохоида.

Mazda RX-7 — это один из первых автомобилей, на котором ставился роторно-поршневой двигатель Ванкеля. За всю историю Mazda RX-7 было четыре поколения. Первое поколение с 1978 по 1985 год. Второе поколение — с 1985 по 1991. Третье поколение — с 1992 по 1999. Последнее, четвёртое поколение — с 1999 по 2002 год. Первое поколение RX-7 появилось в 1978 году. Оно имело среднемоторную компоновку и оснащалось роторным двигателем мощностью всего 130 л. с.

В настоящее время только Mazda занимается серьёзными исследованиями в области роторно-поршневых двигателей, постепенно совершенствуя их конструкцию, и большая часть подводных камней в этой области уже пройдена. «Ванкели» вполне соответствуют мировым стандартам по уровню токсичности выхлопа, потреблению топлива и надёжности. Для современных станков поверхности описанные эпитрохоидой не являются проблемой (как не являются проблемой и куда более сложные кривые), новые конструкционные материалы позволяют увеличить срок службы роторно-поршневого двигателя, а его стоимость уже сейчас оказывается ниже, чем у стандартного ДВС за счёт меньшего количества используемых деталей.
Как и NSU, Mazda в 60-е гг. была небольшой компанией с ограниченными техническими и финансовыми ресурсами. Основу ее модельного ряда составляли развозные грузовички да семейные малолитражки. Поэтому нет ничего удивительного, что спорт-купеMazda 110S Cosmo (982 см куб., 110 л. с., 185 км/ч) создавалось более 6 лет и оказалось весьма капризным и дорогим. Да и подпорченная NSU Ro80 репутация не способствовала ажиотажу (в 1967–1972 гг. нашли своих владельцев только 1175 «космосов»), но мировой интерес к 110S способствовал увеличению продаж всей остальной продукции фирмы!
Чтобы доказать, что РПД столь же надежен (его превосходство в мощности уже стало для всех очевидным), Mazda чуть ли не впервые в жизни приняла участие в соревнованиях, причем выбрала самую трудную и продолжительную гонку – 84-часовой Marathon De La Route, проходивший на Нюрбургринге. Как экипажу из Бельгии удалось занять 4-е место (вторая машина сошла с дистанции за три часа до финиша из-за заклинивших тормозов), уступив только «выросшим» на «Нордшляйфе» Porsche 911, похоже, так и останется загадкой.

Мастерская Ванкеля в Линдау

Хотя с тех пор японские «роторники» стали завсегдатаями гоночных трасс, крупного успеха в Европе им пришлось ждать 16 лет. В 1984-м британцы на RX-7 выиграли престижную суточную гонку в Спа-Франкошамп. А вот в США, на главном рынке «семерки», ее гоночная карьера складывалась куда успешнее: с момента дебюта в чемпионате IMSA GT в 1978 году и по 1992-й она выиграла в своем классе более сотни этапов, причем с 1982 по 1992 гг. первенствовала в главной гонке серии – 24 hours of Daytona.
В ралли у «Мазд» все шло не так гладко. Как это часто бывало с японскими командами (Toyota, Datsun, Mitsubishi), они выступали только на отдельных этапах раллийного чемпионата мира (Новая Зеландия, Великобритания, Греция, Швеция), интересующих в первую очередь маркетинговые отделы концернов. Национальных титулов хватало: так, в 1975–1980 гг. Род Миллен выиграл целых пять в Новой Зеландии и США. А вот в WRC успехи были исключительно локальными: лучшее, что показали RX-7, – 3-е и 6-е места в греческом «Акрополисе» 1985 года.
Ну а самым громким успехом Mazda вообще и РПД в частности стала победа ее спортпрототипа 787B (2612 см куб., 700 л. с., 607 Нм, 377 км/ч) в Ле Мане в 1991 году. Причем одолеть заводскиеPorsche, Peugeot и Jaguar помогли не только быстрые пилоты и конкурентоспособная техника: свою роль сыграла и настойчивость японских менеджеров, регулярно «выбивавших» для роторников всевозможные послабления в регламенте. Так, накануне победы 787-го организаторы гонки согласились компенсировать прожорливость «роторников» 170-килограммовым (830 против 1000) снижением массы. Парадокс заключался в том, что, в отличие от бензиновых моторов, «аппетит» РПД при дальнейшей форсировке рос куда более скромными темпами, чем у обычных поршневых моторов, и 787-й оказался экономичней своих основных конкурентов!

Это был шок. Mercedes, который журнал Stern за консерватизм называл не иначе как «производитель авто для 50-летних господ в шляпах», в 1969 году презентовал супер-кар, поражавший воображение даже цветом. Вызывающая ярко-оранжевая окраска, подчеркнуто клиновидная форма, среднемоторная компоновка, двери «крыло чайки» и сверхмощный трехсекционный РПД (3600 см куб., 280 л. с., 260 км/час) – для консервативного Mercedes это было нечто!

А поскольку в компании не строили концептов, все считали, что у С111 только один путь: мелкосерийная (омологационная) сборка и большое гоночное будущее, ведь с 1966 года ФИА допустила РПД к официальным соревнованиям. И в штаб-квартиру Mercedes посыпались чеки с просьбой вписать нужную сумму за право обладать С111. Штутгартцы же еще больше подогрели интерес к «эске», в 1970 г. представив вторую генерацию купе с еще более фантастическим дизайном, 4-секционным ротором и умопомрачительными характеристиками (4800 см куб., 350 л. с., 300 км/час). Для доводки Mercedes построил пять макетов, которые дневали и ночевали на Хокенхаймринге и Нюрбургринге, готовясь установить серию рекордов скорости. Пресса смаковала предстоящую «битву титанов» между роторным Mercedes, атмосферным Ferrari и наддувным Porsche в чемпионате мира по гонкам на выносливость. Увы, возвращение в большой спорт не состоялось. Во-первых, С111 был очень дорогим даже для Mercedes, во- вторых, немцы не могли пустить в продажу столь сырую конструкцию. А после карибского нефтяного кризиса они вообще прикрыли проект, сосредоточившись на дизельных двигателях. Ими и оборудовали последние версии C111, установившие несколько мировых рекордов.

Не имеющий законченного технического образования, под конец жизни Феликс Ванкель достиг мирового признания в области двигателестроения и уплотнительной техники, завоевав массу наград и титулов. Его именем названы улицы и площади немецких городов (Felix-Wankel-Strasse, Felix-Wankel-Ring). Помимо двигателей, Ванкель разработал новую концепцию скоростных судов и самостоятельно построил несколько лодок.

Самое интересное, что роторный двигатель, который сделал его миллионером и принес ему всемирную славу, Ванкель не любил, считая его «гадким утенком». Реальные работающие РПД были сделаны по так называемой «концепции ККМ», предусматривающей планетарное вращение ротора и требующей введения внешних противовесов. Немалую роль сыграл и тот факт, что эту схему предложил не Ванкель, а инженер NSU Вальтер Фройде. Сам же Ванкель до последних дней считал идеальной схему двигателя «с вращающимися поршнями без неравномерно вращающихся частей» (Drehkolbenmasine — DKM), концептуально гораздо более красивую, но технически сложную, требующую, в частности, установки свечей зажигания на вращающемся роторе. Тем не менее, роторные двигатели во всем мире связывают именно с именем Ванкеля, поскольку все, кто близко знал изобрателя, в один голос утверждают, что что без неуемной энергии немецкого инженера мир так и не увидел бы этого удивительного устройства. Фелик Ванкель ушел из жизни в 1988 году.
Любопытна история с Mercedes 350 SL. Ванкель очень хотел иметь роторный Mercedes С-111. Но фирма Mercedes не пошла ему навстречу. Тогда изобретатель взял серийный 350 SL, выкинул оттуда «родной» двигатель и установил ротор от С-111, который был легче прежнего 8-цилиндрового на 60 кг, но развивал существенно большую мощность (320 л.с. при 6500 об/мин). В 1972 году, когда инженерный гений закончил работу над своим очередным чудом, он мог бы сидеть за рулем самого быстрого на тот момент «Мерседеса» SL-класса. Ирония заключалась в том, что водительские права Ванкель до конца жизни так и не получил.

Возрождением интереса к РПД мы обязаны новому двигателю Mazda Renesis (от RE — Rotary Engine — и Genesis). За прошедшее десятилетие японским инженерам удалось решить все основные проблемы РПД — токсичность выхлопа и неэкономичность. По сравнению с предшественником, удалось сократить потребление масла на 50%, бензина на 40% и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель объемом всего 1,3 л выдает мощность в 250 л.с. и занимает гораздо меньше места в двигательном отсеке.
Специально под новый двигатель был разработан автомобиль Mazda RX-8, который, по словам брэнд-менеджера Mazda Motor Europe Мартина Бринка, создавался по новой концепции — автомобиль «строился» вокруг двигателя. В итоге развесовка по осям RX-8 идеальна — 50 на 50. Использование уникальной формы и маленьких размеров двигателя позволило поместить центр тяжести очень низко. «RX-8 не явяляется гоночным монстром, но это лучшая в управлении машина, которую я когда-либо водил», — с восторгом рассказывал Popular Mechanics Мартин Бринк.
Бочка меда…
Вне всяких сомнений, с первого взгляда роторно-поршневой двигатель имеет массу преимуществ перед традиционными двигателями внутреннего сгорания:
— Меньшим на 30-40% количеством деталей;
— Меньшими в 2-3 раза габаритами и массой, по сравнению с соответствующим по мощности стандартным ДВС;
— Плавная характеристика крутящего момента во всем диапазоне оборотов;
— Отсутствие кривошипно-шатунного механизма, а, следовательно, гораздо меньший уровень вибрации и шума;
— Высокий уровень оборотов (до 15000 об/мин!).
Ложка дегтя…
Казалось бы, если «Ванкель» имеет такие превосходства над поршневым двигателем, то кому нужны эти громоздкие, тяжелые, гремящие и вибрирующие поршневые двигатели? Но, как это часто бывает, на практике все далеко не так шоколадно. Ни одно гениальное изобретение, выйдя за порог лаборатории, отправлялось в корзину с пометкой «для мусора». Серийное производство нашло не на один камень, а на целую россыпь гранита:
— Отработка процесса сгорания в камере неблагоприятной формы;
— Обеспечение герметичности уплотнений;
— Обеспечение работы без коробления корпуса в условиях неравномерного нагрева;
— Низкий термический КПД ввиду того, что камера сгорания РПД намного больше, чем у традиционного ДВС;
— Высокий расход топлива;
— Высокая токсичность газообразных продуктов сгорания;
— Узкая зона температур для работы РПД: при низких температурах мощность двигателя резко падает, при высоких — быстрый износ уплотнений ротора.

Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.

Общий принцип устройства роторного двигателя

РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.

Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.

Почему роторные двигатели не пользуются спросом?

Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.

Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.

Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.

Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.

Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.

Роторный двигатель Желтышева — принцип работы:

Преимущества роторного двигателя

При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км. Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.

Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.

Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.

Принцип работы роторного двигателя Ахриевых на видео:

Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.

В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.

Как работает роторный мотор Ванкеля на видео

Принцип работы роторного двигателя

РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.

Механизм работы роторного-поршневого двигателя:

  • сжатие горючего;
  • впрыск топлива;
  • обогащение кислородом;
  • горение смеси;
  • выпуск продуктов сгорания топлива.

Как работает роторный двигатель показано на видео:

Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.

Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.

Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.

Принцип работы роторного двигателя Зуева:

На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.

Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.

Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.
По роду топлива ДВС разделяются на двигатели:
жидкого топлива;
газовые.

По способу заполнения цилиндра свежим зарядом:
четырехтактные;
двухтактные.

По способу приготовления горючей смеси из топлива и воздуха двигатели с:
внешним смесеобразованием;
внутренним смесеобразованием.

К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе.
В ДВС с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой.

В двигателях с внутренним смесеобразованием (дизелях) топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.

Рабочий цикл 4-тактного карбюраторного ДВС совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала.

При 1-м такте — впуске — поршень движется от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.). Впускной клапан при этом открыт и горючая смесь из карбюратора поступает в цилиндр.

В течение 2-го такта — сжатия, — когда поршень движется от н. м. т. к в. м. т., впускной и выпускной клапаны закрыты и смесь сжимается до давления 0,8-2 Мн/м2 (8-20 кгс/см2). Температура смеси в конце сжатия составляет 200-400°C. В конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива. Сгорание имеет место при положении поршня, близком к в. м. т. В конце сгорания давление в цилиндре составляет 3-6 Мн/м2 (30-60 кгс/1см2), а температура 1600-2200°C.

3-й такт цикла — расширение — называется рабочим ходом; в течение этого такта происходит преобразование тепла, полученного от сгорания топлива, в механическую работу.

4-й такт — выпуск — происходит при движении поршня от н. м. т. к в. м. т. при открытом выпускном клапане. Отработавшие газы вытесняются поршнем.

Рабочий цикл 2-тактного карбюраторного ДВС осуществляется за 2 хода поршня или за 1 оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам 4-тактного ДВС. При прочих равных условиях 2-тактный двигатель должен быть в 2 раза более мощным, чем 4-тактный, т. к. рабочий ход в 2-тактном двигателе происходит в 2 раза чаще, однако на практике мощность 2-тактного карбюраторного ДВС часто не только не превышает мощность 4-тактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже.

Это обусловлено тем, что значительную часть хода (20-35%) поршень совершает при открытых окнах, когда давление в цилиндре невелико и двигатель практически не производит работы; продувка цилиндра требует затрат мощности на сжатие воздуха в продувочном насосе; очистка пространства цилиндра от продуктов сгорания газов и наполнение его свежим зарядом значительно хуже, чем в 4-тактном ДВС.

Рабочий цикл карбюраторного ДВС может быть осуществлен при очень большой частоте вращения вала (3000-7000 об/мин). Двигатели гоночных автомобилей и мотоциклов могут развивать 15 000 об/мин и более.

Нормальная горючая смесь состоит примерно из 15 частей воздуха (по массе) и 1 части паров бензина. Двигатель может работать на обеднённой смеси (18: 1) или обогащенной смеси (12: 1). Слишком богатая или слишком бедная смесь вызывает сильное уменьшение скорости сгорания и не может обеспечить нормального протекания процесса сгорания.

Регулирование мощности карбюраторного ДВС осуществляется изменением количества смеси, подаваемой в цилиндр (количественное регулирование). Большая частота вращения и выгодные соотношения топлива и воздуха в смеси обеспечивают получение большой мощности в единице объёма цилиндра карбюраторного двигателя, поэтому эти двигатели имеют сравнительно небольшие габариты и массу [ 1-4 кг/квт (0,75-3 кг/л. с.)].

Применение низких степеней сжатия обусловливает умеренные давления в конце сгорания, вследствие чего детали можно делать менее массивными, чем, например, в дизелях.

При увеличении диаметра цилиндра карбюраторного ДВС возрастает склонность двигателя к детонации,

Роторный Двигатель Расход Топлива на 100 – История ванкеля • DRIVER’S TALK

Содержание статьи:

Мощность и ресурс • Эксцентриковый вал проходит сквозь весь бутерброд корпусов и стационарные шестерни.

Схема устройства РПД

Остальные рабочие полости работают так же. А поскольку полостей три, то за один оборот ротора происходит аж три рабочих такта! А учитывая, что эксцентриковый (коленчатый) вал вращается в три раза быстрее ротора, на выходе получаем по одному рабочему такту (полезная работа) на один оборот вала для односекционного мотора. У четырехтактного поршневого двигателя с одним цилиндром это соотношение в два раза ниже.

Роторный двигатель: принцип работы. плюсы и минусы роторного двигателя

Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.

Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:

  • впуск;
  • сжатие;
  • воспламенение;
  • выпуск.

Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.

Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.

Чем является РПД?

4 необходимо выполнение радиальных сквозных наклонных отверстий в стенках цилиндра от поршня для выброса масла от поршня за счет центробежных сил фиг. Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя.

Конструкция. Рабочие такты рпд

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам. Заметим, что изготовление деталей для роторов не связано напрямую с достижениями военно-промышленного комплекса, а возможно на уровне общего машиностроения.

Таблица коэффициентов топлива Нормативный расчет – Рабочие такты рпд

Роторный двигатель | Автомобильный справочник
На работы по доводке и тестированию первого мотора ушло около двух лет, за которые в бесполезный металлолом были превращены сотни, а может и тысячи экспериментальных агрегатов. По аналогии с поршневым двигателем принцип действия РПД базируется на преобразовании энергии, получаемой в результате сгорания воздушно-топливной смеси.
Как Рассчитать Расход Топлива Дизельного Двигателя © Индивидуальные доказательства • DRIVER; S TALK
В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси. Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;.
  1. Обладая малым весом и габаритами, роторный мотор имеет больше возможностей для достижения правильной развески и улучшения управляемости, а так же делает автомобиль более просторным в салоне;
  2. более высокая удельная мощность по сравнению с классическими моторами;
  3. более ровная и широкая полка крутящего момента;
  4. отсутствие кривошипно-шатунного механизма, клапанов, пружин, газораспределительного механизма, а вместе с ним и распредвалов, ремня грм или цепи;
  5. хорошая сбалансированность и плавность работы РПД, которую можно сравнить с работой рядной «шестерки»;
  6. меньшая склонность к детонации;
  7. отсутствие кривошипно-шатунного механизма, а вследствие этого отсутствие необходимости преобразования возвратно-поступательного движения поршней во вращение коленчатого вала, делает РПД более оборотистым нежели обычный мотор;

Отзывы владельцев • Преимущественно изобретение направлено на создание двигателей внутреннего сгорания ДВС с двухтактным, четырехтактным и шеститактным циклами.

Как рассчитать расход топлива автомобиля на 100 км пути

Подвод топливовоздушной смеси и отвод отработанных газов, так же, как и охлаждение стенок цилиндров, имеет похожую по конструкции компоновку с привычными силовыми агрегатами.

АвтоВАЗ: Перемены на роторном фронте

Сегодня мы расскажем о нашем знакомстве с новым автомобилем, оснащенным роторнопоршневым двигателем Ванкеля. На московском автосалоне эта машина была представлена в полицейской форме. Впрочем, речь пойдет не только о ней, но и о новом поколении роторных двигателей, разработанных специальным конструкторским бюро АвтоВАЗа. Но сначала — самое главное: новое семейство «роторов», в отличие от предыдущего, предназначено теперь не только для «вооружения» автомобилей всевозможных спецслужб, но и для «обычных» автомобилистов.

НОВОЕ СЕМЕЙСТВО РОТОРНЫХ МОТОРОВ

Итак, новое семейство роторно-поршневых двигателей. Его основа — двигатель ВАЗ-415, который, в отличие от предшественников, можно назвать универсальным. То есть его установка возможна на любую вазовскую машину — переднеприводные Самары, заднеприводные Жигули и полноприводные Нивы. Кроме того, его можно будет применять на автомобилях АЗЛК, а в трехсекционном варианте — и на Волгах. А еще — на самолетах малой авиации.

Этот мотор соединил в себе достоинства двух моделей, выпускаемых ранее. Напомним, что это были за двигатели. Во-первых, ВАЗ413 (для Волги), в основе конструкции которого лежала концепция надежности. Он «вырос» в свою очередь из первого, еще односекционного, «ротора» BA3-311, которым в свое время комплектовались машины ВАЗ-21018. Во-вторых, ВАЗ-414 (для переднеприводных ВАЗов), где главными задачами были вопросы компоновки. Новичок должен был унаследовать от BA3-413 достаточный ресурс (его пробег на Волгах достигал 300—320 тыс. км без разборки), а от мотора ВАЗ-414 — возможность установки на разных моделях автомобилей.

А принципиальные отличия новой конструкции таковы:

— компоновочные решения, позволяющие собирать двух-трехсекционные двигатели, причем и автомобильные, и авиационные, на одной технологической базе;

— оптимизация конструкции по тепловому состоянию;

— совместимость с системами впрыска топлива, что позволит в перспективе уложиться в международные требования по расходам и токсичности.

Заметим, что изготовление деталей для «роторов» не связано напрямую с достижениями военно-промышленного комплекса, а возможно на уровне общего машиностроения. При этом стоимость роторно-поршневого двигателя (РПД) предполагается удержать в районе 2500 долларов США — на уровне известного мотора Volkswagen мощностью 150 л. с.

Новые моторы рассчитаны на российские горючесмазочные материалы, в частности, на «жигулевское» моторное масло и бензин Аи-93 или А-92. Есть вариант, рассчитанный на бензин А-76, и даже двигатель, где октановое число бензина будет выбираться положением специального переключателя в салоне машины.

Двигатели могут быть оснащены распределенным впрыском топлива. Система впрыска представляет собой гибрид из комплектующих фирмы Bosch и отечественного блока управления. Возможно оборудование системой дожита и нейтрализации отработавших газов с учетом европейских и американских норм.

Расход масла «на угар» (0,4—0,5% от расхода топлива) находится на уровне поршневых двигателей, а расход топлива составляет 190—195 грамм на одну лошадиную силу в час, что в пересчете на привычные значения означает увеличение эксплуатационных расходов в пределах одного литра на 100 км по сравнению с обычным мотором такой же мощности.

Итак, базовый двухсекционный двигатель ВАЗ-415. Максимальная мощность — до 150 л. с. при 6000 об/мин, а максимальный крутящий момент — 19— 19,5 кгм при 4000 об/мин. При этом есть возможность закладывать различные характеристики кривой момента с помощью настройки системы впуска. Все зависит от места расположения впускного канала. Так, «радиальный» впуск позволяет получить спортивные и авиационные моторы с хорошим «верхом», а «торцевой» впрыск обеспечивает хорошую тяговитость «на низах».

Детали работы

Данный метод более точен, чем вычисления на основе преодолённого расстояния, поскольку при стоянии в пробке, масленное потребление мотором увеличивается, при неизменном значении одометра. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.

Rotor2 • Рабочие такты рпд

Скептически к новой технологии отнесся даже главный инженер Toyo Kogyo Кеничи Ямамото, а ее доводка потребовала от маленькой компании немаленьких ресурсов. Но сначала самое главное новое семейство роторов , в отличие от предыдущего, предназначено теперь не только для вооружения автомобилей всевозможных спецслужб, но и для обычных автомобилистов.

Машины с роторным двигателем. Рабочий цикл

Что такое роторный двигатель. Принцип работы роторного двигателя — видео
За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель Ванкеля способен выдерживать гораздо большие обороты по сравнению с традиционными двигателями. При этом инерционная масса головки поршня с поршневыми кольцами может быть выполнена больше инерционной массы юбки поршня относительно оси шарнира либо инерционная масса юбки поршня может быть выполнена больше инерционной массы головки поршня с поршневыми кольцами относительно оси шарнира.
Mazda RX-8: расход топлива на 100 км отзывы владельцев • DRIVER; S TALK
При этом ось вала на крестовине совершает круговые движения, в этом механизме имеется принцип движения карданной передачи, разделенной на две части, неравномерность хода и вибрации также имеют место. На работы по доводке и тестированию первого мотора ушло около двух лет, за которые в бесполезный металлолом были превращены сотни, а может и тысячи экспериментальных агрегатов.

Впрыск топлива в роторном двигателе • Ротор позиционируется на эксцентрике эксцентрикового вала при помощи подшипников сколь жения.

Ротативный двигатель

Модель с таким типом мотора для серийного производства — ВАЗ 21018, его представили в 1982. И это тоже привело к неудаче, у всех пробных авто отказали двигатели, последовал год доработок. Затем вышли ВАЗ 411 и 413, они использовались силовыми ведомствами страны. То, что получилось, пришлось кстати для сотрудников охраны правопорядка. Им были нужны неприметные авто, которые обладают достаточной мощностью, чтобы догнать иномарку. К тому же в ведомствах особенно не беспокоились о высоком расходе топлива и небольшом ресурсе двигателя. Рядового автомобилиста такое конечно же не устроило бы.

Двигатель Ванкеля использует четырёхтактный цикл:

  • такт A: Топливно-воздушная смесь через впускное окно поступает в камеру двигателя
  • такт B: Ротор вращается и сжимает смесь, смесь воспламеняется электрической искрой
  • такт C: Продукты горения давят на поверхность ротора, передавая усилия на цилиндрический эксцентрик
  • такт D: Вращающийся ротор вытесняет отработанные газы в выпускное окно.

Несмотря на схожесть цикла, динамика сгорания топливно-воздушной смеси в роторно-поршневом двигателе (РПД) сильно отличается от традиционного поршневого двигателя.

В поршневом двигателе (ПД) топливно-воздушный заряд, проходя в цилиндр через клапан на стадии впуска, приобретает высокую турбулентность, которая возрастает с ростом числа оборотов коленчатого вала, что благоприятно сказывается на полноте сгорания смеси. В РПД турбулентность ниже и в момент воспламенения, основной заряд смеси впереди по вращению ротора быстро сгорает, в то время как задняя часть рабочей полости остается не сгоревшей и выбрасывается в атмосферу. Этим объясняется в 6 – 8 раз более высокий процент выбосов в атмосферу несгоревших углеводородов, по сравнению с поршневыми двигателями.

Еще одним отличием рабочего цикла РПД от рабочего цикла ПД является сдвиг момента максимального выделения тепла в камере сгорания на линию расширения после прохождения верхней мертвой точки. Поэтому максимальные температуры цикла, при одинаковой степени сжатия, у РПД ниже, а в фазе выпуска температура отработавших газов на 200 – 250 °С выше чем у поршневых двигателей. Это термодинамически невыгодно и приводит к дополнительному снижению КПД, но в тоже время, по этой причине выброс окиси азота у РПД на 20% ниже, а при одинаковых степенях сжатия, РПД способен работать без детонации на топливе с октановым числом на 15 единиц меньше чем поршневой двигатель.

Устранение недостатков РПД добиваются усложнением систем впрыска, созданием расслоения топливно-воздушной смеси в камере сгорания и т.п. [3]

Недостатки роторного двигателя

При этом инерционная масса головки поршня с поршневыми кольцами может быть выполнена больше инерционной массы юбки поршня относительно оси шарнира либо инерционная масса юбки поршня может быть выполнена больше инерционной массы головки поршня с поршневыми кольцами относительно оси шарнира. Все труднее и труднее становится представить всю отрасль в целом, и еще сложнее постоянно следить за направлениями, которые важны для автомобилестроения.

Автомобили с роторным двигателем История создания

16 показан ротативный четырехтактный двухцилиндровый двигатель воздушного охлаждения с внешним смесеобразованием инжектор и принудительным зажиганием от электрической искры. Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой приводит к дополнительному износу и нагреву двигателя.

Что сделали в Советском Союзе Рабочие такты рпд

Роторный двигатель: принцип работы. плюсы и минусы роторного двигателя
Таким образом, в роторно-поршневом двигателе с треугольным ротором в каждой из трех его рабочих камер последовательно происходит впуск, сжатие, рабочий ход и выпуск. В одном из вариантов выполнения изобретения цилиндр и рычаг, шарнирно соединенный с поршнем, могут быть выполнены с противовесом, а противовес как цилиндра, так и рычага может быть выполнен регулируемым.
АвтоВАЗ: Перемены на роторном фронте (о роторнопоршневом двигателе Ванкеля)
Задумывались и о дизельном топливе, но успеха это направление тоже не принесло слишком велики нагрузки на ротор, да и уплотнение рабочих камер организовать труднее, ведь степень сжатия должна быть почти в два раза больше. Если в камере сгорания температура бывает выше, чем в системе впуска выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.
  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

ГОНКА С НУЛЕМ ЗАВЕРШЕНА! — Сила с целью.


Вес, эффективность и защита окружающей среды

Что делает Omega 1 намного более мощным, легким и эффективным, чем поршневой двигатель?

Первый: В поршневом двигателе происходит огромное количество потерь на трение, тепла, паразитных и насосных потерь. Каждый раз, когда поршень движется вверх и вниз, кольца царапают стенки поршня, что вызывает трение.Почти каждая движущаяся часть контактирует с другими движущимися частями, что вызывает большее трение. Паразитные потери не малы, так как они складываются в виде потерь в клапанном механизме, ограничений воздушного потока, преобразования энергии возвратно-поступательного движения поршня в энергию вращения коленчатого вала и инерционных потерь из-за функции пружины. Также существуют значительные насосные потери из-за необходимости жидкостного охлаждения двигателя за счет перемещения смазочных материалов по всему двигателю. Все эти потери снижают мощность двигателя, а устранение этих потерь увеличивает сложность и вес.

Секунда: В двигателе Омеги 1 таких потерь очень мало. В нем резко снижено трение, почти отсутствуют паразитные потери и нет движущихся частей, кроме вращающихся элементов. Потери при перекачивании очень малы, потому что двигатель охлаждается воздухом за счет воздушного потока вокруг двигателя и через него, и только синхронизирующие шестерни и подшипники требуют смазки. Это дает дополнительное преимущество, заключающееся в отсутствии перекрестного загрязнения камеры сгорания маслом, что соответствует снижению выбросов.

Значительное улучшение сгорания и общей эффективности достигается за счет принудительного впуска воздуха с наддувом при давлении от 200 до 300 фунтов на квадратный дюйм. Обычные нагнетатели повышают давление сгорания всего на 6–35 фунтов на квадратный дюйм. Нагнетатель Omega 1 намного лучше и является неотъемлемой частью процесса сгорания.

Третье: Общая эффективность также улучшается благодаря нашей способности двигателя «пропускать огонь». Например, двигатель может срабатывать при каждом обороте во время ускорения транспортного средства, но один раз на крейсерской скорости в самолете, на шоссе и т. д., двигатель будет запускаться только тогда, когда это необходимо (каждые 5, 10, 50 оборотов или сколько угодно), и может работать на холостом ходу на высоких оборотах с очень небольшим расходом топлива. Затем, когда условия меняются и требуется мощность, компьютер увеличивает скорость стрельбы для почти мгновенной мощности с очень малой задержкой дроссельной заслонки. Это может быть настроено на максимальную эффективность, максимальную мощность или их комбинацию в зависимости от желаемого применения.

Четвертый: Двигатель Omega 1 — первый двигатель с активной линейной передачей мощности.Когда двигатель Omega 1 вращается, вся мощность передается через единственный вращающийся приводной вал. Здесь нет смещенных коленчатых валов, возвратно-поступательных поршней и эксцентрикового вала (как в роторном двигателе Ванкеля).

Двигатель весит намного меньше, чем сопоставимый поршневой двигатель, благодаря простоте конструкции и малому количеству движущихся частей.


Omega 1 мощнее, легче, эффективнее и проще, чем турбинный двигатель

Двигатель Omega 1 обеспечивает гораздо более эффективную работу канального вентилятора и не имеет существенных недостатков, связанных с необходимостью использования обычной технологии движения с циклом Брайтона, используемой в современных газотурбинных двигателях.К ним относятся шум, высокий расход топлива, задержка отклика дроссельной заслонки, высокая инерция вращения, подверженность повреждению посторонними предметами и высокие производственные затраты. Это связано со сложными процессами обработки и сборки относительно большого количества деталей, что увеличивает стоимость двигателя до миллионов долларов за единицу. Это в дополнение к дорогостоящему и сложному процессу восстановления, необходимому с учетом часов работы.

Невероятно простая конструкция двигателя Omega I позволяет двигателю работать примерно с тем же количеством внутренних деталей, что и типичный одноцилиндровый поршневой двигатель, применяемый в оборудовании для ухода за газонами и другом внешнем силовом оборудовании.Ожидаемые характеристики износа двигателя потенциально могут увеличить время работы между капитальными ремонтами до 6-значного диапазона (ожидаемые 100 000 часов плюс) с очень простым, недорогим и недорогим техническим обслуживанием, требуемым между циклами капитального ремонта. Реакция дроссельной заслонки будет почти мгновенной, повреждение посторонними предметами будет исключено за счет конструкции, а стоимость приобретения будет составлять небольшую долю от существующей технологии газотурбинного двигателя из-за простоты конструкции.


Захватывающая новая технология – защищена патентами и ноу-хау

Мэтью Райли, изобретатель Омега-1, не новичок в защите патентов.На счету Мэтью множество патентов, и это не исключение. Его последнее творение, двигатель Omega 1, защищено многочисленными патентными заявками, предварительными заявками и ожидающими выдачи патентов. Astron зарегистрировал почти все патенты как внутри страны, так и за рубежом. Сюда входят Китай, Корея, Индия и другие регионы, где производятся автомобили и самолеты. Эта технология слишком хороша, чтобы ее не защищать, поэтому Astron позаботился о ней!

Двигатель Omega 1 изменит мир к лучшему, предоставив новый, более компактный и мощный двигатель, потребляющий гораздо меньше топлива.Это позволит производить значительно меньше парниковых газов, а также улучшит крутящий момент и мощность в этом невероятно маленьком корпусе. Это позволит использовать новые и интересные приложения, а также улучшит все существующие виды транспорта и производства электроэнергии.

Что такое двигатель Ванкеля? | Как работает роторный двигатель?

Двигатели наиболее распространены во всем мире. Они стали важной частью всех транспортных средств. Существуют различные типы двигателей в соответствии с потребностями различных приложений.Двигатель Ванкеля — самый известный тип двигателя внутреннего сгорания. В предыдущей статье мы обсуждали различные типы двигателей внутреннего сгорания (ДВС). В этой статье речь пойдет в основном о двигателе Ванкеля.

Что такое двигатель Ванкеля?

Двигатель Ванкеля представляет собой тип роторного двигателя внутреннего сгорания, в котором используется вращательное движение треугольного ротора, установленного в эллиптической камере, для преобразования тепловой энергии во вращательное движение без использования традиционного возвратно-поступательного движения поршня.Двигатель Ванкеля также известен как роторный двигатель , потому что он имеет все вращающиеся части.

По сравнению с поршневыми двигателями , роторные двигатели Ванкеля имеют малый вес, небольшие размеры и более компактны. Напротив, поршневой двигатель имеет возвратно-поступательный поршень, который движется вверх и вниз внутри цилиндра.

Роторный двигатель Ванкеля имеет меньшую вибрацию и более равномерный крутящий момент, чем поршневой двигатель.

История двигателя Ванкеля
  • В 1924 году Феликс Генрих Ванкель построил небольшую лабораторию и начал разрабатывать и исследовать двигатель своей мечты, который мог вращаться, всасывать, сжимать, сжигать и выхлопывать.
  • В 1951 году компания NSU Motorenwerke AG начала разработку двигателя Ванкеля.
  • В 1957 году инженер Феликс Генрих Ванкель сконструировал первый роторный двигатель Ванкеля вместо обычного поршневого двигателя.
  • Инженер Ханс Дитер Пашке разработал второй двигатель KKM , следуя некоторым технологическим изменениям и усовершенствовав технологию двигателя Ванкеля.
  • Роторный двигатель Ванкеля был впервые представлен специалистам и прессе в 1960 году на конференции Немецкого инженерного союза в Мюнхене.
  • В 1960-х годах, благодаря простоте, отличному соотношению прочности и веса, плавной работе и очень высокой эффективности работы роторных двигателей, они были у всех на слуху в автомобильной и мотоциклетной промышленности.
  • В августе 1967 года компания NSU Motorenwerke AG получила широкую известность благодаря совершенно новому NSU Ro 80, оснащенному 115-часовым двигателем Ванкеля с двумя роторами. Это был первый немецкий автомобиль, который в 1968 году был выбран «Автомобилем года».
  • Благодаря превосходным характеристикам двигателя Ванкеля многие крупные производители автомобилей (Ford, Toyota, Mercedes-Benz, Porsche, Rolls-Royce и Mazda) подписали между собой лицензионные соглашения на производство роторных двигателей Ванкеля в течение следующего десятилетия.

Конструкция роторного двигателя

Роторный двигатель работает по принципу отто-цикла . В отличие от возвратно-поступательного действия поршневого двигателя, 4-тактный двигатель стандартного двигателя с циклом Отто организован последовательно вокруг эллиптического ротора в двигателе Ванкеля.

Вращающийся двигатель имеет один ротор и единственную эллиптическую коробку, вращающуюся вокруг треугольного ротора (трехгранник Рело), ​​который вращается и перемещается в коробке.Боковое уплотнение ротора соединено с тремя камерами сгорания со стороны корпуса и углами уплотнения ротора по периметру основной коробки.

По мере вращения ротора вращение и форма корпуса подталкивают ротор ближе к стенке корпуса, а камеру сгорания двигателя ближе и дальше вниз по «ходам» возвратно-поступательного поршня. Но эти 4-тактные двигатели производят такт сгорания после двух оборотов поршня внутри цилиндра.

Камеры сгорания двигателя Ванкеля производят один « тактов сгорания » за каждый оборот.Поскольку приводной вал Ванкеля вращается со скоростью, в три раза превышающей скорость вращения ротора, он становится одним «тактом» сгорания на один оборот выходного вала ротора, что в два раза больше, чем у четырехтактного поршневого двигателя, и эквивалентно таковому у двухтактного двигателя. .

Эти двигатели имеют большую выходную мощность по сравнению с четырехтактными бензиновыми двигателями с сопоставимым ходом двигателя.

Двигатель Ванкеля Рабочий

A Роторный двигатель Ванкеля — известный тип двигателя внутреннего сгорания, работающий по основному принципу отто-цикла .

Двигатель Wankel имеет четырехтактные и работы по следующему пути:

  1. Компрессионные
  2. сгорания
  3. выхлоп
  4. 9001 Engine Wankel 30011

    1) или Ход всасывания: –

    • Когда конец ротора проходит через впускное отверстие, свежий воздух начинает поступать в первый цилиндр, как показано на схеме выше.
    • Цилиндр 1 st продолжает подавать свежий воздух до тех пор, пока кончик ротора 2 nd не достигнет впускного отверстия и не закроет его.
    • После этого впускной канал закрывается, и свежая топливно-воздушная смесь попадает в первый цилиндр для сжатия и сгорания.

    2) Сжатие: –

    • После завершения такта впуска начинается такт сжатия захваченной топливовоздушной смеси.
    • По мере того, как ротор начинает вращаться, зазор между углом 1 и углом 2 первого цилиндра (как показано на схеме выше) уменьшается за счет того, что объем смеси уменьшается, и происходит сжатие смеси.
    • По мере того, как топливовоздушная смесь сжимается в соответствии с требованиями, она направляется на процесс сгорания.

    3) Сгорание: –

    • Поскольку смесь первого цилиндра (между 1 и 2 углами) сжимается в соответствии с требованиями, свеча зажигания создает искру внутри цилиндра, которая воспламеняет воздушно-топливную смесь. смесь.
    • В результате воспламенения смесь превращается в газы с высокой температурой и давлением. Энергия сгоревшей смеси заставляет ротор двигаться вперед.Этот процесс продолжается до тех пор, пока угол 1 st не пройдет мимо выпускного отверстия.

    4) Выхлоп: –

    • Когда угол 1 касается выпускного или выпускного отверстия, из двигателя выбрасываются горючие газы под высоким давлением.
    • После сброса выхлопных газов выпускное окно закрывается, и снова весь цикл повторяется.

    Для лучшего понимания смотрите следующее видео:

    Итак, если у Ванкеля столько достоинств, то почему только Мазда делает автомобили с двигателем Ванкеля? Есть недостатки.Из-за длинной и узкой камеры сгорания форма Ванкеля менее эффективна, чем обычный четырехтактный поршневой двигатель. Расход топлива большой, особенно в более ранние, менее сложные двигатели. Если выходная мощность больше важнее экономичности, так как в спортивном автомобиле это меньше проблема. Выбросы оксидов азота ниже, чем у поршня двигатель, но выбросы угарного газа и несгоревших углеводородов выше. Уплотнения ротора аналогичны поршневым кольцам. в обычном двигателе, но они значительно меньше и поэтому ведут грубая жизнь.Срок службы уплотнений в ранних двигателях был коротким — держу пари что я не единственный человек с воспоминаниями о RX-2 и RX-3 жужжание, тянущееся за облаками ядовито-синей несгоревшей углеводородный дым. Более поздние усовершенствования конструкции уплотнения и строительство остановило эту конкретную проблему.

    Считалось, что ни один Ванкель не может сравниться с нынешней Калифорнией. требованиям по выбросам, но инженеры Mazda проявили настойчивость и выполнили эти строгие правила, прежде всего путем реконфигурации конструкция так, чтобы впускные и выпускные отверстия находились по бокам камера RX-8 вместо этого на периферии.Осторожный порт конструкция и трехступенчатый впускной коллектор еще больше снижают выбросы и помогают улучшить экономию топлива. Аккуратно управляемый, RX-8 имеет разумный расход топлива. Но раскрути его и поезжай это тяжело, и наблюдайте, как падает указатель уровня топлива. Эй, это спортивная машина, просто добавьте бензин в свой бюджет на развлечения.

    История Неудивительно, что первые автомобили с двигателем Ванкеля были экспериментальные седаны NSU, построенные в конце 1950-х — начале 1960-е годы. Первым серийным автомобилем с двигателем Ванкеля был NSU. Паук, выпускавшийся с 1964 по 1967 год.Это был крошечный двухместный автомобиль. с однороторным 500-кубовым двигателем мощностью 50 лошадиных сил. За ним в 1968 году последовал NSU R080, четырехдверный седан с двухроторный двигатель, который по сути представлял собой удвоенную версию двигатель Паук. Название NSU не совсем нарицательное. сегодня, что неудивительно, поскольку компания была поглощена Volkswagen Group в конце 1960-х гг. Разработка НГУ Ванкеля остановились в это время.

    В конце 1950-х и начале 1960-х годов Ванкель был новым и захватывающе и раскручено как «сила завтрашнего дня».» Многие крупные автопроизводители лицензировали технологию у NSU. Дженерал Моторс построил пару среднемоторных двух- и четырехроторных корветов прототипы в начале 1970-х; трудности с выбросами, политику, а первый нефтяной кризис означал, что среднемоторная Wankel Corvette был просто легендарным несостоявшимся автомобилем. Mercedes-Benz построил несколько концепт-каров и прототипов. в течение 60-х и 70-х годов, кульминацией которых стало небольшое количество C111с. C111 с трех- и четырехроторными двигателями. были способны к ускорению 0-60 менее чем за пять секунд.Один был модифицированный для рекордов скорости, и достиг 250 миль в час. Увы, как и роторный Corvette, суперкар Mercedes стал жертвой 1970-х нефтяные кризисы и корпоративная политика.

    Первым автомобилем Mazda с роторным двигателем был Cosmo 110S. 1967 г., двухместный спортивный автомобиль с очень итальянским внешним видом. Это было за ними вскоре последовали купе и седаны, а Mazda к 1970 г. было произведено более 100 000 роторных двигателей. начало. RX-2, -3, -4 и -5 купе, седаны и даже фургоны поставили Mazda и двигатель Ванкеля на карту во время 1970-е годы.Был даже пикап с роторным двигателем. Затем в В 1978 году дебютировал RX-7. Осталось три поколения RX-7 неизгладимый след на автомобильной сцене. Первый- и RX-7 второго поколения по-прежнему остаются малобюджетными энтузиасты и клубные гонщики довольны.

    Есть ли будущее у ротора? Если выбросы могут быть проблемная работа на бензине, Ванкеля кажется отлично счастливого пробега на водороде. Mazda построила и испытала несколько Роторные концептуальные автомобили с водородным двигателем. Не считайте доктора.Маленькая жемчужина Ванкеля.

    Omega 1 — двигатель внутреннего сгорания, который меняет правила игры, слишком хорош, чтобы быть правдой?

    Электромобили штурмом захватывают мир, и судьба двигателя внутреннего сгорания кажется решенной, но старая газовая электростанция все еще жива. По крайней мере, так думают инженеры Astreon, демонстрируя новый концепт ДВС. Они утверждают, что это двигатель с почти нулевым уровнем выбросов, несмотря на сжигание топлива внутри его камер сгорания.

    Вместо поршней новый двигатель оснащен парой вращающихся шестерен, очень похожих на авиационные турбины. Он также напоминает роторный двигатель, но с улучшенной конструкцией, устраняющей слабые стороны Ванкеля. Чтобы упростить, мы можем сказать, что двигатель Omega 1, разработанный Astreon Aerospace, использует четыре такта двигателя внутреннего сгорания и делит их на две независимые камеры.

    Двигатель имеет два вала, которые вращаются в противоположных направлениях через синхронизирующие шестерни, с четырьмя роторами, вращающимися попарно на двух валах.Первая пара отвечает за впуск и сжатие, а вторая пара отвечает за такты сгорания и выпуска. Они дополняются поворотным дисковым клапаном и форкамерой, расположенными между двумя наборами роторов. Здесь происходит впрыск топлива.

    Принципы работы этого двигателя немного сложнее понять неспециалисту вроде нас с вами. К счастью, Astreon показал нам подробное видео, которое помогло нам визуализировать весь процесс. Видео также подробно описывает различные детали двигателя и их роль в процессе сгорания.Благодаря прецизионной обработке этому двигателю не нужны никакие уплотнения для удержания жидкостей внутри. Эта невероятно простая конструкция может рассматриваться как угроза будущему электромобилей, обещая долгий срок службы при минимальном техническом обслуживании.

    Как следует из названия компании, это должен быть идеальный авиационный двигатель, легкий и мощный, а также совершенно безвибрационный. Тем не менее, он также может питать широкий спектр транспортных средств, начиная с мотоциклов и заканчивая самыми тяжелыми типами техники.По словам Astreon, новый двигатель способен развивать мощность 160 лошадиных сил и крутящий момент 170 фунт-футов (230 Нм) при весе всего 35 фунтов. (15,9 кг). Он работает на холостом ходу при 1000 об/мин, но может достигать 25 000 об/мин при полной нагрузке.

    Конечно, Astreon предполагает, что вы можете последовательно соединить два или более таких двигателя для большей мощности, и мы предполагаем, что их также можно построить больше. В отличие от классического роторного двигателя, в этой концепции двигателя нет проблем с уплотнением. Astreon также обещает, что сможет работать на различных видах топлива с очень низким уровнем выбросов.Это звучит слишком хорошо, чтобы быть правдой, но мы обязательно будем следить за этим, чтобы увидеть, как он будет развиваться в будущем.

    Изобретатель роторного двигателя Феликс Ванкель родился

    Немецкий инженер Феликс Ванкель, изобретатель роторного двигателя, который будет использоваться в гоночных автомобилях, родился 13 августа 1902 года в Ларе, Германия.

    Сообщается, что Ванкелю пришла в голову основная идея нового типа бензинового двигателя внутреннего сгорания, когда ему было всего 17 лет.В 1924 году Ванкель создал небольшую лабораторию, где начал исследования и разработку двигателя своей мечты, который мог бы обеспечивать впуск, сжатие, сгорание и выхлоп при вращении. Он привнес свои знания о поворотных клапанах в свою работу в Немецком институте авиационных исследований во время Второй мировой войны и в ведущей немецкой мотоциклетной компании NSU Motorenwerk AG, начиная с 1951 года. Ванкель завершил свою первую конструкцию роторно-поршневого двигателя в 1954 году. , а первая установка была испытана в 1957 году.

    В других двигателях внутреннего сгорания движущиеся поршни выполняли работу по запуску процесса сгорания; в роторном двигателе Ванкеля этой цели служил вращающийся ротор в форме изогнутого равностороннего треугольника. Меньшее количество движущихся частей позволило создать плавно работающий двигатель, который был легким, компактным, недорогим и требовал меньшего количества ремонтов. После того, как NSU официально объявила о завершении работы над роторным двигателем Ванкеля в конце 1959 года, около 100 компаний по всему миру поспешили предложить партнерские отношения, которые позволили бы установить двигатель в их продукты.Mazda, японский автопроизводитель, подписала официальный контракт с NSU в июле 1961 года после получения одобрения японского правительства.

    Пытаясь поэкспериментировать с роторным двигателем и усовершенствовать его для использования в своих автомобилях, Mazda в 1963 году создала исследовательский отдел RE (роторный двигатель). роторный двигатель автомобиля. Благодаря футуристическому стилю и превосходным характеристикам Cosmo поразил автолюбителей во всем мире. Mazda начала устанавливать роторные двигатели на свои седаны и купе в 1968 году, и автомобили попали в США.на рынке США в 1971 году. После глобального нефтяного кризиса 1973-74 годов Mazda постоянно работала над улучшением своих роторных двигателей для повышения эффективности использования топлива, и к концу этого десятилетия ее спортивные автомобили стали популярными как в Европе, так и в Европе. Соединенные Штаты Помимо Mazda, ряд других компаний лицензировали двигатель Ванкеля в 1960-х и 1970-х годах, включая Daimler-Benz, Alfa Romeo, Rolls Royce, Porsche, General Motors, Suzuki и Toyota.

    Тем временем Ванкель продолжил свою работу над роторно-поршневым двигателем, основав в середине 1970-х годов собственное исследовательское учреждение в Линдау, Германия.В 1986 году он продал институт за 100 миллионов немецких марок (около 41 миллиона долларов) компании Daimler Benz, производившей Mercedes. Ванкель подал новый патент еще в 1987 году; в следующем году он умер после продолжительной болезни.

    Как работает двигатель Ванкеля? – MechStuff

    Больше никаких скучных представлений, давайте начнем и поймем, как работает двигатель Ванкеля и что это такое!

    История :-
    Первый двигатель Ванкеля был разработан немецким инженером – Феликсом Ванкелем .Ванкель получил свой первый патент на двигатель в 1929 году.
    Однако конструкция двигателя Ванкеля, используемая сегодня, разработана Ханнсом Дитером Пашке , который он принял для создания современного двигателя!

    Двигатель Ванкеля :-

    Двигатель Ванкеля представляет собой двигатель внутреннего сгорания, в отличие от поршневого цилиндра. В этом двигателе используется конструкция ротора с эксцентриком, которая напрямую преобразует энергию давления газов во вращательное движение. В то время как в схеме поршень-цилиндр прямолинейное движение поршня используется для преобразования во вращательное движение коленчатого вала.
    По сути, ротор вращается в корпусе в форме жирной восьмерки .

    Детали двигателя Ванкеля:-

    Для этого слайд-шоу требуется JavaScript.

    Ротор:- Ротор имеет три выпуклые стороны, которые действуют как поршень. 3 угла ротора образуют уплотнение снаружи камеры сгорания. Он также имеет внутренние зубья шестерни в центре с одной стороны. Это позволяет ротору вращаться вокруг неподвижного вала.
    Корпус:- Корпус имеет эпитрохоидальную форму (примерно овальную).Корпус спроектирован так, чтобы 3 кончика или угла ротора всегда оставались в контакте с корпусом. Впускной и выпускной патрубки расположены в корпусе.
    Впускное и выпускное отверстия: — Впускное отверстие позволяет свежей смеси поступать в камеру сгорания, а выхлопные газы выбрасываются через выпускное/выпускное отверстие.
    Свеча зажигания:- Свеча зажигания подает электрический ток в камеру сгорания, который воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.
    Выходной вал:- На вторичном валу установлено эксцентриковых кулачков , что означает, что они смещены на от
    осевой линии вала . Ротор не находится в чистом вращении, но нам нужны эти эксцентриковые кулачки для чистого вращения вала.

    Примечание:- Выходной вал — это вещь, которую невозможно полностью объяснить словами. Трудно представить его вклад в работу. эта ссылка на видео может помочь вам понять это.

    Работа: — Анимация двигателя Ванкеля.

    Впуск:-
    Когда кончик ротора проходит через впускное отверстие, свежая смесь начинает поступать в первую камеру. Камера всасывает свежий воздух до тех пор, пока вторая вершина не достигнет впускного отверстия и не закроет его. В данный момент свежая топливовоздушная смесь запаяна в первую камеру и вывозится на сжигание.

    Сжатие :-
    Первая камера (между углом 1 и углом 2), содержащая свежий заряд, сжимается из-за формы двигателя к тому времени, когда он достигает свечи зажигания.
    Пока это происходит, во вторую камеру (между углом 2 и углом 3) начинает поступать новая смесь.

    Четырехтактный двигатель с пронумерованными углами.

    Воспламенение:-
    При воспламенении свечи зажигания сильно сжатая смесь взрывоопасно расширяется. Давление расширения толкает ротор вперед. Это происходит до тех пор, пока первый угол не пройдет через выпускное отверстие.

    Выхлоп :-
    Когда пик ИЛИ угол 1 проходит через выпускное отверстие, горячие газы сгорания под высоким давлением могут свободно вытекать из отверстия.
    По мере того, как ротор продолжает двигаться, объем камеры продолжает уменьшаться, вытесняя оставшиеся газы из порта. К тому времени, когда угол 2 закрывает выпускное отверстие, угол 1 проходит мимо впускного отверстия, повторяя цикл.

    В то время как первая камера выпускает газы, вторая камера (между углом 2 и углом 3) находится под сжатием . Одновременно камера 3 (между углом 3 и углом 1) всасывает свежую смесь .
    В этом прелесть двигателя: четыре последовательности четырехтактного цикла, которые происходят последовательно в поршневом двигателе, происходят одновременно в двигателе Ванкеля, производя мощность непрерывным потоком.

    Преимущества:-

    1. Двигатель Ванкеля имеет очень мало движущихся частей; намного меньше, чем у четырехтактного поршневого двигателя. Это делает конструкцию двигателя проще, а двигатель надежнее.
    2. Это примерно 1/3 размера поршневых двигателей , обеспечивающих такую ​​же выходную мощность.
    3. Способен достигать более высоких оборотов в минуту, чем поршневой двигатель.
    4. Двигатель Ванкеля весит почти 1/3 веса поршневых двигателей , обеспечивая такую ​​же выходную мощность.Это приводит к более высокому соотношению мощности к весу.

    Недостатки:-

    1. Поскольку каждая секция имеет разность температур, расширение материала корпуса различно в разных регионах. Поэтому ротор иногда не может полностью герметизировать камеру в области высоких температур.
    2. Сгорание медленное, так как камера сгорания длинная, тонкая и подвижная. Следовательно, может быть вероятность того, что новый заряд разрядится, даже не сгорая.
    3. Поскольку несгоревшее топливо попадает в поток выхлопных газов, требования по выбросам трудновыполнимы.

    Связанные

    Запутанный план Mazda по возрождению знаменитого грязного роторного двигателя

    Роторный двигатель Ванкеля — удивительно интуитивная штука. Он гремит, поет и производит абсурдное количество энергии для своего размера. Но это также архаично, как это часто бывает со старыми автомобилями, поэтому странно думать, что Mazda хочет вернуть его.

    Ротари — это то, что сделала Mazda в таких автомобилях, как Sports Cosmo 1968 года. Изящный двухместный автомобиль, на котором я ездил на сверхсекретной испытательной трассе Mazda Mine, пах бензином, выветрившейся кожей и деревом.Интерьер в ломаную клетку только добавил винтажной атмосферы. Никакого гидроусилителя руля, липкие барабанные тормоза, машина такая простая, что можно было чувствовать механику в каждом движении и слышать грохот роторного двигателя — не гудение, заметьте, дребезжание — громко впереди. Следующим был RX-7 1984 года без антипробуксовочной системы. Я чуть не потерял его на первом повороте, крошечная колесная база автомобиля позволяла клину вращаться, как бутылка, при малейшем нажатии на педаль газа. Затем появились RX-7 второго поколения и RX-8 начала 2000-х.

    В упаковке роторный двигатель. Как люди из Mazda постоянно напоминали тем из нас, кто водит автомобили, это то, чего не может предложить ни один другой автопроизводитель, потому что ни один другой крупный автопроизводитель не производил серийно автомобиль с роторным двигателем. Нельзя сказать, что они не пытались: Nissan, GM, Toyota и Ford в Германии вложили значительные средства в разработку сложной трансмиссии, но ни один из них не преуспел.

    Так почему же Mazda пригласила горстку журналистов на свою трассу, чтобы испытать на себе анахроничную технологию, от которой отказались три года назад из-за ее печально известной низкой эффективности и высоких выбросов? Потому что Mazda обещает воскресить Ванкеля самым эффектным образом.На Токийском автосалоне в прошлом месяце компания представила потрясающий концепт-кар RX-Vision, ставший пушечным ядром в социальных сетях.

    Как бы круто это ни звучало, нельзя не спросить, почему? Чтобы понять, вы должны сначала понять неоценимую важность роторного двигателя для Mazda Motor Corp и его место в истории компании, а также то, как он может сыграть интригующую роль в формировании будущего.

    Спасение Mazda

    В целях укрепления послевоенной экономики страны правительство Японии приняло решение объединить 10 автомобильных брендов в три компании.Идея заключалась в том, чтобы устранить конкуренцию и способствовать развитию общих ресурсов. Хино, Исузу и Принс должны были сосредоточиться на грузовиках; Honda, Subaru, Daihatsu и Suzuki объединились и сосредоточились на автомобилях. Nissan, Toyota и Mazda также объединятся. Президент Mazda Цунеджи Мацуда полагал, что единственный способ сохранить независимость его небольшой компании — это предложить уникальную технологию. Он обратился к роторному двигателю немецкого инженера Феликса Ванкеля.

    Потенциально революционная технология, двигатель Ванкеля, или роторный двигатель, заменил возвратно-поступательные поршни традиционного двигателя внутреннего сгорания треугольными роторами, которые вращаются по эллипсам, преобразуя давление сгорания во вращательное движение.Поскольку они могут работать на очень высоких оборотах, роторные двигатели Ванкеля генерируют больше мощности на литр, чем поршневые двигатели. Мощный компактный двигатель был многообещающей силовой установкой для промышленности, специализирующейся на небольших автомобилях для городских поездок.

    Контент

    Этот контент также можно просмотреть на сайте, откуда он взят.

    30 мая 1967 года двухроторный Cosmo Sport появился в выставочных залах; улучшенная версия последовала год спустя. В течение десятилетия продажи Mazda выросли в десять раз, с 41 000 автомобилей до 400 000.Численность сотрудников увеличилась с менее чем 4500 до более чем 21000 человек. В период с 1978 по 2012 год компания продала более одного миллиона спортивных автомобилей RX-7 и RX-8.

    Роторный двигатель — неотъемлемая часть истории Mazda. Вы не можете прокрасться в туалет на заводе в Хиросиме, чтобы кто-нибудь не напомнил вам, что ротор — это часть их ДНК. Даже местные жители подверглись идеологической обработке; гид на вокзале сказал: «Аааа, роторный!» когда я упомянул, куда я иду.

    Из-за этой истории Mazda делает ставку — и свое будущее — на эти роторы в форме Dorito.Но только потому, что роторный двигатель спас Mazda в 20-м веке, есть ли у него шанс сделать это в 21-м? Мазда, кажется, так думает.

    Проблема

    Последний RX-8 сошел с конвейера в 2012 году, его роторный двигатель был вынужден выйти из строя из-за все более строгих глобальных экологических норм. (Компания уже давно внедрила обычные двигатели во все остальные модели, и этот процесс начался в 1980-х годах.) Преимущества роторных двигателей нивелируются двумя большими проблемами.Большая камера сгорания означает, что двигатели сжигают много топлива и производят много выбросов CO2. Двигатели также производят относительно низкий крутящий момент и не отличаются большой надежностью. Крутящий момент и надежность не являются непреодолимыми проблемами, но эффективность была другой проблемой. RX-8 расходовал всего лишь мизерные 19 миль на галлон. Mazda изо всех сил пыталась решить проблему, но, несмотря на значительные инвестиции, 1,6-литровый двигатель с непосредственным впрыском, показанный в концепте Taiki 2007 года, так и не был запущен в производство.

Добавить комментарий

Ваш адрес email не будет опубликован.